
Consistent Abstractions for the Supervision of Sequential Behaviours

Xiaoying Bai* Thomas Moor*

Abstract— A common approach to controller design of large
scale discrete-event systems or hybrid systems is to apply
synthesis procedures on an abstraction that is realised on a
significantly smaller state set. However, for every abstraction-
based controller design, an inherent problem is to guarantee
that the controller is also admissible to the actual plant. This
paper addresses abstraction-based supervisory control for not-
necessarily topologically closed ω-languages and upper-bound
language-inclusion specifications. We refer to an abstraction as
consistent for the purpose of controller design, if any controller
obtained for the abstraction is also admissible to the actual
plant. The main results of our study are sufficient and necessary
conditions to characterise consistency.

Index Terms— discrete-event systems, supervisory control,
sequential behaviours, ω-languages.

I. INTRODUCTION

A model that represents the plant dynamics in all detail often

turns out too complex for an efficient controller design. Here,

a common approach is to apply synthesis methods to a less

complex abstraction. Depending on the control objectives,

the abstraction must satisfy certain conditions such that the

resulting controller is also applicable to the actual plant and

such that the closed loop performs satisfactionary.

The control problem considered in this paper is the super-

vision of non-terminating processes that can be adequately

represented as languages of infinite words, also referred to as

ω-languages or sequential behaviours. Given an upper-bound

language-inclusion specification, the corresponding synthesis

problem was originally proposed by [11], with solution

procedures provided in [3] and, with a particular focus on

liveness properties, in [15, 16]. In order to address an upper-

bound specification based on an abstraction, the latter must

account for all possible sequences from the actual plant, and

we therefore consider supersets of the plant as abstraction

candidates. A crucial question here is how to guarantee that

an abstraction-based controller does not livelock or deadlock

when applied to the actual plant.

Abstraction-based supervisory control has been intensively

studied in the context of hierarchical control of regular ∗-

languages. There, the abstraction is commonly obtained by

observation maps or, as a special case, by natural projections;

see e.g. [2, 4, 17]. The so called observer property, developed

in [17], is a sufficient condition guaranteeing that any non-

conflicting control exercised on the abstraction will also be

non-conflicting for the actual plant. By explicitly referring

to controllable restrictions, [5] elaborates a less restrictive

* Lehrstuhl für Regelungstechnik, Friedrich-Alexander Universität Er-
langen-Nürnberg, Germany. Email lrt@fau.de.

criterion for the particular purpose of abstraction-based con-

trol. In [1], the conditions for abstraction-based control of

I/O-systems proposed in [7] are further developed to address

a hierarchical control architecture for ω-languages.

Another domain of abstraction-based control addresses

hybrid plant models, where finite state abstractions are of

a particular interest. A common approach here is to obtain

the abstraction by use of a strategically constructed quotient

state set. Here, the abstraction can turn out non-deterministic,

through a static quantiser in [13], or deterministic with

an equivalence relation in [14]; see also [8, 9]. In [10], a

deterministic finite abstraction is constructed from a cover

of the state set based on bounded-length external strings. As

with the situation of regular ∗-languages, one challenge is to

guarantee that control designed for the abstraction does not

lead to a blocking closed loop when applied to the original

hybrid system. All of the given references address this issue,

either by construction or by additional conditions.

The study conducted in the present paper does not refer

to a particular class of realisations but discusses the problem

of abstraction-based supervisory control entirely in terms

of ω-languages. In this setting, we define an abstraction

as consistent for the purpose of controller design if any

supervisor obtained for the abstraction does neither livelock

nor deadlock when applied to the actual plant. We provide

necessary and sufficient conditions for consistency to address

the special case of topologically closed plant behaviours as

well as for the general case of not-necessarily topologically

closed plants. Naturally, the results obtained in this general

setting need further refinement to be of practical use for

specific classes of realisations. To this end, we demonstrate

how our conditions can be evaluated for ω-regular languages.

The paper is organised as follows. Preliminaries and a

problem statement are given in Sections II and III, respec-

tively, including a concise summary on the supervision of

ω-languages and a formal definition of our notion of con-

sistency. Addressing closed languages, Section IV provides

our first sufficient and necessary condition for consistent

abstractions. In Section V, we turn to the general case and

continue the discussion without assuming that the plant is

topologically closed. Finally, Section VI accounts for regular

languages and outlines how the provided criteria can be

computationally evaluated.

II. PRELIMINARIES AND NOTATION

Given an alphabet Σ, the set of finite strings s = σ1σ2 · · ·σn

with σi ∈ Σ, 1 ≤ i ≤ n, n ∈ N, is denoted Σ∗,

including the empty string ǫ ∈ Σ∗, ǫ < Σ. For two

strings s = σ1σ2 · · ·σn, t = τ1τ2 · · · τk ∈ Σ
∗, let st :=

σ1σ2 · · ·σnτ1τ2 · · · τk ∈ Σ
∗ denote the concatenation with

sǫ := s =: ǫs for the empty string. The set of all countably

infinite sequences with symbols from Σ is denoted Σω. For

s = σ1σ2 · · ·σn ∈ Σ
∗ and v = τ1τ2τ3 · · · ∈ Σ

ω denote sv ∈ Σω

the concatenation, i.e., sv := σ1σ2 · · ·σnτ1τ2τ3 · · · . Given a

string w ∈ Σ∗∪Σω, its prefix is given by pre w:={s ∈ Σ∗ | ∃ v ∈

Σ
∗ ∪ Σω : sv = w}. For s ∈ pre w we say that s is a prefix of

w and write s ≤ w. If in addition s , w, we write s < w.

Subsets L ⊆ Σ∗ and L ⊆ Σω are referred to as ∗-languages

and ω-languages, respectively. We write pre L and preL to

denote the respective image under the prefix operator. For ∗-

languages, we have L ⊆ pre L, and in the case of equality L

is said to be prefix-closed. Given L ⊆ Σ∗, the limit is defined

lim L := {w ∈ Σω |w has infinitely many prefixes in L }. For

L ⊆ Σω, the topological closure is defined cloL := lim preL,

and L is said to be topologically closed if L = cloL. This

notion of a closure indeed defines a topology on Σω.

Both notions of closedness are generalised for interpre-

tation relative to a restricted domain. For L, M ∈ Σ∗, we

say L is relatively prefix-closed w.r.t. M if L = (pre L) ∩ M.

Likewise, L ⊆ Σω is relatively topologically closed w.r.t.

M ⊆ Σω if L = (cloL) ∩M. In either variant, closedness is

equivalent to relative closedness w.r.t. a closed language.

A ∗-language L ⊆ Σ∗ is said to be complete, if for all

s ∈ L there exists σ ∈ Σ such that sσ ∈ pre L; this is a

particular form of liveness, also referred to as the absence

of deadlocks. For any L ⊆ Σω, the prefix preL is complete

and prefix-closed. For any L ⊆ Σ∗, we have pre lim L = L if

and only if L is complete and prefix-closed.

The prefix-operator distributes over arbitrary unions of

languages. In particular, the union over (relatively) prefix-

closed ∗-languages is (relatively) prefix-closed. The limit

operator in general distributes only over finite unions. In

particular, finite unions of topologically closed ω-languages

are closed, however, the union over an infinite family of

(relatively) topologically closed ω-languages is not necessar-

ily (relatively) topologically closed. Regarding intersections,

we have pre(L ∩ H) ⊆ (pre L) ∩ (pre H) and pre(L ∩ H) ⊆

(preL) ∩ (preH), where L, H ⊆ Σ∗ and L, H ⊆ Σω.

In the case of equality, the respective languages are said

to be non-conflicting. Note that non-conflictingness of the

ω-languages L and H implies that (preL) ∩ (preH) is

complete. The converse implication is true for topologically

closed ω-languages; see also Proposition 5.

Given Σo ⊆ Σ, the natural projection po : Σ∗ → Σ
∗
o is

iteratively defined by (a) let po ǫ := ǫ; and (b) with s ∈ Σ∗,

σ ∈ Σ, let po (sσ) := (po s)σ if σ ∈ Σo, or else po (sσ) := po s.

The set-valued inverse is defined by p−1

o r:={s ∈ Σ∗ | po (s) = r }

for r ∈ Σ∗o. For infinite sequences, the natural projection is

defined as a map pωo : Σω → (Σ∗∪Σω). Given w ∈ Σω, consider

the set po pre w arranged as a monotone sequence. If the

sequence exhibits a maximal element u ∈ Σ∗o, let pωo w := u.

If there is no maximal element, then there uniquely exists

v ∈ Σωo such that po pre w = pre v, and we define pωo w:=v. The

set-valued inverse of pωo is defined p−ωo v:={w ∈ Σω | pωo w = v }

for v ∈ (Σ∗ ∪ Σω).

III. PROBLEM STATEMENT

We begin with a concise review of supervisory control

for sequential behaviours as originally discussed in [11],

however, in a notation adapted to the particular purpose of

the present paper. In our setting, both the plant and the

controller are represented as ω-languages and the closed-

loop behaviour is obtained by intersection. For a well-

posed closed-loop configuration, we introduce the following

admissibility requirements.

Definition 1. Given a plant L ⊆ Σω with uncontrollable

events Σuc ⊆ Σ, a controller H ⊆ Σω is admissible to the

plant, if

[H0] H = cloH ,

[H1] (preH)Σuc ⊆ preH , and

[H2] L and H are non-conflicting. �

Condition [H0] implies that the controller can be im-

plemented as a causal feedback map, which by condition

[H1] never disables uncontrollable events. Condition [H2]

ensures that the closed loop will neither run into deadlocks

nor will it run into livelocks. By the following proposition,

the achievable closed-loop behaviours in our formal setting

indeed match the results from the original literature [11].

Proposition 2. Given Σ, denote Σuc ⊆ Σ the uncontrollable

events and consider the plant L ⊆ Σω. If a controller H ⊆ Σω

is admissible to L, then the closed-loop behaviour K :=L∩H

satisfies [K0] and [K1]:

[K0] K is relatively topologically closed w.r.t. L, and

[K1] ((preK)Σuc) ∩ (preL) ⊆ preK .

Conversely, let K ⊆ Σω be a candidate closed-loop behaviour

that satisfies [K0] and [K1]. Then H := lim((preK)Σ∗uc) is

admissible to L with K = L ∩H .

Proof. A self-contained proof is provided in the appendix. �

Given a plant L ⊆ Σω and an upper-bound specification

E ⊆ L, the prototypical synthesis problem is to construct

a candidate closed-loop behaviour K ⊆ E that satisfies

conditions [K0] and [K1]. While K = ∅ always formally

solves this problem, practical reasons suggest to ask for a

maximal permissive solution, i.e., to consider the candidate

K↑ := ∪{K ⊆ E |K satisfies [K0] and [K1] } . (1)

Except for referring to ω-languages, property [K1] is literally

identical to the notion of controllability commonly used

for ∗-languages; see [12]. In particular, [K1] is retained

under arbitrary union, and, thus, K↑ itself satisfies [K1].

However, and in contrast to the situation with ∗-languages,

relative topological closedness is in general not retained

under arbitrary union and, hence, K↑ is not expected to

satisfy [K0]. A notable exception here is when E happens

to be relatively topologically closed w.r.t. L; see [11]. The

general case is considerably more involved and the reader

is kindly referred to [15, 16] for a detailed discussion. The

results reported in the cited literature include an alternative

characterisation ofK↑ in terms of the so called controllability

prefix, which in turn leads to a computational procedure

that effectively solves the synthesis problem for finite state

representations.

We now turn to the discussion of abstraction-based super-

visory control, in which we are given the actual plant L ⊆ Σω

and an abstraction L′ ⊆ Σω. For the purpose of this paper, we

require the abstraction to account for any possible behaviour

of the actual plant and not to render events that are actually

uncontrollable as controllable. This amounts to the following

technical conditions.

Definition 3. Given a plant L ⊆ Σω with uncontrollable

events Σuc, an abstraction is a behaviour L′ ⊆ Σω with

uncontrollable events Σ′uc such that

[A1] L ⊆ L′, and

[A2] Σuc ⊆ Σ
′
uc. �

Condition [A1] ensures that any controller H ′ which

restricts the abstraction L′ to satisfy an upper bound E will

also do so when applied to the actual plant L; i.e.,

L ∩H ′ ⊆ L′ ∩H ′ ⊆ E . (2)

This is a common prerequisite when using finite state abstrac-

tions of hybrid systems for a subsequent controller synthesis;

see e.g. [14] for a comprehensive study, and also [6, 10] for

a discussion in terms of sequential behaviours. Condition

[A1] is also relevant when using natural projections for the

hierarchical control of large-scale discrete-event systems; see

e.g. [2, 7], and, specifically addressing ω-languages, [1].

There, low-level events are filtered by projection and a high-

level supervisor deliberately exercises no control on low-

level events. In the setting of the present paper, this amounts

to choosing L′ :=p−ωo pωoL with Σ′uc :=Σuc∪(Σ−Σo) to comply

with [A1] and [A2].

While [A1] guarantees that a prescribed upper bound is

satisfied in an abstraction-based design, it is not obvious

whether or under which conditions admissibility can be

maintained. To this end, we pragmatically impose the fol-

lowing consistency requirement.

Definition 4. Consider a plant L ⊆ Σω with uncontrollable

events Σuc and an abstraction L′ ⊆ Σω with uncontrollable

events Σ′uc. Then the abstraction is consistent for the purpose

of supervisory control (or short consistent) if it satisfies

[A3] (∀H ′ ⊆ Σω)[H ′ is admissible to L′

⇒ H ′ is admissible to L] �

Provided that a plant L and an abstraction L′ comply

with [A1] and [A2], it is readily observed that any controller

H ′ that is admissible to L′ also satisfies the admissibility

conditions [H0] and [H1] for L: [H0] does not refer to the

plant at all, and [H1] is a trivial consequence of [A2]:

(preH ′)Σuc ⊆ (preH ′)Σ′uc ⊆ preH ′ . (3)

Thus, to establish consistency of the abstraction, we are left

to discuss non-conflictingness [H2] of L and H ′, and we

will do so in the following two sections.

IV. CONSISTENCY FOR CLOSED BEHAVIOURS

In this section, we develop a sufficient and necessary con-

dition for consistency in the sense of Definition 4 under the

additional assumption that the actual plant is topologically

closed. Although we will drop the latter assumption in the

subsequent section, we believe that it is instructive to first

discuss the less involved special case. In particular, for

topologically closed plants livelocks are not an issue and, by

the below proposition, non-conflictingness [H2] is equivalent

to the absence of deadlocks.

Proposition 5. Consider two ω-languages L, H ⊆ Σω and

assume both to be topologically closed. Then L and H are

non-conflicting if and only if (preL) ∩ (preH) is complete.

Proof. If L and H are non-conflicting then by definition

(preL)∩ (preH) equals the prefix of the ω-language L∩H

and, therefore, is complete. For the converse implication,

assume that (preL) ∩ (preH) is complete and pick s ∈

(preL)∩ (preH). By completeness, we construct a sequence

(vi)i∈N such that s < vi < vi+1 and vi ∈ (preL) ∩ (preH)

for all i ∈ N. In particular, lim{vi | i ∈ N } is a singleton,

which we denote w ∈ Σω to observe s < w. Moreover,

we have {w} = lim{vi | i ∈ N } ⊆ lim((preL) ∩ (preH)) ⊆

lim preL = cloL = L. Likewise, we obtain w ∈ H , and,

hence, s ∈ pre w ⊆ pre(L ∩H). �

If a controller H ′ is admissible to an abstraction L′,

we have that (preL′) ∩ (preH ′) is complete, i.e., after a

string s ∈ (preL′)∩ (preH ′) has occurred in the closed-loop

configuration, the controller must at least enable one event

that the abstraction can agree on. For an abstraction-based

design, this must imply that there also exists an enabled event

that is compliant with the actual plant L. This is the case if,

either, the actual plant can execute an uncontrollable event

after s, or, else, that actual plant can execute any controllable

event that is enabled by the abstraction. Both cases are

formally encoded in the below condition [C1], which turns

out sufficient and necessary for consistency.

Theorem 6. Consider a topologically closed plant L ⊆ Σω

with uncontrollable events Σuc, and an abstraction L′ ⊆ Σω

with uncontrollable events Σ′uc, subject to conditions [A1]

and [A2]. Then L′ is a consistent abstraction if and only if

condition [C1] is satisfied:

[C1] (∀ s ∈ preL)[(sΣ′uc) ∩ (preL) = ∅

⇒ (sΣ) ∩ (preL) = (sΣ) ∩ (preL′)].

Proof. For the constructive part of this proof, assume that

[C1] is indeed satisfied and pick any controller H ′ that is

admissible to the abstraction L′. Referring to Proposition 5,

we need to show that (preL) ∩ (preH ′) is complete. Pick

an arbitrary s ∈ (preL) ∩ (preH ′). If it is the case that

there exists σ ∈ Σ′uc such that sσ ∈ preL, we refer to

admissibility ofH ′ to L′ to obtain sσ ∈ preH ′. This implies

sσ ∈ (preL) ∩ (preH ′) and closed this case. Otherwise,

we must have that (sΣ′uc) ∩ (preL) = ∅ and we may later

refer to the implication in [C1]. By [A1] we observe that

s ∈ (preL′) ∩ (preH ′) and by admissibility of H ′ to L′

we can pick σ ∈ Σ such that sσ ∈ (preL′) ∩ (preH ′).

Now the right-hand-side of [C1] implies sσ ∈ (preL) to

close this case. In both cases, we have extended s within

(preL) ∩ (preH ′) by one more event. Thus, have indeed

established completeness, and, referring to Proposition 5,

non-conflictingness. This amounts to the implication “[C1]

⇒ (the abstraction is consistent)”.

We now turn to “(¬ [C1]) ⇒ (the abstraction is not

consistent)”, i.e., under the given hypothesis that [C1] is not

satisfied, we construct a controller H ′ that is admissible to

the abstraction L′ but fails to be admissible to the actual

plant L. If [C1] is indeed not satisfied, we can pick a witness

s ∈ preL such that the left-hand-side of [C1] holds while the

right-hand-side of [C1] fails. From the right-hand-side to fail

and referring to [A1], we pick σ ∈ Σ such that sσ ∈ preL′

but sσ < preL. Based on the choice of s and σ, we define

a candidate controller H ′ by

H ′ := {s(Σ′uc ∪ {σ})w |w ∈ Σ
ω } ∪ {w ∈ Σω | s < pre w } . (4)

It is readily observed that H ′ is admissible to L′ (closed-

ness [H0] follows by the union construct, [H1] and [H2]

are verified via elementary case distinction). However, the

controller H ′ has the property (sΣ) ∩ (preH ′) = (sΣ′uc) ∪

{sσ} while (sΣ′uc) ∩ (preL) = ∅ and sσ < preL. Hence,

(sΣ) ∩ (preH ′) ∩ (preL) = ∅ to demonstrate a conflict of L

and H ′ at s. Therefore, the candidate H ′ is not admissible

to L and the abstraction is indeed not consistent. �

V. CONSISTENCY FOR GENERAL BEHAVIOURS

We turn to the general case in dropping the requirement of

topological closedness and again derive a characterisation of

consistency. Here, the plant is subject to potential livelocks

and we can not expect [C1] to be a sufficient condition to

prevent such undesirable closed-loop artefacts.

To formally investigate the situation, we observe that

if the actual plant L ⊆ Σω in closed-loop configuration

conflicts with an abstraction-based controller H ′ ⊆ Σω, we

can nominate a witness s ∈ Σ∗ such that

s ∈ (preL) ∩ (preH ′) , s < pre(L ∩H ′) . (5)

This is referred to as a conflict at s. Assuming for the moment

that [C1] is satisfied, H ′ effectively controls the actual plant

L to evolve after s within preL for infinite time but prevents

the achievement of acceptance conditions as expressed by L.

This undesirable situation can be formally rephrased as an

upper-bound specification:

Es := {sw |w ∈ Σω, sw < L } ∪ {w ∈ Σω | s < pre w } . (6)

Therefore, we may expect that the “evil” controller H ′ ⊆ Σω

enforces Es to be satisfied and that it will show the witness-

of-conflict s in its designated closed-loop behaviour, i.e., s ∈

pre(L′ ∩H ′). Whether or not such an unfortunate controller

exists, can be tested by inspecting the supremum Ks over all

achievable closed-loop behaviours that satisfy Es, i.e.,

Ks:= ∪ {K ⊆ Es ∩ L
′ |

K satisfies [K0] and [K1] for the abstraction L′

with uncontrollable events Σ′uc } . (7)

The following theorem further elaborates the above line

of thought to obtain a characterisation of consistency.

Theorem 7. Consider a plant L ⊆ Σω with uncontrollable

events Σuc, and an abstraction L′ ⊆ Σω with uncontrollable

events Σ′uc, subject to [A1] and [A2]. Then L′ is a consistent

abstraction if and only if condition [C2] is satisfied:

[C2] (∀ s ∈ preL)[s < preKs] ,

with Ks as defined by Eqs. (6) and (7).

Proof. We first establish the implication “(the abstraction

is not consistent) ⇒ (¬[C2])”. Assuming that L′ is not a

consistent abstraction, we can pick a controller H ′ that is

admissible to the abstraction L′ but not to the actual plant

L. Since we have established [H0] and [H1] by [A1] and

[A2] regardless of the particular plant at hand, L and H ′

fail on [H2]. Thus, there is a conflict and we can pick a

witness s according to Eq. (5). Here, L ⊆ L′ [A1] implies

that s ∈ (preL′) ∩ (preH ′), and therefore admissibility to

L′ with [H2] ensures that we can pick w ∈ Σω such that

sw ∈ L′ ∩H ′. However, for any such choice of w we must,

by Eq. (5), have sw < L. Therefore, K :=L′ ∩H ′ ⊆ Es and

s ∈ pre(L′∩H ′) = preK . By Proposition 2 and admissibility

of H ′ to L′, the closed loop K qualifies as a component

of the union construct in Eq. (7) and we have K ⊆ Ks.

Applying prefixes, we obtain s ∈ preK ⊆ preKs and thus

have established that [C2] is indeed not satisfied.

We now turn to “(¬[C2]) ⇒ (the abstraction is not con-

sistent)”. Here, we can pick s ∈ preL such that s ∈ preKs.

Since the prefix operator distributes over arbitrary unions,

there must exist K ⊆ Es that satisfies [K0] and [K1] such

that s ∈ preK . Referring to Proposition 2, we can choose

H ′ admissible to L′ such that K = L′ ∩ H ′. In particular,

we have s ∈ preK ⊆ preH ′ and, together with the initial

choice of s, also s ∈ (preL) ∩ (preH ′). Now assume that

we can pick a continuation w ∈ Σω with sw ∈ L∩H ′. Then,

by [A1], sw ∈ L′ ∩ H ′ = K ⊆ Es. By Eq. (6), this implies

sw < L, and, hence, contradicts the choice of w. Therefore,

sw < L ∩ H ′ for all w ∈ Σω, and hence s < pre(L ∩ H ′).

Thus, L and H ′ conflict at s and the abstraction L′ is not

consistent. �

Although we referred to [C1] in our motivation, the

above theorem establishes that [C2] by its own characterises

consistency of an abstraction. Hence, we conclude that for

topologically closed plants [C1] and [C2] are equivalent.

VI. IMPLEMENTATION OUTLINE

Both conditions [C1] and [C2] are stated as a universal

quantification over all prefixes of the actual plant and a test,

which is to be applied to each individual prefix. Since there

are infinitely many prefixes, a prerequisite for a software

implementation is to establish a finite set of representatives.

Technically, we use the conjunction of Nerode equivalences

and show that the test either uniformly passes or uniformly

fails for all prefixes within the same equivalence classes.

For regular languages, a software implementation can then

be based on an iteration over all states.

We begin the discussion under the assumption that the

actual plant L ⊆ Σω is topologically closed and target for

condition [C1]. By the definition of closedness, we have L =

lim L with L:=preL. This suggests to utilise the well studied

Nerode equivalence for ∗-languages.

Definition 8. Let Σ denote an alphabet. For L ⊆ Σ∗, L-

equivalence [≡L] is defined for s′, s′′ ∈ Σ∗ by s′[≡L]s′′ if

and only if (∀ t ∈ Σ∗)[s′t ∈ L ↔ s′′t ∈ L]. �

Inspecting [C1], it is readily observed for any two strings

s′, s′′ ∈ Σ∗ with s′[≡preL]s′′ and s′[≡preL′]s′′ that

(s′Σuc) ∩ (preL) = ∅

⇔ (s′′Σuc) ∩ (preL) = ∅ , (8)

(s′Σ) ∩ (preL) = (s′Σ) ∩ (preL′)

⇔ (s′′Σ) ∩ (preL) = (s′′Σ) ∩ (preL′) . (9)

When preL and preL′ are provided as deterministic finite

automata realisations, one can use the common product con-

struct to obtain an automaton in which each state corresponds

to a set of strings that belong to exactly one equivalence

class of [≡preL] and [≡preL′], respectively. Moreover, the

sets in the individual tests effectively amount to sets of

possible successor events. Thus, the overall condition [C1]

can be evaluated by an iteration over all states in the product

automaton with an inspection of enabled events in each state.

In the subsequent discussion of [C2], we again refer to

an equivalence relation on Σ∗, but now take into account the

infinite future w.r.t. an ω-language.

Definition 9. Given an alphabet Σ and an ω-language L ⊆

Σ
ω, L-equivalence is defined for s′, s′′ ∈ Σ∗ by s′[≡L]s′′ if

and only if (∀w ∈ Σω)[s′w ∈ L ⇔ s′′w ∈ L]. �

For two L-equivalent strings s′, s′′ ∈ Σ∗, intuitively, any

admissible control exercised after s′ can also be applied after

s′′. Moreover, if a controller causes a conflict at s′, the same

control when exercised at s′′ will also cause a conflict. The

following two propositions clarify this informal observation.

Proposition 10. Given a plant L ⊆ Σω with uncontrollable

events Σuc, an admissible controller H ⊆ Σω, and two L-

equivalent strings s′, s′′ ∈ Σ∗, s′[≡L]s′′ with s′ ∈ preH , let

H̃ := {s′′w |w ∈ Σω, s′w ∈ H } ∪ {w ∈ Σω | s′′ < pre w } . (10)

Then H̃ is admissible to L.

Proof. Regarding [H0], observe that both union components

in Eq. (10) are topologically closed, and, hence, so is H̃ .

Regarding [H1], pick any s ∈ pre H̃ and σ ∈ Σuc. Case

(a), if sσ ≤ s′′, then we refer to the left union component

(l.u.c.) to obtain sσ ∈ pre H̃ . Case (b), we have sσ < pre s′′.

Let t ∈ pre(sσ) denote the longest string such that t ≤ s′′ and

write sσ = tu with u ∈ Σ∗, u , ǫ. We distinguish two more

sub-cases. Case (b1), if t = s′′, we have s′′ < sσ and refer

to the l.u.c. together with (preH)Σuc ⊆ preH to obtain sσ ∈

pre H̃ . For the remaining case (b2) we have t < s′′. Here,

we observe that s′′ < pre tuw for any w ∈ Σω, and refer to

the right union component (r.u.c.) to obtain sσw = tuw ∈ H̃ .

This concludes the proof of [H1]. For a proof of [H2], we

pick an arbitrary s ∈ (preL)∩ (pre H̃). Then we can choose

w ∈ Σω such that sw ∈ L. Case (a), if s′′ < pre sw, the r.u.c.

provides us sw ∈ H . We are left with case (b) where we

assume that s′′ < sw. This implies s′′ ∈ preL and, by L-

equivalence, s′ ∈ preL. We distinguish two sub cases. For

case (b1) assume that s ≤ s′′. By non-conflictingness of L

and H , we choose v ∈ Σω such that s′v ∈ L ∩H . Thus, we

have s′′v ∈ H̃ via the l.u.c. and s′′v ∈ L by s′[≡L]s′′. This

implies s ≤ s′′ ∈ pre(L∩H ′) and closes case (b1). For case

(b2), we assume that s′′ < s. Here, we write s = s′′t with

t ∈ Σ∗ and refer to the l.u.c. to obtain s′tv ∈ H for suitably

chosen v ∈ Σω. Note that s′[≡L]s′′ implies s′t[≡L]s′′t and,

thus, s′′t = s ∈ preL implies s′t ∈ preL. Referring to non-

conflictingness of L and H , this ensures existence of u ∈ Σω,

such that s′tu ∈ L ∩H . We conclude su = s′′tu ∈ H̃ by the

l.u.c. and su = s′′tu ∈ L by s′[≡L]s′′. This closes case (b2)

with su ∈ L ∩ H̃ . �

Proposition 11. Given a plant L ⊆ Σω with uncontrollable

events Σuc, some not necessarily admissible controller H ⊆

Σ
ω, and two L-equivalent strings s′, s′′ ∈ Σ∗, s′[≡L]s′′,

consider H̃ as defined in Eq. (10). Then

s′ ∈ (preL) ∩ (preH) and s′ < pre(L ∩H) (11)

⇒ s′′ ∈ (preL) ∩ (pre H̃) and s′′ < pre(L ∩ H̃) (12)

Proof. The first clause in Eq. (12) is an immediate conse-

quence of s′[≡L]s′′ and Eq. (10), respectively. For a proof

by contradiction of the second clause, we now assume that

s′′ ∈ pre(L∩H̃) and choose w ∈ Σω such that s′′w ∈ L∩H̃ .

By s′[≡L]s′′, this implies s′w ∈ L, and, by Eq. (10),

s′w ∈ H . This contradicts the second clause in Eq. (11). �

The above propositions are utilised in the below theorem

to establish, that the test s ∈ preKs from condition [C2]

evaluates uniformly over sets of strings that are L-equivalent

and L′-equivalent.

Theorem 12. Given a plant L ⊆ Σω with uncontrollable

events Σuc, and an abstraction L′ ⊆ Σω with uncontrollable

events Σ′uc subject to conditions [A1] and [A2], consider

strings s′, s′′ ∈ preL such that s′[≡L]s′′ and s′[≡L′]s′′. Then

s′ ∈ preKs′ if and only if s′′ ∈ preKs′′ , where we refer to

Eqs. (6) and (7).

Proof. It suffices to prove the “if”-part, since “only if” will

follow from uniform substitution. Thus, we assume that s′ ∈

preKs′ . Since the prefix operator distributes over arbitrary

union, this implies s′ ∈ preK for some K ⊆ Es′ that satisfies

[K0] and [K1] for the abstraction L′ with uncontrollable

events Σ′uc. By Proposition 2, there must exist a controllerH ′

that is admissible to L′ with L′ ∩H ′ = K ⊆ Es′ . Referring

to s′ ∈ preK and Eq. (6), we conclude s′w < L for all

w ∈ Σω with s′w ∈ H ′, i.e., s′ ∈ (preL) ∩ (preH ′) and

s′ < pre(L ∩ H ′) as in Eq. (11). We construct a controller

candidate H̃ from H ′ as is Eq. (10). By Proposition 10 and

referring to s′[≡L′]s′′, the candidate H̃ is admissible to L′,

and, by Proposition 2, K̃ :=L′∩H̃ satisfies [K0] and [K1] for

the abstraction. Note also that s′′ ∈ preL′ and s′′ ∈ pre H̃ ,

by s′[≡L′]s′′ and s′ ∈ preH ′, respectively. With admissibility

of H̃ this implies s′′ ∈ pre K̃ . Referring to Proposition 11

with s′[≡L]s′′, we obtain s′′ ∈ (preL) ∩ (pre H̃) and s′′ <

pre(L ∩ H̃). In particular, s′′w < L for any w ∈ Σω with

s′′ ∈ H̃ and therefore K̃ = L′ ∩ H̃ ⊆ Es′′ . Hence, K̃ is a

component in the union construction of Ks′′ and we conclude

with s′′ ∈ pre K̃ ⊆ preKs′′ . �

Provided that both languages L and L′ are given as

deterministic finite automata realisations, we can again use

a product composition to obtain a sufficiently rich state

set such that the test s ∈ preKs evaluates uniformly and,

hence, can be applied per state. The test itself requires

the computation of preKs, which is also known as the

controllability prefix. The latter has been studied in [15,

16], including a computational procedure for deterministic

automata with either Büchi acceptance condition or Rabin

acceptance condition.

VII. CONCLUSION

This paper provides two characterisations of abstraction

consistency in the context of supervisory control of sequen-

tial behaviours. First, we turned attention to plants with

topologically closed behaviours and developed the sufficient

and necessary condition [C1] that ensures that any controller

designed for the abstraction will also faithfully operate the

actual plant and do so without risking deadlocks. Second, we

considered plants that may not be topologically closed and

derived an according characterisation of consistency [C2].

Here, any abstraction based controller design is additionally

guaranteed not to run the closed loop into a livelock. Re-

garding both conditions, we gave an outline for a software

implementation that is applicable for the situation of regular

behaviours, e.g., realised by deterministic Rabin automata.

REFERENCES

[1] C. Baier and T. Moor. A hierarchical and modular control architecture
for sequential behaviours. Discrete Event Dynamic Systems, 25(1–
2):95–124, 2015.

[2] L. Feng and W. M. Wonham. Supervisory control architecture for
discrete-event systems. IEEE Transactions on Automatic Control,
53(6):1449–1461, 2008.

[3] R. Kumar, V. Garg, and S. I. Marcus. On supervisory control
of sequential behaviors. IEEE Transactions on Automatic Control,
37(12):1978–1985, 1992.

[4] R. J. Leduc, M. Lawford, and W. M. Wonham. Hierarchical interface-
based supervisory control-part ii: parallel case. IEEE Transactions on

Automatic Control, 50(9):1336–1348, 2005.
[5] T. Moor. Natural projections for the synthesis of non-conflicting su-

pervisory controllers. Workshop on Discrete Event Systems (WODES),
2014.

[6] T. Moor and J. Raisch. Supervisory control of hybrid systems within
a behavioural framework. Systems and Control Letters, 38:157–166,
1999.

[7] T. Moor, K. Schmidt, and T. Wittmann. Abstraction-based control for
not necessarily closed behaviours. 18th IFAC World Congress, pages
6988–6993, 2011.

[8] G. Pola, A. Girard, and P. Tabuada. Approximately bisimilar symbolic
models for nonlinear control systems. Automatica, 44(10):2508–2516,
2008.

[9] G. Pola and P. Tabuada. Symbolic models for nonlinear control
systems: Alternating approximate bisimulations. SIAM Journal on

Control and Optimization, 48(2):719–733, 2009.
[10] J. Raisch and S. O’Young. Discrete approximation and supervisory

control of continuous systems. IEEE Transactions on Automatic

Control, Special Issue on Hybrid Systems, 43(4):569—-573, 1998.
[11] P. Ramadge. Some tractable supervisory control problems for discrete-

event systems modeled by büchi automata. IEEE Trans. Aut. Contr.,
34 (1):10–19, 1989.

[12] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of
discrete event processes. SIAM J. Control and Optimization, 25:206–
230, 1987.

[13] G. Reissig, A. Weber, and M. Rungger. Feedback refinement relations
for the synthesis of symbolic controllers. IEEE Transactions on

Automatic Control, 62, 2017.
[14] P. Tabuada. Verification and control of hybrid systems, a symbolic

approach. Springer Verlag, 2009.
[15] J. G. Thistle and W. M. Wonham. Control of infinite behavior of finite

automata. SIAM J. Control and Optimization, 32:1075–1097, 1994.
[16] J. G. Thistle and W.M. Wonham. Supervision of infinite behavior of

discrete-event systems. SIAM Journal on Control and Optimization,
32 (4):1098–1113, 1994.

[17] K. C. Wong and W. M. Wonham. Hierarchical control of discrete-event
systems. Discrete Event Dynamic Systems, 6(3):241–273, 1996.

APPENDIX

Proof of Proposition 2. Consider a controller H that is admissible
to L and let K := L ∩ H . For relative closedness [K0], observe
that (cloK) ∩ L = (clo(L ∩ H)) ∩ L ⊆ (cloH) ∩ L = H ∩ L =
K , where the converse inclusion is trivialy true. For controllability
[K1], observe ((preK)Σuc)∩(preL) = ((pre(L∩H))Σuc)∩(preL) ⊆
((preH)Σuc) ∩ (preL) ⊆ (preH) ∩ (preL) = pre(H ∩ L) = preK .
This completes the first part of the proof.

For the second part, assume that K satisfy [K0] and [K1] and
consider the candidate controller H = lim((preK)Σ∗uc). Note that,
by construction, H is the limit of a prefix-closed and complete
language. In particular, H is topologically closed [H0] and

preH = pre lim((preK)Σ∗uc) = (preK)Σ∗uc . (13)

Hence (preH)Σuc ⊆ preH , i.e., we also have [H1]. We now turn
to an inductive proof of the following hypothesis

((preK)Σi
uc) ∩ (preL) ⊆ preK , (14)

which by [K0] holds for i = 0. Pick an i such that (14) holds,
concatenate both sides with Σuc and intersect with preL, to obtain

((preK)Σi+1
uc)∩((preL)Σuc)∩(preL) ⊆ ((preK)Σuc)∩(preL) . (15)

For the left-hand-side, note that ((preL)Σuc) ∩ (preL) = (Σ∗Σuc) ∩
(preL) and that (preK)Σi+1

uc ⊆ Σ
∗
Σuc. For the right-hand-side, we

refer to [K1]. Overall, we obtain

((preK)Σi+1
uc) ∩ (preL) ⊆ preK . (16)

This completes the proof of Eq. (14) by induction. Taking unions
over all i ≥ 0, we obtain

((preK)Σ∗uc) ∩ (preL) ⊆ preK . (17)

The converse inclusion is obvious, hence, we have equality. To-
gether with Eq. (13) this implies that

(preL) ∩ (preH) = preK , (18)

and, moreover, K = (cloK) ∩ L = lim((preL) ∩ (preH)) ∩ L. For
prefix-closed languages the limit distributes over intersection, and
we continue with lim((preL)∩(preH))∩L = (cloL)∩(cloH)∩L =
L ∩ H , i.e., K = L ∩ H , with non-conflictingness [H2] as an
immediate consequence. �

