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Abstract

Switched flow systems exhibit a continuous state evolving
w.r.t. continuous time. However, a purely discrete interface
to the environment is provided, acting on input events by
switching between a finite number of flows and generating
output events whenever the continuous state crosses certain
boundaries. Here, a practically important task is the synthe-
sis of a supervisory controller enforcing a specification in
terms of input and output events to be met. A well known
approach is so called approximation based synthesis, where
the switched flow system is approximately realized by a fi-
nite automaton. In the situation of multiple switched flow
systems the question arises first, how to approximate the
individual systems, and second, how to compose the ap-
proximations in order to finally apply a synthesis scheme.
It turns out that retaining clock time on the approximation
level leads to a suitable overall procedure.

Keywords: hybrid systems, discrete event systems, discrete
approximations, supervisory control synthesis.

1 Introduction

The switched flow systems under consideration exhibit a
continuous state x(t) € IR™ evolving w.r.t. continuous time
t € R{. The continuous dynamics are given by a finite
number of flows. Discrete input events implement a switch-
ing between the flows such that there is just one flow enabled
atevery time ¢t € IR . Discrete output events are generated
whenever the state crosses certain boundaries, e.g. by trig-
gering threshold values. The state is treated as an internal
variable, not “visible” from the environment point of view,
while input and output events are external, i.e. are respec-
tively applied by and reported to the environment. Involving
both discrete and continuous variables, switched flow sys-
tems belong to the class of so called hybrid systems.

In the situation of supervisory control the environment will
consist of a controller, which for the scope of this paper is
restricted to be a discrete event system (DES) realized by a
finite automaton. Then, the problem of supervisory control
synthesis is about the construction of a controller that en-
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forces a switched flow system to meet a given closed loop
specification. However, rather restrictive conditions apply
to hybrid systems on which synthesis can be treated di-
rectly; e.g. [15]. Therefore it is suggested to approximate
the switched flow system by some finite automaton and then
to apply known synthesis procedures from DES theory; e.g.
[5,6,9, 11,12, 13].

In [9, 11], we propose an approximation based approach
for supervisory control synthesis for a general class of hy-
brid systems within the framework provided by Willems’
behavioural systems theory (e.g. [16]), and Ramadge and
Wonham’s supervisory control theory (e.g. [14]). While
[9, 11] address the control theoretic aspects, in [10] com-
putational issues are discussed, assuming that the flows in-
volved are induced by linear time invariant differential equa-
tions. This paper addresses multiple switched flow systems
in the context of supervisory controller synthesis. By a mul-
tiple switched flow system we refer to a system made up by a
number of individual sub-systems, each of them a switched
flow system. Of course, a multiple switched flow system
could be handled by first of all combining the sub-systems
to a single switched flow system. However, this is not rec-
ommended because the approximation procedure is of high
order complexity w.r.t. the dimension of the state space.
Clearly, the sensible aim is to first approximate each indi-
vidual sub-system in order to then compose the approxima-
tions. While each sub-system evolves independently each of
the involved state variables share only the one real time axis
IR:. Hence, when applying an approximation scheme to in-
dividual sub-systems, it should retain the timing information
to some extent. In the framework of DES this can be done
by referring to clock time instead of logic time. By doing
so, approximating individual sub-systems becomes a suit-
able foundation for the synthesis of a supervisory controller
running all sub-systems simultaneously.

This paper is organized as follows. In Section 2, we give
a definition of switched flow systems. Using the notion of
flow pipes as introduced in [4], Section 3 restates the ap-
proximation scheme presented in [10] from a more general
point of view. In Section 4, the flow pipe estimate will be
represented by a finite automaton. The situation of multiple
switched flow systems is discussed in Section 5; we show
how to compose separate approximations of individual sub-
systems. It is then seen that the overall approximation pro-
cedure is conservative w.r.t. the external behaviour and thus
meets the requirements of the synthesis procedure provided
in [9, 11].



2 Switched flow systems

In this section, a system class is introduced in which the
external signals are discrete, while the internal dynamics are
represented by a finite number of continuous flows. The sug-
gested scenario is closely related to the framework of hybrid
automata; e.g. [1]. But due to our focus on controller syn-
thesis, we require an explicit notion of inputs and outputs.

Let ®(y, -, -): R" x Ry — IRR"™ be a semi-flow for
every p € U, |U| € IN; ie ®(y, -, -) is continu-
ous w.r.t. both arguments separately and ®(u, &, 0) = &,
(I)(Na 57 t1 + tQ) = q)(:u‘7 (D(Ma§7t1)7 t2) for all 5 € Rn'
t1, t2 € R{. The parameter x implements a switching be-
tween the semi-flows. The parameter set U is therefore seen
as the set of input events that the switched flow system will
accept. Ifattime ¢, € IR] the system is in state z(¢o) € R"™
and the input event i € U is applied, the state z(t), t > to,
will evolve according to ®(u, z(tg), t — to) until the next
input event takes place.

For each 1 € U let Inv(p) € IR™ denote a subset of the
state space. Applying the input p will be only allowed at
time ¢ if the system is in some state x(¢) € Inv(u). More-
over, if u € U is the most recently applied input event, at
the time the trajectory is about to leave Inv(u) an output
eventv € Y, |Y] € IN, is generated. This indicates that a
new input event is required. It will be the supervisory con-
troller’s task to apply suitable input events such that in the
closed loop situation the state evolves within Inuv (1) as long
as u € U is the most recent input event. Thus, Inv(u) is
referred to as the invariant associated with the input event .

To formalize the generation of output events, focus is on the
situation where at time t¢ € IRaL the state is x(tg) = & €
IR™ and the input ;€ U has been applied. Provided that
no more input events take place, the time at which an output
event occurs is given by

t/(g()a /’L) =
sup{t| ®(u, &, 7) € Inv(pu) V0 < 7 <t} . (1)

Here, t'(&, 1) = oo indicates that the state trajectory
evolves within Inv(u) for all future and that no output event
will be generated. Assuming Inv(u) to be an open set,
t'(€o, 1) = 0 corresponds to &, & Inv(p). In the case
0 < t/(&, p) < oo, an output event will occur when the
system is in state

:E/(£07 M) = (I)(Ma 507 t/(€07ﬂ)) . (2)

If generated at all, an output event represents a quan-
tized version of the current state: given a finite cover
Uvey Grd(p, v) of the boundary dInv(p), at time ¢/ (o, u)
an output event v € y’ (&, ) will occur, whereby

Y (o, 1) = {v| 2'(p, &) € Grd(p,v)} €Y. (3)

Given @, Inv and Grd, the above describes the relation be-
tween input events, output events and the evolution of the

continuous state. The triple (®, Inv, Grd) is referred to
as a switched flow system. A trajectory of (®, Inv, Grd)
is defined to be a triple (u, y, ) consisting of an input,
an output, and a state component, all of them with evolv-
ing w.r.t. the continuous time axis R . As discrete events
only occur at discrete points on the time axis, the sets U
and Y are extended by an additional symbol Na ¢ U UY
where ‘u(t) = Na’ reads ‘no input event at time ¢’. Let
U# = U U{Na} and Y# =Y U {Na}. Then, any trajec-
tory (u, y, x): Ry — U# x Y# x R" of (®, Inv, Grd) is
required to fulfill all of the following conditions w.r.t. some
(to)werx, K CWNo, T = {t)| k € K} C R, tir1 > ty,
to=0andallk € K,t € R§:

(A1) y(t) # Na=u(t) # Na=teT; y(to) = Na
(A2) t € [ty th1] = L

x(t) = D(u(ty), z(tr), t — tg) € Inv(u(ty))
(A3) |K| € INgandt € [tmax(k), 00) =

z(t) = ®(u(ty), x(ty), t — tx) € Inv(u(ty))
(A4) y(tit1) # Na =ty =t ((ty), ulty))
(AD) tyir = t'(2(tr), ulte)) =

Y(tev1) € ¥/ (x(te), u(te))

The set of all trajectories which fulfill the above is referred
to as the full behaviour B (®, Inv, Grd) of the switched flow
system (®, Inv, Grd). The set of all pairs of input and out-
put signals (u, y): Rg — U# x Y# such that (u, y, ) €
B(P, Inv, Grd) holds true for some « is referred to as the
external behaviour B, (®, Inv, Grd). While the state «
is considered to evolve “inside” the switched flow system,
the external signals « and y are “visible” to the environ-
ment and thus to any supervisory controller interconnected
with the switched flow system. Hence, the external be-
haviour B, (®, Inv, Grd) plays an important role in super-
visory control synthesis and Willems’ “behavioural systems
theory” forms a natural framework for our investigations
[9, 11, 16]. However, for the scope of this paper, we stick
to the realization level: all behaviours we deal with will be
realized either by switched flow systems or finite automata.

When the flows are induced by linear time invariant differen-
tial equations (®, Inv, Grd) is referred to as switched lin-
ear system. For the scope of this paper, the sets Inv(u) and
Grd(u, v) are assumed to be polyhedra whenever switched
linear systems are considered. Note that the proposed view
of linearity is less restrictive than the one usually applied in
the framework of hybrid automata: roughly speaking, linear-
ity of a hybrid automaton is seen w.r.t. logic time and will, in
the context of switched flow systems, require z’( -, u) to be
linear. However, the latter condition is by no means implied
by linearity of ®(u, -, t). As far as continuous dynamics
are concerned, switched linear systems form a much richer
class than linear hybrid automata. For the scope of this pa-
per, linearity refers to switched linear systems rather than
linear hybrid automata.



3 Conservative estimates on flow pipes

Given an initial state and an input signal, the trajectory on
which the switched flow system will evolve cannot in gen-
eral be computed exactly, even when restricted to the lin-
ear case. Thus reliable approximation techniques are re-
quired. For both verification and controller synthesis it is
highly desirable to find an estimate which is conservative in
the sense that all actual trajectories of the flow will be in-
cluded. Conservative estimates for certain classes of flows
w.r.t. a given interval of time are provided by [4, 8]. How-
ever, when the switching is to be done by some supervisory
controller which is driven by output events, an estimate of
a flow w.r.t. a given invariant set rather than w.r.t. an inter-
val of time seems to be more appropriate; e.g. [10]. In the
following, we use a notion of flow pipes provided by [4], in
order to restate the approximation method suggested in [10]
from a more general viewpoint.

Let the input . € U be applied at time 0 to the switched
flow system (®, Inv, Grd) and let us focus attention on
some set of initial states Xy € IR™. Then, the flow pipe
R(Xo, [0,t]) € IR™ w.rt. the time interval [0,¢] C R
is defined to be the set of states reachable from some state
& € Xy by some time 7 € [0,¢]. Recall from [4] the fol-
lowing definition:

R(Xo, t) = {P(u, &o, t)] {0 € Xo}, 4)
R(Xo, [to,t1]) U R(Xo, t). 5)
te[to,t1]

The following properties are observed immediately:

R(Xo U Xo, [to, t1]) =
R(Xo, [to, t1]) UR(Xo, [to,t1]), (6)

R(Xo, [to, t1] U [to, 11]) =
R(Xo, [to, t1]) UR(X

R(Xo, [to + 1, t1 +1]) =
R(R(Xo, [to, t1]), )

05 [50751]) ) (7)

- R(R(X(),E), [t()vtl])' (8)

This suggests the construction of an estimate of
R(Xo, [0,t]) from smaller pieces. Here, it is assumed
that the flow under consideration can be reliably simu-
lated and that the reachable states can be conservatively
estimated w.r.t. a “small” time interval [0, A] —provided
that the sets of states involved belong to a certain class
X C {X| X C R"}. More formally, it is assumed that a
procedure R can be established such that sets

R(X(), t)
R(Xo, [0,A])

CR(Xo, t) € X, ©)

c R(X07 [07 A]) € :{7 (10)

can be computed for arbitrary X, € X, t € IRZ. Several
classes X are considered in the literature: polyhedra in [4,
10], griddy polyhedra in [7] and ellipsoids in [8]. Given
Xo € X,7r" € IN, ¢t € [rTA,(rT 4+ 1)A], the flow pipe

w.r.t. [0, ¢] can be conservatively estimated in terms of RR:

+

R(Xo, [0,t]) C UR (Xo, [0, A]), rA) (11)

r=0
or

R(Xo, [0,1]) U R(R(Xo,rA), [0,A]),  (12)
whichever is expected to be the more accurate or performed
with less computational effort. In the situation of switched
linear systems, R(-,rA) is a linear map that can be ap-
plied to compact polyhedra by means of the vertices. Be-
cause [4] provides a sophisticated method for the computa-
tion of R(Xo, [0, A]), it is consequently suggested in [4] to
use (11) rather than (12).

As noted above, in the context with switched flow systems,
the flow pipe is of interest not w.r.t. some interval on the
time axis but w.r.t. the invariant Inv(x) C IR™. Given a
flow invariant domain G(p) (i.e. ®(p, &, t) € G(p) for all
t>0,¢& e G(n)), we suggest the following iteration:

(B1) Assignr :=0.
(B2) Assign X, 11 := R(X,, A) N Tnv(y)

(B3) If X,,1 =0, then
assign 7 := r + 1 and terminate.

(B4) If X, 11 C G(u), then
assign X, 41 := G(p),
assign r™ := r + 1 and terminate.

(B5) Assign r :=r + 1 and proceed with (B2).

We comment on the above steps. At (B2) the intersec-
tion with the invariant discards any evolution of the flow
outside Inv. If it happens that either Inv ¢ X or X is
not closed under intersection, a conservative estimate of
R(X,, A)NTnv(u) within X needs to established. E.g. this
is the case when X is a set of ellipsoids. However, by choos-
ing polyhedra or griddy polyhedra, the intersection will lie
within X as required. At (B3) the iteration is terminated
if all trajectories starting within X are known to have left
Inv(p) at some ¢ < (r + 1)A. At (B4) the iteration is ter-
minated if all considered trajectories have either left Inv(u)
or have approached G(u) at some ¢ < (r + 1)A. In the lat-
ter case, G(u) serves as a conservative estimate of all future
evolution. If G(u) ¢ X, a conservative estimate G(y) € X,
G(p) D G(p), is to be assigned to X, at (B4) instead.

In order to result in a finite procedure, trajectories are re-
quired either to leave Inv(u) or to approach G(:) within an
uniformly bounded time ¢™. While ¢ is not required ex-
plicitly, a suitable G(x) needs to be established. In the case
of an asymptotically stable linear system, ellipsoidal invari-
ant domains of attraction G(p) can be constructed within
any neighbourhood of the unique equilibrium by solving a
Lyapunov equation. If, in addition, Inv () is bounded, a fi-
nite bound ¢ exists. Choosing X to be the set of compact
polyhedra, (B2) can be carried out exactly. Thus, if G(u) is



entirely outside Inv(u), the iteration will indeed terminate
dueto (B3). If G(u) is notentirely outside Inv(y), then still
all trajectories will uniformly approach G(u) within some
time ¢+, causing the iteration to terminate due to step (B4).
As either the if-clauses of (B3) or (B4) become true within
a finite number of steps, in the situation of switched linear
systems the iteration is guaranteed to terminate faithfully.

In order to also cover the evolution of trajectories between
the sampling instances A, the estimate (- [0, A]) is ap-
plied to the finite sequence Xy, X1, ... X,+. The overall
result of the iteration will be referred to by

R(p, Xo, 1) := R(X,, [0,A]) VO<r<rT, (13)
(s Xo) =+ (19

By construction, the union over all R (u, Xo, r) conserva-
tively estimates the state as long as it evolves within Inv(p)
and no inputs other than y are applied.

As an example, we provide a simple version of the estimate

R(Xo, [0,A]). Denote the box around a bounded subset
Q@ C IR™ with an “extra safety distance” p € IR™ by:

S(Q p) =gl jnf lef (€ =l <pVir.  (19)

We assume the flow ®(yu, -, -) to be introduced by a dif-
ferential equation & (¢t) = f(xz(t)), where the right hand side
f is continuous. Then the maximum derivative

dmaz = sup{[[f()lloc| & € S(Inv (1), p)} (16)

is finite. In the linear case, d,,q. IS computed by checking
the vertices of S(Inv(u), p). If the interval [0, A] is cho-
sen such that A d,,.., < p holds true, the state trajectory
2 by no component varies by more than p within time A.
Then, R(Xo, [0,A]) := S(Xo, p) gives a conservative es-
timate on R(Xy, [0, A]). While being less accurate than
the method provided in [4], our version computes rather
fast. Furthermore, as the estimates are rectangular boxes,
powerful algorithms for intersection and union with griddy
polyhedra exist; e.g. [3]. This is of special interest if —as
in the context of supervisory control synthesis— an entire
switched flow system is subject to estimation rather than a
single flow pipe.

4 Representation by finite automata

In order to capture the dynamics of the overall switched flow
system (®, Inv, Grd) itis suggested to apply the procedure
given in Section 3 to a finite cover of all invariants. Since
there are only a finite number of finite sequences involved,
this leads to an conservative estimate of a switched flow sys-
tem by a finite automaton.

When a single switched flow system is interconnected with
a supervisory controller one may assume that input events
occur only as immediate reply to output events. In this
case, dynamics may faithfully be considered w.r.t. logic time
k € INg, where k counts pairs of input and output events.

Thus, in the perspective of logic time, only the order of
events is retained while their location on the continuous time
axis R¢ is entirely discarded. Note that logic time is the
standard interpretation of time in the DES context. How-
ever, if multiple switched flow systems are to be considered,
an output event generated by one of them may cause the
supervisor to apply an input event to some other switched
flow system. It then is crucial to retain timing information
to at least some extent. We therefore suggest to set up an
approximation that refers to clock time, by introduction of
an additional event Tick which presents the passing by of
a certain amount of time; see [2] for a discussion of timed
discrete event systems (TDES).

The construction of our finite automaton is begun by choos-
ing a state set Z. In order to end up with a finite set 7,
sets of initial states X are restricted to be from some finite
subset Xo = {Xo,| j € J} C X, |J| € IN. Since the en-
tire switched flow system is to be estimated, X, in turn is
required to form a cover of all invariants Inv(u), p € U;
i.e. UjesXo, 2 UueulInu(p). A nearby choice of X is
given by rectangular boxes or balls based on a regular grid.
Most of the time, the flow pipe estimate takes place within
the class X and hence is expected to be quite accurate. How-
ever, it will be necessary to break down sets of continuous
states to elements of X, just before a new input is applied.
In addition to the index j indicating the set of initial states
Xo,, astate ¢ = (j, u, 7) € Z shall indicate the input p
which has been applied most recently and the step r of the
iteration (B1)-(B5). If no input has been applied so far, this
is indicated by x = None. Finally, Z is given by

R := max{F" (u, Xo,)| p €U, j€J}, a7
Z:=Jx (UU{None}) x{0,1,...R}. (18)

The transitions in the finite automaton we are about to con-
struct will be labeled by the event set

W =UU Y U/{Tick} . (19)

While . € U and v € Y refer to the respective input and
output event of the switched flow system, Tick is introduced
to represent the passing of continuous time A.

A transition is a triple ({, w (') € Z x W x Z, indicat-
ing that the event w “drives” the state ¢ to ¢’. Since we
aim to represent the dynamics of (®, Inv, Grd), atransition
(Cw()eZxWxZ(=(j,pr)¢ = r)
is only allowed to take place under one of the following cir-
cumstances

(C1) Applying an input event to a state holding no recent
input so far: . = None, w € U, Xo, N Inv(w) # 0,
i=du=wr"=0.

(C2) Applying an input event to a state holding a recent in-
put: p € U,w € U, R(u, Xo,, r)NXo, NInv(w) #
0,4 =w, r =0.

(C3) Evolution of time as long as G/(x) is not approached:
peU,w= Tick,r <7t(u, Xo,), R(p, Xo,, r+



D#0 G =40 =pr" =r+1.
(C4) Evolution of time within G(u): p € U, w = Tick,
r =7t (u, Xo,), R(p, Xo,,r) # 0,5 =4, 1’ = n,
r=r.
(C5) Generation of an output event: p € U, w € Y,
R(p, Xo;, r) N Grd(p, w) N Xy, # 0, ' = None,
' =0.

The set of all those transitions which agree with (C1)-(C5) is
denotedby § C Z x W x Z. The triple (Z, W, §) is referred
to as the finite automaton representing the flow pipe estimate
of (®, Inv, Grd). As with (®, Inv, Grd), there will be
a behaviour associated with (Z, W, §). Here, trajectories
(u, y, z): Rg — U# x Y# x Z are required to fulfill all
of the conditions (D1) to (D4) below w.r.t. some (¢x)kem,,
T := {tg| k € No} C Ry, tkt1 > tx, to = 0 and for all
k € INg, t € ]R,a_

(D1) z(t)is constanton [tx, tx+1)-
(D2) u(t) #Na=teT; y(t)#Na=tecT.

(D3) (¢, u(to), z(to)) € 6 for some ¢ = (j, None, 0) €
Z; y(to) = Na.

(D4) Either one of (D4a), (D4b), (D4c) must hold true:

(D4a) (Z(tk), Tick, Z(thrl)) €0, tht1 — Tk = A,
U(tpt1) = Na = y(trs1).

(Dab) (2(tk), u(tks1), 2(tkt1)) € 0, thgr — e <A,
y(tk+1) = Na.

(D4c) There exists a ¢’ € Z such that:
(2(tr), y(trt1), ¢') €46,
(¢ u(trsr), 2(thg1)) € 0y tpyr — tp <AL

The full behaviour B(Z, W, ¢) is defined to be the set of
all trajectories (u, y, z) agreeing with (D1) to (D4). The
external behaviour B, (Z, W, ¢) is defined to be the set of
all external trajectories (u, y): R¢ — U# x Y# such that
(u, y, z) € B(Z, W, §) for some z. Because the actual
flows ® are each estimated conservatively by R, it can be
seen that the finite automaton indeed conservatively approx-
imates the switched flow system w.r.t the external behaviour:

Bew(Z, W, 0) 2 B (P, Inv, Grd). (20)

In order to formally prove (20), for an arbitrary trajectory
(u, y, ©) € B(P, Inv, Grd) a z is established such that
(u, y, 2) € B(Z, W, 6). We omit this straightforward but
quite cumbersome technical detail.

5 Multiple switched flow systems

In this Section we focus attention on a scenario where an
overall plant is formed by a finite number of individual
switched flow systems (®;, Inv;, Grd;), i € I, |I| € IN,
evolving on individual trajectories. A supervisory controller
is connected to the plant to form a closed loop system:
whenever one of the switched flow systems generates an
output event, the supervisor will apply input events to all

of the switched flow systems. The aim of supervisory con-
trol is to force the closed loop to fulfill some specification.
A typical specification demands certain output events not
to be generated, as they correspond to undesired situations;
e. g. the continuous part of the plant state evolving into a
“forbidden” region. More sophisticated specifications also
incorporate dynamics, implying that the occurrence of cer-
tain events affects what needs to be prevented in future; e.g.
specifications that aim at forcing the closed loop into some
cyclic behaviour.

Given a specification and a plant, the problem of supervi-
sory control synthesis is about the construction of a super-
visory controller, such that the closed loop indeed meets
the specifications. In the situation of (multiple) switched
flow systems —as in general with hybrid systems— rather
restrictive conditions apply when demanding that a synthe-
sis procedure deals with both continuous and discrete vari-
ables directly. On the other hand, so called approximation
based synthesis methods are available for non-trivial flows
[5, 6, 9, 11, 12, 13]. The rather simple idea behind the ap-
proximation based approach is to replace the continuous dy-
namics by some finite automaton and than solve the synthe-
sis problem for the automaton by known methods from the
field of DES theory; e.g. [2, 14]. However, it then needs
to be shown that a solution found on approximation level
can indeed be turned into a supervisor which runs the actual
hybrid system according to the specification. The crucial
condition required by all of [5, 6, 9, 11, 12, 13] is that the
approximation needs to be conservative. Considering a mul-
tiple switched flow system, one possible approach would be
first, to compose the multiple switched flow systems to a sin-
gle one, second, to apply a conservative estimation scheme,
and finally to run an approximation based synthesis proce-
dure. However, the complexity of the conservative estimate
R tends to be of high order w.r.t. the dimension of the con-
tinuous state space and typically demands a giant number of
expensive floating point operations to be carried out. Details
depend on the methods used when implementing R; e.g. in-
tersection of polyhedra is of exponential order. Therefore it
is suggested first to establish the conservative estimate of ev-
ery individual sub-system, second, to compose the resulting
finite automata and finally to apply the synthesis procedure.

In fact, it is easily observed that the latter suggestion leads to
a conservative approximation of the multiple switched flow
system w.r.t. the external behaviour. As the individual state
trajectories evolve independently of each other, the full be-
haviour of the plant is
B = {((ui)iGIa (yi)iela (z1)161)|
(wi, yi, T;) € B(Py, Inv,;, Grd;)VieI}. (21)
Correspondingly, the external behaviour of the plant is seen
to be
Beo = {((wi)icr, Yi)ier)l
3 (zi)ier = ((wi)ier, (Yi)ier, (xi)ier) € B}. (22)
Let (Z;, Wi, 6;), © € I, denote the finite automaton esti-



mating (®;, Inv;, Grd;) as defined in Section 4. Further,
let B..(Z;, W;, 6;), i € I, denote the external behaviour
induced by (Z;, W;, 6;). Then

Beo = {((wi)ier, (Yi)ier)|
(wis ¥i) € Bew(Zs, Wi, 0;)Vie I}  (23)

forms the external behaviour when running all automata
(Z;, W;, 6;) synchronised by the Tick event. From equa-
tion (20) it follows

%Cll 2 %ez b (24)

i.e. the composition of the individual conservative approxi-
mations form a conservative approximation of the multiple
switched flow system w.r.t. the external behaviour.

Note that the “set product like composition” as it is done
in equations (21) and (23) will make no sense at all when
applied to logic time behaviours. This emphasizes that re-
tention of timing aspects is indeed crucial. However, after
composing the individual approximations we may discard
the timing information in order to run a synthesis proce-
dure from DES theory based on logic time. This is also
the framework in which our contribution [9, 11] is settled,
providing an approximation based approach that is now ap-
plicable to multiple switched flow systems by referring to
equation (24).

6 Conclusions

In this contribution, we provide an approximation scheme
for multiple switched flow systems that is suitable for ap-
proximation based supervisory control synthesis The crucial
feature is the retention of timing aspects when first, approx-
imating individual sub-systems separately. It then becomes
rather straightforward to second, compose the individual au-
tomata into an approximation of a multiple switched flow
system. As the approximation of switched flow systems is of
high order complexity w.r.t. the state space dimension, our
overall procedure is expected to save a reasonable amount
of computation time when compared to first, combining the
switched flow systems and second, running an approxima-
tion. Future work will investigate distributed or decentral-
ized control applied to individual switched flow systems
based on the proposed approximation procedure.
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