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Abstract: The paper considers hybrid systems consisting of an n-dimensional switched in-
tegrator, generating discrete events by comparing the state variables with fixed values. A
condensed model is established, suitable for locating cyclic trajectories. A control law is set
up, achieving a given cyclic trajectory to become globally attractive w.r.t. the discrete events.

Résumé: Les systèmes hybrides traités dans cette communication sont constitués d’intégra-
teurs à commutation de dimension n. Des événement discrets sont générés en comparant
l’état continu avec des valeurs fixes. Un modèle condensé permet de déterminer les trajec-
toires cycliques qui, par l’intermédiaire de la loi de commande, peuvent atteindre des cycles
déterminés vis-à-vis des événements discrets.

1. INTRODUCTION

Switched-integrator-systems exhibit a continuous
state evolving along continuous flow of time. The
involved continuous dynamics is represented by an
n-dimensional integrator. Furthermore switched-
integrator-systems provide a discrete interface to the
environment, acting on input-events by switching the
integrand and generating output-events by comparing
the continuous state with fixed values. When closing
the loop by a feedback law in form of a finite automa-
ton in general both discrete and continuous dynamics
are involved. Therefore the closed loop is a typical
hybrid system. Even if the continuous part as well
as the discrete part are set up in a simple manner, the
closed loop may give rise to complex dynamics. As an
example take the widely discussed switched-server-
arrival systems, which are contained in the proposed
system class. See i.e. [CHA 93] and [YU 96].

In the past decade a number of different frameworks
have been developed, in order to analyze hybrid sys-
tems. See [BRA 96] for a comparatively universal
concept. [ENG 97] highlights real applications of
hybrid character. On principle switched-integrator-
systems are covered by hybrid automata, as intro-
duced in [ALU 93]. However, in the present contri-
bution a more explicit notation is prefered.

We first focus on the open system and state as control
problem the construction of a feedback law, achiev-
ing all trajectories to reach a given cycle w.r.t. the dis-
crete events. In order to solve this problem, a finite
automaton, not necessarily deterministic, is proposed

as a condensed model. The aim is, to cover a cer-
tain amount of the external behavior of the underlying
switched-integrator-system, just enough to be able to
solve the control problem. The condensed model is
extended for the ability of handling certain situations,
where the number of controls required to reach the cy-
cle is unbounded. An implementation of the proposed
algorithms based on ‘Mathematica’ has been used to
analyze the example given in the last section.

Section 2 gives a suitable definition of switched-
integrator-systems and establishes the continuous and
discrete transfer functions. From those in section 3
the condensed model is developed. Section 4 states
criteria for the existence of cyclic trajectories. In Sec-
tion 5 an algorithm is provided, setting up the claimed
feedback. In Section 6 an extension of the condensed
model is proposed. Section 7 gives an example.

2. SWITCHED-INTEGRATOR-SYSTEMS

Let a continuous process be modeled by an n-
dimensional integrator with state variable x ∈

�
n.

As input consider a piecewise constant function u,
valued within a finite set of inputs U ⊂

�
n, |U | ∈

�
. As output of the system take the series of events

y = (yk)k, generated by comparing the compo-
nents x(i) of the state with finite sets of fixed val-
ues Si ⊂

�
, |Si| ∈

�
. After a suitable substitu-

tion of the state variable x (which may increase the
states dimension n) the situation can be reduced to
comparing the components x(i) with zero. Therefore
yk = (sign x(i))1≤i≤n is taken as output event, oc-



curing at time tk if for an i the signx(i) becomes zero
at time tk. For simplicity of notation we only treat in-
puts producing an infinite sequence of output events.
Further assume that never more than one component
of x becomes zero simultaneously. Since we are look-
ing for a control law to generate the input from the
output events, we restrict the input to change its value
only when an output event occurs. We now view the
input u as a series of input events u = (uk)k, where
the event uk ∈ U occurs at time tk. The following
definition describes the scenario:

Definition 1. Let U, |U | ∈
�

, be a finite subset of
�

n. Then the triple Σsis = (U,
�

n, {−1, 0, 1}n)
is said to be a switched-integrator-system. A triple
(u, x, y) consisting of

u = (ui)i∈ � 0 , ui ∈ U , (1)

x = (xi)i∈ � 0 , xi ∈
� n , (2)

y = (yi)i∈ � 0 , yi ∈ {−1, 0, 1}n
, (3)

is said to be a solution of Σsis if there exists

t = (ti)i∈ � 0 , ti ∈
� +

0 , (4)

x :
� +

0 →
� n , (5)

y :
� +

0 → {−1, 0, 1}n
, (6)

such that the following equations hold for all k ∈
�

0:

t0 = 0, x(0) = x0 , (7)

ẋ(t) = uk ∈ U ∀ t ∈ [tk, tk+1[ , (8)

y(t) = (signx(i)(t))1≤i≤n , (9)

tk+1 = sup{t| t > tk : y is const. on ]tk, t[},(10)

yk = y(tk), xk = x(tk) , (11)

x(j)(t) = 0 =⇒ x(i)(t) 6= 0 ∀ i 6= j . (12)
�

If a pair (x0, u) consisting of an initial condition
x0 to the continuous state and a sequence of inputs
u yields a solution, this solution is unique. Further
the system is time-invariant. We prove both state-
ments by setting up the continuous transfer function
Φcont(·, uk), which maps any given state xk to its
successor xk+1 when input uk is applied. Pick any
solution of Σsis in the notation of the above definition
and fix an arbitrary k ∈

�
0. By integrating equa-

tion (8) we get

x(t) = xk + (t − tk)uk ∀ t ∈ [tk, tk+1] . (13)

For j, 1 ≤ j ≤ n, such that

y
(j)
k 6= 0 and y

(j)
k+1 = 0 , (14)

xk+1 is the projection of xk in direction uk on the
hyper-plane Hj � {ξ| ξ ∈

�
n, ξ(j) = 0}. Let

P (uk, j) ∈
�

n×n denote the according matrix-
representation. We now need to express a suitable j

in terms of xk and uk. From the equations (10), (12)

and (13) we observe that a unique j with (14) exists.
It is determined by the following conditions:

(i) 0 6= signx
(j)
k = − signu

(j)
k .

(ii) For all i, 1 ≤ i ≤ n, i 6= j with
0 6= signx

(i)
k = − signu

(i)
k it holds

−x
(j)
k

1

u
(j)
k

< −x
(i)
k

1

u
(i)
k

. (15)

Changing the point of view we fix an arbitrary j, 1 ≤
j ≤ n. The conditions (i) and (ii) then describe the
set of xk, for which equation (14) holds. Note that
these sets are disjunct since j is unique for all xk.
Note also that (i) and (ii) can be written as strict ho-
mogeneous linear inequalities. Let M(yk, uk, j) ∈

�
m×n denote the according matrix-representation,

yielding

M(yk, uk, j)xk > 0 (16)

=⇒ xk+1 = P (uk, j)xk . (17)

Define Φcont (x, u) for all x ∈
�

n, u ∈ U : If
M(sign x, u, j)x > 0 holds for exactly one j, 1 ≤
j ≤ n, let

Φcont(x, u) � P (u, j)x ∈
� n . (18)

Otherwise let

Φcont(x, u) � 0 ∈
� n . (19)

Further for all k ∈
�

0, (ui)i<k , ui ∈ U ∀ i, let

Φk
cont (·, (ui)i<k) �

Φcont (·, uk−1) ◦ · · · ◦ Φcont(·, u0) , (20)

Φk
disc(·, (ui)i<k) �

sign Φk
cont

(·, (ui)i<k) ∈ {−1, 0, 1}n
. (21)

The result of the preceding construction is stated as

Lemma 1. For every solution (u, x, y) of Σsis it
holds for all k ∈

�
0:

xk = Φk
cont

(x0, (ui)i<k) , (22)

yk = Φk
disc(x0, (ui)i<k) . (23)

For a given pair (x0, u), x0 ∈
�

n, u = (uk)k∈ � 0 ,
uk ∈ U , define x = (xk)k∈ � 0 and y = (yk)k∈ � 0 by
the above equations (22) resp. (23). If xk 6= 0 holds
for all k ∈

�
0, then (u, x, y) is a solution of Σsis .

�

Note that the restriction allowing only one compo-
nent of the state to become zero (equation (12)) can
be dropped. This will result in a more complicated
set of conditions replacing (i) and (ii), still being rep-
resentable by (not necessarily strict) homogeneous
linear inequalities, and therefore still yielding com-
putable transfer functions.



3. CONDENSED MODELS

Let r ∈
�

be fixed. We develop the discrete con-
densed model of order r by visiting the last r input-
events and the last r + 1 output-events at time tk for
all k ∈

�
0. As state space choose

Zr � {((ui)i<p, (yi)i≤p)| p ≤ r} , (24)

where ui and yi are in U and {−1, 0, 1}n respectively.
For shortness of notation define for all

z = ((ui)i<p, (yi)i≤p) ∈ Zr (25)

the projections

ui(z) � ui, u(z) � (ui)i<p , (26)

yi(z) � yi, y(z) � (yi)i≤p . (27)

Further define for any pair (u, y) of input/output tra-
jectories

u = (uk)k∈ � 0 , uk ∈ U , (28)

y = (yk)k∈ � 0 , yk ∈ {−1, 0, 1}n
, (29)

the trajectory z(u, y) = (zk)k∈ � 0 , zk ∈ Zr, by

zk �

{

((ui+k−r)i<r, (yi+k−r)i≤r) if k > r ,

((ui)i<k, (yi)i≤k) if k ≤ r . (30)

We associate z ∈ Zr with the knowledge about the
continuous state of the original system Σsis , for the
case that the last r resp. r+1 input- and output-events
match those collected in z. Let z ∈ Zr be given in the
notation of equation (25) and define

X0(z) �

{x| yp−j = Φp−j
disc

(x, (ui)i<p−j) ∀j ≤ p}

\ {0} . (31)

Analogous we define Xs(z) to be the image of X0(z)
under Φs

cont
(·, (ui)i<s) for all s, 0 ≤ s ≤ p. Note

that Φs2
cont

(·, (ui+s1)i<s2 ) restricted on the domain
Xs1(z) is a concatenation of projections (and there-
fore linear) as long as s1 + s2 ≤ p. Note also that
the sets Xs(z) can be computed in a straightforward
manner by intersections and linear transformations of
cones, namely those represented by the matrices P (·)
and M(·) defined in the previous section. There-
for the Xs(z) are cones also. Taking into account
that Φcont does not depend on k or even tk (time-
invariance), the above definitions imply for all solu-
tions (u, x, y) of Σsis , for all k ∈

�
0 and for all

s1, s2, s1 + s2 = min(r, k):

xk−s2 ∈ Xs1(zk(u, y)) . (32)

When in condensed state z ∈ Zr (again in the nota-
tion of (25)) and applying the input u ∈ U , we ask
for the set of possible successors z+ ∈ Zr. Therefore
define S(z, u) to denote the set of all those z+ ∈ Zr,
which satisfy the following conditions:

(i) X1(z) ∩ X0(z
+) 6= ∅ .

(ii) It exists a y ∈ {−1, 0, 1}n such that:
If p = r

u(z+) =(u1, . . . , ur−1, u) , (33)

y(z+) =(y1, . . . , yr−1, yr, y) . (34)

If p < r

u(z+) =(u0, . . . , up−1, u) , (35)

y(z+) =(y0, . . . , yp−1, yp, y) . (36)

From equation (32) for all solutions (u, x, y) of Σsis

and all k ∈
�

0 it holds:

zk+1(u, y) ∈ S(zk(u, y), uk) . (37)

We therefore propose

Definition 2. The triple Σcond = (S, U, Zr) is said
to be the condensed model of order r of the system
Σsis . A sequence (u, z) = (uk, zk)k∈ � 0 is a so-
lution of Σcond if zk+1 ∈ S(zk, uk) holds for all
k ∈

�
0.

�

Lemma 2. For all solutions (u, x, y) of Σsis the se-
quence (z(u, y), u) is a solution of Σcond .

�

Hence a feedback law solving a control problem
stated for the condensed model will go with the orig-
inal System Σsis too.

The condensed model is a finite automaton, but it is
not necessarily deterministic. When increasing the
order r the condensed model is expected to become
stronger by including less solutions which cannot
be extended to solutions of the underlying switched-
integrator-system. It may happen, that the condensed
model of a sufficient large order becomes determinis-
tic. In [STI 92] and [STI 93] a discrete-event-system
modeling of a (more general) hybrid system is pro-
posed, similar to the condensed model of order 1.
[STI 92] and [STI 93] treat the question of how the
output events are to be generated in order to receive
enough information to solve a certain control prob-
lem. In the present paper the generation of output
events is taken to be fixed by the systems definition.
Therefore we will increase the order of the condensed
system to achieve our control goal.

For any fixed order the condensed model on princi-
ple can be constructed by a computer program, since
it depends only on the computable cones X·(·). Note
that |Zr| grows exponentially when increasing the or-
der r. We therefore are restricted to comparatively
small orders r due to limited computer memory and
performance.



4. LOCATING CYCLIC TRAJECTORIES

Focus on a given cyclic sequence of input- and
output-events (uc, yc) = (uc

k, yc
k)k∈ � 0 =

(uc
k+l, yc

k+l)k∈ � 0 , uc
k ∈ U, yc

k ∈ {−1, 0, 1}n. Fur-
ther let (zc

k)k∈ � 0 = zc
� z(uc ,yc). Assume the

order r of the condensed model to be greater or equal
to the cycles length l. We state conditions for the exis-
tence of solutions (uc, x, yc) of Σsis . That is, we are
asking for trajectories which are cyclic w.r.t. the dis-
crete input/output-behavior. We do not demand the
continuous state x to be cyclic.

To achieve necessary conditions, assume a solution
(uc, x, yc) to exist. From equation (32) one ob-
tains xl ∈ Xl(z

c
r). Again from (32) it holds xl ∈

X0(z
c
r+l). From r ≥ l observe zc

r = zc
r+l. This

rises X0(z
c
r) ∩ Xl(z

c
r) 6= ∅ as a first necessary condi-

tion. Repeatedly applying the above argument yields
xkl ∈ Xl(z

c
r), xkl ∈ X0(z

c
r) for all k ∈

�
. From

Lemma 1 obtain

xkl = [Φl
cont

(·, (uc
i )i<l)]

k x0 . (38)

Therefore E � {xkl| k ∈
�
} is a subset of X0(z

c
r) ∩

Xl(z
c
r) which is invariant w.r.t. Φl

cont
(·, (uc

i )i<l). The
existence of such a subset serves as a second neces-
sary condition.

As a sufficient condition for the existence of a solution
(uc, x, yc) we propose ∅ 6= Xl(z

c
r) ⊆ X0(z

c
r). For a

proof a solution is constructed. Pick any x0 ∈ Xl(z
c
r)

and apply the input-sequence uc: Let for all k ∈
�

0

xk � Φk
cont(x0, (uc

i )i<k) , (39)

yk � Φk
disc

(x0, (uc
i )i<k) . (40)

From x0 ∈ X0(z
c
r) we know xk 6= 0 and yk = yc

k for
all k, 0 ≤ k ≤ r. From (32) observe xl ∈ Xl(z

c
r).

Repeatedly applying the above argument yields xkl ∈
X0(z

c
r) for all k ∈

�
and therefore y = yc. From

lemma 1 (uc, x, yc) is indeed a solution of Σsis .
The same construction yields a solution, when start-
ing with any x0 from a subset of X0(z

c
r) ∩ Xl(z

c
r) in-

variant w.r.t. Φl
cont

(·, (uc
i )i<l). The existence of such

a subset therefore is necessary and sufficient. Sum-
marize the results as

Lemma 3. Let (uc, yc) = (uc
k, yc

k)k∈ � 0 =
(uc

k+l, yc
k+l)k∈ � 0 , uc

k ∈ U, yc
k ∈ {−1, 0, 1}n be

a cyclic sequence of input- and output-events with
cycle length l ≤ r. Further let (zc

k)k∈ � 0 = zc
�

z(uc ,yc). For a solution (uc, x, yc) of Σsis to exist,
it is

(i) X0(z
c
r) ∩ Xl(z

c
r) 6= ∅ a necessary criterion,

(ii) X0(z
c
r) ⊇ Xl(z

c
r) 6= ∅ a sufficient criterion, and

(iii) the existence of a subset E 6= ∅ ⊆ X0(z
c
r) ∩

Xl(z
c
r) with Φl

cont(E , (uc
i )i<l) ⊆ E a neces-

sary and sufficient criterion.
�

As a straightforward method to find all possible cycles
with length not exceeding r, all 2l-tuples of l input
and l output events for all l, l ≤ r are checked. Once
the condensed model is set up, (i) and (ii) can be eval-
uated at comparatively high performance. This all-
ready locates most cycles. The technical details when
checking (iii) are beyond the scope of the present pa-
per, and therefore only summarized in short. First a
base v1, . . . vn of

�
n consisting of generalized eigen-

vectors of Φl
cont

(·, (uc
i )i<l) restricted on the cone

C � X0(z
c
r) ∩ Xl(z

c
r) is to be computed, using stan-

dard algorithms. If the closure of C does not contain
an eigenvector belonging to a positive real eigenvalue,
C does not contain any invariant subsets. If C itself
contains an eigenvector belonging to a positive real
eigenvalue, C contains an invariant subset. Since C is
not closed, there may be no eigenvectors belonging to
positive eigenvalues in C, while there are some on the
closure of C. In the latter case, C under certain cir-
cumstances can be tested to contain no invariant sub-
set by a representation of C w.r.t. the base v1, . . . vn.

5. SETTING UP A CONTROL LAW

A map F : Zr → U is said to be a control- or feed-
back law to the condensed system of order r. A solu-
tion (u, z) of Σcond is a closed loop solution, when-
ever uk = F (zk) holds for all k ∈

�
0. When

applying F to the original system Σsis , a solution
(u, x, y) is said to be a closed loop solution, if
uk = F (zk(u, y)) holds for all k ∈

�
0.

Pick a cycle (uc, yc) = (uc
k, yc

k)k =
(uc

k+l, yc
k+l)k, l ≤ r, let (zc

k)k∈ � 0 = zc
�

z(uc ,yc), and choose some subset E 6= ∅ of X0(z
c
r)∩

Xl(z
c
r) such that Φl

cont(E , (uc
i )i<l) ⊆ E . Further

choose some subset B of
�

n to be the set of al-
lowed initial conditions. As control problem ask for
a controller F , such that every closed loop solution
(u, x, y) of Σsis starting at an allowed initial condi-
tion x0 ∈ B, reaches the cycle within a finite number
of steps K(x0) ∈

�
0:

xK(x0)+kl ∈ E ∀ k , (41)

(uK(x0)+k, yK(x0)+k)k∈ � 0 = (uc, yc) . (42)

Definitions and criteria of controllability are not made
explicit in this paper. A suitable feedback F is simply
assumed to exist. For detailed considerations on con-
trollability of hybrid automata see [TIT 94].

We attend to solve the problem by three tasks: First,
find a feedback f which is able to force any initial
condition x0 to be transfered to E within a finite num-
ber of steps. Second, make sure that f is able to ac-
knowledge E being reached. Third, setup F equal to



f until reaching E is acknowledged, then switch to
applying the cyclic input uc. Since the third task is
obvious, we focus on the first and second ones. W.r.t.
a fixed order r we propose the following algorithm A1
in terms of the condensed model:

(Step 1) Let E � {z| z ∈ Zr, Xp(z) ⊆ E},
W0 � E, i � 1 .

(Step 2) Let Wi � ∅, W � ∪i−1
j=0Wj .

(Step 3) For all z ∈ Zr \ W check:
If ∃u ∈ U such that ∅ 6= S(z, u) ⊆ Wi−1

then let Wi � Wi ∪ {z}, f(z) � u .

(Step 4) If Wi 6= ∅
then let i � i + 1 and proceed with step 2
else finish.

Clearly the algorithm A1 ends in finite time, since
all involved sets are finite and the loop is to be ex-
ecuted not exceeding |Zr| times. In step 3 all those
z ∈ Zr \ W are collected in the set Wi, which can
be forced to have a successor in Wi−1 by applying
an input u. When in state z0 ∈ Wi and applying
input f(z0) for any successor z1 ∈ S(z0, f(z0)) it
holds z1 ∈ Wi−1. Repeatedly using this argument
yields, that for every solution (u, z) of Σcond satis-
fying z0 ∈ Wi and uk = f(zk) for all k < i, it holds
zi ∈ E. As acknowledgement for E being reached
by the continuous state x(tk) at a certain k we use
the test zk ∈ E. To complete the definition of f we
let f(z) � udum for all z 6∈ W and some dummy
input udum ∈ U . Setting up the overall control law
F as described above, the closed loop trajectories for
a K(x0) ≤ |Zr| satisfy (41) and (42), if z0 ∈ W .
Therefore the control problem is solved, if W con-
tains all z ∈ Z0 with X0(z) ∩ B 6= ∅.

If K(·) turns out to be bounded by some (unknown)
Kmax we can construct the control law from the con-
densed model if r is sufficiently large. So we will be
successful, when using algorithm A2:

(Step 1) Let B � {z| z ∈ Z0, X0(z) ∩ B 6= ∅},
r � 1 .

(Step 2) Run algorithm A1 on the condensed model
of order r .

(Step 3) If step 2 results in W 6⊇ B

then let r � r + 1 and proceed with step 2
else finish.

Since A2 is only able to generate controls of finite
length within finite time, A2 will not stop running if
K(·) is not bounded. Note that the assumption, that
a suitable feedback law in form of a finite automaton
exists, does not imply K(·) to be bounded.

In [TIT 94] an algorithm for linear hybrid automata
is presented, to move the continuous state inbetween

certain locations, using finite controls. W.r.t. this as-
pect the results achieved so far are similar to those in
[TIT 94].

6. EXTENDED CONDENSED MODELS

Focus on a typical situation where K(·) is unbounded,
while a controller in form of a finite automaton ex-
ists. Take a cyclic input/output sequence (uc, yc) =
(uc

k, yc
k)k = (uc

k+l, yc
k+l)k, and let (zc

k)k∈ � 0 =
zc

� z(uc ,yc). Assume that for every K ∈
�

0

there exists a solution (u, x, y) of Σsis such that

uk = uc
k ∀ k ≤K , (43)

yk = yc
k ∀ k ≤K . (44)

Further assume no solution (uc, x, yc) of Σsis to ex-
ist. In other words: When uc is applied to the system,
it will produce a cyclic output equal to yc for any fi-
nite time, depending on the initial condition x0. But
there is no x0 yielding an output matching yc on the
whole time-axis. The condensed model of any order
r, r ≥ l, therefore includes zc

k+1 as successor of zc
k

when applying uc
k for all k:

zc
k+1 ∈ S(zc

k, uc
k) ∀ k ∈

�
0 . (45)

From the second assumption there must exist at least
one i, r ≤ i < r + l such that |S(zc

i , uc
i )| > 1. The

condensed model includes the possibility, that the cy-
cle will be broken at some time. But it does not reflect
that this must happen. Let a ∈ S(zc

i , uc
i ), a 6= zc

i+1

and assume that a is to be reached in order to solve the
control problem. Algorithm A1 may then for any or-
der r fail to find a control forcing the condensed state
to reach a, while such a control exists for the original
system Σsis . Therefore algorithm A2 will not finish
within finite time. The example presented in the fol-
lowing section illustrates the situation.

To overcome this kind of limitations, the condensed
model is extended. Let the order r ∈

�
be fixed. For

every cyclic input/output sequence (uc, yc) of length
l ≤ r (in the above notation), fulfilling condition (i)
of lemma 3 while contradicting to condition (ii), a
symbolic input uc

? is introduced, with the meaning:
“Apply the cyclic input uc until the output ceases to
match yc”. Let S?(z

c
r, uc

?) denote the set of possible
successors of zc

r when uc
? is applied:

S?(z
c
r, uc

?) �

r+l−1⋃

i=r

(S(zc
i , uc

i ) \ {zc
i+1}) . (46)

To complete the definition, let S?(z, uc
?) � ∅ for all

z ∈ Zr, z 6= zc
r, and S?(z, u) � S(z, u) for all

u ∈ U . Further let U? denote the set of all original in-
puts u ∈ U and all newly introduced inputs uc

?. This
leads to



Definition 3. The triple Σ? = (S?, U?, Zr) is said
to be the extended condensed model of order r of the
system Σsis . A sequence (u, z) = (uk, zk)k∈ � 0 ,
uk ∈ U?, zk ∈ Zr, is a solution of Σ? if zk+1 ∈
S?(zk, uk) holds for all k ∈

�
0.

�

With the term run algorithm A1 on the extended con-
densed model of order r we denote running A1 after
replacing S by S? and U by U? in step 3. Define anal-
ogous to A2 algorithm A3:

(Step 1) Let B � {z| z ∈ Z0, X0(z) ∩ B 6= ∅},
r � 1 .

(Step 2) Run algorithm A1 on the extended con-
densed model of order r .

(Step 3) If step 2 results in W 6⊇ B

then let r � r + 1 and proceed with step 2
else finish.

Observe that applying a feedback F : Zr → U? to
the System Σsis can be realized by a finite automa-
ton, generating the systems input events uk ∈ U by
its output events yk ∈ {−1, 0, 1}n.

7. EXAMPLE

Consider a vehicle moving around within a plane and
model its position by the state variable ξ ∈

� 2. As-
sume, that it can only move at one of the velocities

µ1 = (−1, −1)> , µ2 = (1, −1)> , (47)

µ3 = (1, 1)> , µ4 = (−1, 1)> . (48)

Further compare the first component of ξ with 0 and
the second with 0 and 1 in order to generate output
events. Figure 1 shows the state space

� 2, the pos-
sible velocities of the vehicle, and the comparison
value 1 of the second state component.

-
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ξ(1)

ξ(2)

(0, 0)>

(0, 1)>
ξ(2) ≡ 1

	 R

�I

µ1

µ4

µ2

µ3

Fig. 1. The vehicles state space

Introduce the state space transformation

T :
� 2 →

� 3 , (49)

(ξ(1), ξ(2))> 7→ (ξ(1), ξ(2), ξ(2) − 1)> , (50)

and choose x to denote the transformed state variable
T (ξ). Further let U � {v1, v2, v3, v4} denote the
set of corresponding velocities:

v1 = (−1, −1, −1)>, v2 = (1, −1, −1)>,(51)

v3 = (1, 1, 1)>, v4 = (−1, 1, 1)>. (52)

The scenario is now modeled by the switched-
integrator-system Σsis according to definition 1.
Since x is known to be in T � T (

� 2) ⊂
� 3, we

restrict the considerations of the preceding sections to
the affine subspace T . Figure 2 shows the continuous
time output y when the continuous state x is within
the indicated areas in T . Note that beside y0 all out-
put events yk = y(tk) hold exactly one component
with value zero.

Since |Z1| = 27 + 4 × 272 = 2943 we cannot list
the whole condensed model even for the order 1. We
therefore explain some crucial points that occur when
the proposed algorithms are executed. The first task is
to find a cyclic solution, which then serves as control
goal.

Most of the sets X0(z) turn out to be empty. Fur-
thermore the restriction on T clearly marks all output
events y with y(3) > y(2) as impossible. Generat-
ing the condensed model of order 1 by a computer
program as proposed in section 3 yields only 67 non-
trivial states. We give a list of those, which are in-
volved with a cycle we guessed from figure 1. Hereby
condensed states z ∈ Zr are written within brack-
ets, input and output events separated by semicolons.
Further let w1 � (1, 1, 0)>, w2 � (1, 0,−1)> and
w3 � (0, 1,−1)> for shortness (see figure 2).

S([w1], v2) = {[w1, w2; v2]} , (53)

S([w2], v4) = {[w2, w1; v4], [w2, w3; v4]} , (54)

S([w1, w2; v2], v4) = {[w2, w1; v4]} . (55)

-
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y(2) ≡ 0

y(1) ≡ 0

(0, 0,−1)>

(0, 1, 0)>

y(3) ≡ 0

(1, 1, 1)>

(1, 1,−1)>

(1,−1,−1)>

(−1, 1, 1)>

(−1, 1,−1)>

(−1,−1,−1)>

}

w3
w2

︷ ︸︸ ︷

︸ ︷︷ ︸

w1

Fig. 2. Output y for x ∈ T



From (53) and (55) one obtains for the condensed
model of order 2:

S([w1, w2, w1; v2, v4], v2) = (56)

{[w2, w1, w2; v4, v2]} ,

S([w2, w1, w2; v4, v2], v4) = (57)

{[w1, w2, w1; v2, v4]} ,

hence

X2([w2, w1, w2; v4, v2]) ⊆ (58)

X0([w2, w1, w2; v4, v2]) .

Let

(ucc, ycc) �

((v4, v2, v4, v2, . . . ), (w2, w1, w2, w1, . . . )) . (59)

Then by lemma 3 one obtains cyclic solutions
with input ucc and output ycc to exist. Further
we detect Φ2

cont(x, (v4, v2)) = x for all x ∈
X2([w2, w1, w2; v4, v2]). This implies is the continu-
ous state to be cyclic too, whenever the input/output-
events match (ucc, ycc). Let

E � {x| x ∈
� 3, −2x(3) > x(1) > −x(3)}

∩ X2([w2, w1, w2; v4, v2]) (60)

and check

T−1(E) =

{ξ| ξ ∈
� 2, 2 > ξ(1) > 1, ξ(2) = 0} . (61)

Let B � T and set up a control law as described in
section 5: We are looking for a feedback, assuring
that every closed loop trajectory reaches E in finite
time and then matches the cycle (ucc, ycc).

From the condensed model of order 1 algorithm A1
is able to find a feedback controlling all states x ∈
X0(w3) to reach E . Now view an arbitrary state
x ∈ X0(w1) and let

(ucx, ycx) �

((v1, v4, v1, v4, . . . ), (w1, w2, w1, w2, . . . )) . (62)

When in state x and applying the inputs ucx, the out-
puts ycx will occur for some finite time, until w3 is
generated. Note that this finite time depends on x and
is not bounded. Algorithm A2 therefore cannot find
a feedback achieving all states x ∈ X0(w1) to reach
X0(w3). But the extended condensed model of order
2 as proposed in section 6 includes a symbolic input
ucx

? , needed by the above task.
Since all states can be controlled to reach X0(w1) ap-
plying at most three inputs, algorithm A3 will find the
desired feedback for some r ≤ 3. In fact A3 already
is successful at r = 2, using another symbolic input
to control X0((−1, 1, 0)>) to reach X0(w3).

8. CONCLUSIONS

Condensed models have been proposed to describe
the external behavior of a given switched-integrator-
system by not necessarily deterministic finite au-
tomata. Based on condensed models an algorithm
has been established, generating a control law in or-
der to force a cyclic trajectory being reached within
finite time. The control law can be realized by a finite
automaton acting as output feedback on the switched-
integrator-system. The number of controls necessary
to reach the cycle is not restricted to be uniformly
bounded w.r.t. to the continuous initial condition.
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