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Abstract: The controllability prefix is known as a useful concept for the discussion and solution of
synthesis problems in supervisory control of w-languages, i.e., formal languages of infinite-length words.
There, the controllability prefix is defined as the set of all finite-length prefixes that can be controlled to
satisfy prescribed liveness and safety properties. In this paper, we discuss a variation of the controllability
prefix to address supervisory control under partial observation for regular *-languages, i.e., formal
languages of finite-length words. We derive algebraic properties that are useful for a quantitative analysis
on how an upper-bound language-inclusion specification affects achievable lower-bound specifications.
Our study is motivated by the synthesis of fault-tolerant supervisory controllers, where the possible
occurrence of a fault may restrict the achievable pre-fault behaviour so severe, that a relaxation of the
upper-bound specification becomes a practical option. As our study shows, such a relaxation can be
systematically constructed in terms of the controllability prefix.
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INTRODUCTION

Given the behaviour of a plant and an upper-bound specifica-
tion, both in terms of formal languages, Thistle and Wonham
(1994b) define the controllability prefix as the set of strings,
from which on a supervisor can take over the plant in order
to enforce the specification. Interpreting control as a game
between the supervisor and the plant, the controllability pre-
fix characterises the winning configurations for the supervisor.
Thus, if the empty string is within the controllability prefix,
the supervisor wins and the control problem has a solution. In
their study, Thistle and Wonham (1994b) address languages of
infinite-length words also known as w-languages or sequential
behaviours. In this setting, a supremal achievable closed-loop
behaviour in general fails to exist, however, the authors estab-
lish a tight upper bound in terms of the controllability prefix.
Together with the computational procedure provided in (This-
tle and Wonham, 1994a), this effectively solves the synthesis
problem for supervisory control of w-languages.

In this paper, we address supervisory control under partial ob-
servation where the plant and the upper-bound specification are
represented as *-languages and under the assumption that all
controllable events are observable. For this situation, Lin and
Wonham (1988) establish the unique existence of the supre-
mal achievable closed-loop behaviour, characterised by con-
trollability, prefix-normality and relative closedness. For prac-
tical purposes, it is common to compute the supremal closed-
loop behaviour and to test whether it also satisfies an addi-
tional lower-bound specification. If the test passes, the supremal
closed-loop behaviour is used to extract the supervisor. If the

test fails, no acceptable solution exists. It is the latter case,
for which we propose to consider the controllability prefix as
a guidance on how the upper-bound specification can be re-
laxed in order to meet the lower bound. More specifically, we
characterise those configurations, in which the supervisor may
enable additional events in favour of the lower bound while
risking to fail on the original upper bound, but to do so only
if it is known by observation that there is still the chance to
win. Technically, the present paper is a further development of
(Moor and Schmidt, 2015) to account for partial observation.

While we believe that the concept of the controllability prefix
is of general interest, our study is motivated by a specific
problem of fault-tolerant supervisory control; see e.g. (Paoli
and Lafortune, 2005; Wittmann et al., 2012; Wen et al., 2014;
Siilek and Schmidt, 2014; Acar and Schmidt, 2015), with an
overview given in (Moor, 2016). In this setting, a nominal plant
and a nominal specification are extended to model the effect
of a fault. The task is then to design a control scheme that
initially enforces the nominal specification and that, after the
occurrence of a fault, continues to faithfully operate the plant.
A first step for a practical solution is to compare the supremal
closed-loop behaviours obtained for the nominal plant and the
extended plant, both for the nominal specification. Here, it
typically shows that considering the possible occurrence of the
fault, the supervisor turns out more restrictive even in the pre-
fault behaviour. Thus, there is a trade-off between maintaining
pre-fault performance and allowance for post-fault degradation.
This trade-off can be analysed in terms of the controllability
prefix, making explicit when a supervisor may risk to fail on
the nominal specification while maintaining the chance to win.



The paper is organised as follows. Section 1 provides common
notation and a concise review of supervisory control under
partial observation. A motivating example from fault-tolerant
control is presented in Section 2. As our main contribution, we
formally define the controllability prefix in Section 3 and elab-
orate algebraic properties. The latter are used in Section 4 for
a systematic relaxation of a given upper-bound specification.
Turning back to the example, Section 5 demonstrates how our
results can be utilised in the context of fault-tolerant control.

1. PRELIMINARIES

We give a summary of common notation and elementary facts,
and recall essential results regarding supervisory control under
partial observation, as relevant for the present paper.

1.1 Notation

Let X be a finite alphabet, i.e., a finite set of symbols o € X. The
Kleene-closure X" is the set of finite strings s = o103 -+ 07y,
n € N, o; € X, and the empty string € € T*, € ¢ Z. If, for two
strings s, r € X", there exists t € X" such that s = rz, we say r is
a prefix of s, and write r < s; if in addition r # s, we say r is a
strict prefix of s and write r < s.

A x-language (or short a language) over X is a subset L C T*.
The prefix of a language L C X" is defined by pre L:={r €
¥ |ds € L : r < s}. The prefix operator is also referred to
as the prefix-closure (or short closure), and, a language L is
closed if L = pre L. A language K is relatively closed w.r.t.
L if K = (preK) N L. The prefix operator distributes over
arbitrary unions of languages. However, for the intersection of
two languages L and K, we have pre (L N K) C (pre L)N(pre K).
If equality holds, L and K are said to be non-conflicting.

For the observable events £, C X, the natural projection
Po: X° — X is defined iteratively: (1) let p,e:=¢€; (2) for
s € T, 0 € I, let p,(so):=(p,s)o if ¢ € X, or, if o ¢ X,
let p,(so):=p,s. The set-valued inverse p;' of p, is defined
by p;'(r):={s € Z"|p,(s) = r} for r € X;. When applied
to languages, the projection distributes over unions, and the
inverse projection distributes over unions and intersections.
The prefix operator commutes with projection and inverse
projection.

Given two languages L, K C X*, and a set of uncontrollable
events . C X, we say K is controllable w.rt. L, if (pre K)Z,. N
(pre L) C pre K. With the set of observable events X, C X, we
say that K is normal w.rt. L, if K = (p;'p,K) N L. Further-
more, K is prefix-normal w.rt. L, if pre K = (p;'p, pre K) N
(pre L). If K is relatively closed and prefix-normal w.r.t. L,
then K is also normal w.r.t. L. Controllability, normality, prefix-
normality, closedness and relative closedness are each retained
under arbitrary union; see (Ramadge and Wonham, 1987) re-
garding controllability, and (Lin and Wonham, 1988) regarding
normality. Note that closedness and relative closedness are also
retained under arbitrary intersection.

1.2 Supervisory control

We refer to supervisory control as originally introduced by
Ramadge and Wonham (1987), and extended to address partial
observation by Lin and Wonham (1988).

For a given alphabet X, consider a formal language L C X" to
represent the plant behaviour. The prefix pre L is also referred
to as the local behaviour. It is the set of all event sequences
that can be generated by the physical plant while time passes.
In contrast, the accepted behaviour L is commonly used to
indicate task completion.

For the purpose of control, the common partition ¥ = £ ,UZ,. =
¥, UZ,, is used to distinguish controllable events, uncontrol-
lable events, observable events and unobservable events, re-
spectively, where we assume X, C X, throughout this paper.
The supervisor is then represented as a causal feedback map
f: preL — T with the set of control-patterns T :={y|Z,. C
v € X} and with f(s) the events enabled after the occurrence of
s € X", For partial observation, the feedback map must satisfy
the observability condition f(s") = f(s”) for all s, s” € pre L
with p,s’ = p,s”. The local closed-loop behaviour K,,, € X*
is obtained by restricting pre L according to the feedback map
f, and, for non-blocking supervision, one requires that K,
and L are non-conflicting. Finally, the accepted closed-loop
behaviour is defined K := K. N L.

The commonly studied control problem is parameterised by a
plant L C T* together with lower- and upper language inclusion
specifications A C X" and E C X, respectively. A solution to
the control problem is a non-blocking supervisor f that satisfies
the observability condition and that operates the plant with
an accepted closed-loop behaviour K satisfying the prescribed
bounds, i.e.,

ACKCE. (1

Without loss of generality, we may assume that ) # A C E C
LCY.

Except for cosmetic differences in notation, a constructive
solution to the above problem has been presented by Lin and
Wonham (1988). It is based on two technical results. First, it is
observed that a language K # 0 can be obtained as a closed-
loop behaviour if and only if K is controllable, prefix-normal
and relatively closed w.r.t. L. Second, controllability, prefix-
normality and relative closedness are retained under arbitrary
union. Thus, denoting the set of all achievable closed-loop
behaviours that satisfy the upper bound as

CNF(L,E):={K C E|
K is controllable w.r.t. L,
K is prefix-normal w.r.t. L,
K is relatively closed w.r.t. L}, 2)

it holds that the supremum
K":=supCNF(L,E):=U{K CX"|K e CNF(L,E)} (3)

is itself an achievable closed-loop behaviour with KT C E. For
regular parameters E and L, the supremum K is also regular
and an automaton representation can be obtained by well known
algorithms; see e.g. Cho and Marcus (1989) or the more recent
variations given by Moor et al. (2012) and by Cai et al. (2015).

If KT happens to also satisfy the lower-bound specification
A C KT, then a feedback map f to solve the control problem
can be extracted from K'. If, on the other hand, KT does not
satisfy the inclusion A C KT, then neither does any other
achievable closed-loop behaviour. Then, the control problem
has no solution.



2. FAULT-TOLERANT SUPERVISORY CONTROL

We provide a simple example that illustrates the results pre-
sented so far in the context of fault-tolerant control. More
specifically, we follow the naive approach proposed by Moor
(2016).

Consider a processing machine with the physical behaviour
realised by the automaton in Fig. 1. Referring to the additional
external events A, B and X, the task is to design a controller that
accepts the commands A and B to select a particular processing
scheme and to provide feedback X upon completion. Here,
all events are considered observable, and, except a, b and t,
also controllable. The formal specification is given by the two
automata in Fig. 2, where the overall specification E is obtained
by parallel composition.

g: get workpiece
p/q: use tool P/Q
t:  progress increment

a/b: complete with high/low quality
X: exit workpiece

Fig. 2. upper-bound specifications E; (left) and E; (right)

The synthesis procedure then needs to figure when to accept
commands A or B, which tool to choose in order to achieve
the requested quality, and when to provide acknowledgment X.
A realisation of KT = sup CNF(L, E), as shown in Fig. 3, is
readily obtained by available software tools.

Fig. 3. closed loop KT (left) with external behaviour Ly; (right)

We now assume that the processing tool P is subject to wear-out
in that it degrades to only produce low quality output, indicated
by b. The transition from normal operation to wear-out can be
modelled by the distinguished fault event f, to obtain the overall
Sault-accommodating model Ly C ¥, 3¢ :=XU(f); see Fig. 4.

The fault event f is considered uncontrollable, and, in contrast
to the predecessor paper (Moor and Schmidt, 2015), also as
unobservable. For a first step in a fault-tolerant design, we
lift the nominal specification E to X;, i.e., we consider the
specification E; :=p;'E, with p;' the set-valued inverse of the
natural projection p;: I — X*. However, the closed-loop
behaviour K] :=sup CNF(L;, E;) is considered inappropriate:
in order to unconditionally satisfy E;, the supervisor is required
never to use tool P. For practical reasons, we would prefer the

Fig. 4. fault-accommodating model Ly¢

supervisor to optimistically risk the use of tool P until the fault
actually occurs. Since K| is supremal, this effectively requires
us to relax E;. In the following two sections we will develop a
method to further analyse this situation.

Fig. 5. Fault tolerant KfT (left) with ext. behaviour Ly;s (right)

3. CONTROLLABILITY PREFIX

We provide a quantitative analysis of the supremal closed-loop
behaviour for an upper-bound inclusion specification. Our dis-
cussion uses the notion of the controllability prefix as proposed
by Thistle and Wonham (1994b) in the context of w-languages,
which we adapt to the problem at hand, i.e., the supervision of
x-languages under partial observation.

Given a plant L C X and an upper-bound specification E C L,
consider a sequence s € pre L from the local plant behaviour
and define

Li:=L N (p;'posZ’)., “4)
E :=E N (p;,‘posi*), 5)
K!:=supCNF(L,, E,). (6)

The plant L, and the upper-bound specification E, are obtained
form the original parameters L and E, respectively, under the
additional assumption that the plant will start by tracking a
string that is observed as p,s. If pre K] accounts for every such
string, i.e., if

(pre L) N (pg'pos) < pre K, ™
then there exists a supervisor that can take over the plant
after the observation p,s in order to enforce the upper-bound
specification E. By the below proposition, Eq. (7) is equivalent
to K] # 0 and we formally define controllability prefix for the
control problem at hand as follows.

Definition 1. Given two languages E C L C X*, the controlla-
bility prefix of E w.r.t. L is defined by

T:={s € pre L| K] # 0}, (8)
referring to Egs. (4), (5) and (6), and to the common partition
Y =3 US, = Z,UZ,, with Z, C %, O



From a game-theoretic perspective, T is seen as the set of
winning configurations from which, once attained, a supervisor
can “win” in the sense of being able to enforce E when “playing
against the plant”.

Proposition 2. Given E C L C X, denote the controllability
prefix T. For any s € pre L consider L, E, and K] defined by
Egs. (4), (5) and (6), respectively. Then

() sepreK] & K!#0,
(i) (pre L) N (pg'pos) S pre K]
(iii) T is normal w.r.t. pre L.

o Kl#0,

Proof (outline) ' . All three claims follow by elementary con-
siderations and the respective definitions. At (i). “=" is triv-
ial. For “<”, pick t € K! € L, C (p;'p,sZ’), decompose
with r < t, p,r = p,s, and refer to prefix-normality of K[
to obtain s € pre K. At (ii). “=” is trivial. For “&” pick
any s* € preL N (p;'p,s), to observe that ' € preL, and,
by (i), s’ € p;'p, pre K. Then prefix-normality of K] implies
s’ € preK!. Ad (iii). Pick s € T and s’ € preL such that
PoS = Po5’. Observe K! = K! # 0, and, hence, 5" € T. O

Intuitively, once the plant attains a winning configuration s € T,
it can be controlled to maintain this status, i.e., to continue to
evolve within 7.

Proposition 3. Given E C L C X, denote the controllability
prefix T. For any s € pre L consider L,, E; and K| defined by
Egs. (4), (5) and (6), respectively. Then for any ¢ € X*

sSIEpreKST = teT. )

Proof (outline). Consider the candidate

K:=K] 0 (pg'potZ). (10)
i.e., the restriction of K] to strings begin with the observation
pot- By the prerequisite we have t € preK and K C E, :=EN
(p;'PofX"). As it turns out, K can be verified to be relatively
closed, controllable and prefix-normal w.r.t. L, := LN (pg'pyt=").
Hence, ® # K € CNF(L,, E,), with KrT # (0 as immediate
consequence. This implies € T'. O

As a technical consequence of the above proposition, we note
that L and T are non-conflicting.

Lemma4. Let E C L C . Then L and the controllability
prefix T of E w.r.t. L are non-conflicting. In particular, we have
preT =pre(LNT).

Proof (outline). Pick any s € (pre L) N (pre T') and extend it
by ¢ such that st € T. This implies, by Proposition 2, part (i),
st € preK],. Thus, we can further extent st by w such that
stw € K, € L and conclude by Proposition 3 that stw € T.
Hence, s € pre (LN T). O

Any admissible controller that enforces the upper-bound speci-
fication E must control the plant to evolve within 7. However,
since T may not be prefix-closed, there may exist winning con-
figurations that do not contribute to the supremal closed-loop
behaviour. The following proposition manifests this intuition.

Proposition 5. Given E C L C ¥, denote the controllability
prefix T and let KT := sup CNF(L, E). Then

pre K Tcr s
where equality holds if and only if T is closed.

1)

! Observing page limitations, we only give proof outlines. A technical report
including full proofs is available from the authors upon request.

Proof (outline). The inclusion (11) is an immediate conse-
quence of Proposition 3, where we consider the special case
of s = € with K] = K'. Moreover, if equality holds in (11),
closedness of T is trivial. For the converse implication, T is
assumed to be closed and K := LNT is considered a closed loop
candidate. Indeed, each of the properties relative closedness,
controllability and prefix normality of K w.r.t. L can be verified.
Now pick any s € K to observe s € L, Npre K] = K] C E, CE.
Hence, K € E and we note that K € CNF(L, E). To ob-
tain equality in (11), we refer to Lemma 4 and observe that
T =preT NpreL=pre(LNT)=preK CpreK'. O

Thus, if T is closed, it solves the control problem with accepted
closed-loop behaviour KT and provides no further insight. More
interestingly, if T fails to be closed, there must exist sequences
s ¢ preK' but s € T, i.e., even under maximally permissive
control, the closed-loop is constrained not to attain certain
winning configurations. However, by the following proposition,
s ¢ pre KT can only be the case if s exits pre KT via a non-
winning configuration.

Proposition 6. Given E C L C X", denote the controllability
prefix T and let KT := sup CNF(L, E). Then, and for any s € X",
o € X, we have

sepreK!, so¢gpreK! = so¢T. (12)
Proof (outline). It can be verified that for any K € CNF(L, E),
s € preK, o € X, K' € CNF(L,,, E,,), controllers can be
merged in the sense of K U K’ € CNF(L, E). The claim is
then proven by contradiction, i.e., we assume that we can pick
s € ¥ and o € X such that s € preKT, so ¢ preKT, and
so € T. By Proposition 2, this implies s € pre K] with
K! :=supCNF(L,,, E,,). By our preliminary consideration,
we obtain KT U KI_ € CNF(L, E). Then supremality of K'
implies KI, C K' and, hence, so € pre K. This contradicts

the choice of s and o. O

4. RELAXING THE UPPER BOUND

Insisting on the upper-bound specification E implicitly imposes
a restriction on the achievable lower bound, namely A C
KT :=CNF(L, E), which by the analysis of Section 3 implies

(13)

with T the controllability prefix of E w.r.t. L. However, for some
applications the imposed restriction may not be acceptable; see
the example in Section 2.

ecpreACT,

Note that the dual approach, namely to consider the infimum
K' over all achievable closed-loop behaviours

K':=n{K CX'|ACK, KeCNF(L,L)} (14)

and thereby giving preference to the lower bound A, in general
fails to solve the problem. This is because only in the special
case when L is closed, K! turns out controllable and prefix-
normal; see also (Lafortune and Chen, 1990). In the following
discussion, we therefore propose an alternative approach that
addresses not-necessarily closed plants L and that is based on
relaxing the interpretation of the upper-bound parameter E.
While in the original setting, the local closed-loop behaviour
must consist of winning configurations only, we consider the
weaker requirement of the chance to attain a winning configu-
ration.

To this end, we define the class of languages



MN(L,T):={K CpreT |
(@ (VseK3AreX)[steT, spretC K], and

(b) Kisnormal w.r.t. pre L }. (15)
Condition (a) ensures the chance to attain a winning config-
uration while remaining within K. The latter clause in (a), to
remain within K, together with normality condition (b) ensures
that there persistently is the chance not only to attain a winning
configuration but also that this status is known by observation.

We provide some technical properties of the class MN(L, T').

Proposition 7. Given E C L C X and the controllability prefix
T of E w.rt. L, consider MN(L, T') as defined by (15) and the
supremum M :=sup MN(L, T') := U{K| K € MN(L, T') }. Then

() T € MN(L,T),

(i) M € MN(L,T), and

(iii) (Vse MAreX")[sprer C M, st € L], and
(iv) M and L are non-conflicting.

Proof (outline). Ad (i). For (a), pick s € T and refer to
Proposition 2, part (i), to obtain s € pre K]. Then, extend s by ¢
such that sz € KT and refer to Proposition 3 to obtain s pret C T.
Regarding (b), we refer to Proposition 2, part (iii). Ad (ii). It
is well known that normality is retained under arbitrary union.
This is also readily verified for the condition in part (a) of (15).
Ad (iii). Pick any s € M. By (ii) we have M € MN(L,T) and
can therefore extend s by 7 such that st € T and spret C M.
By Proposition 2, part (i), we can further extend by u such
that stu € K], C L. Referring to Proposition 3, this implies
stpreu € T and, by (i), stpreu € T C M. Ad (iv). Pick
s € (preL) N (pre M), and extend s by v such that sv € M.
Refer to (iii) to obtain 7 such that svpret C M and svt e L. O

Referring to T € M implied by (i) and (ii) above, we propose
M :=supMN(L, T) (16)
as an optimistic variant of the controllability prefix 7' and ask
for the controller to maintain containment in pre M whenever
possible. This is expressed by the following construction of the
relaxed upper bound E’.
N:={s|(Vr, teX, cgeX)
[s=rot,reM,rc¢M = oceZ,.l}, 17
E':=EU (NNL). (18)
In other words: the closed-loop behaviour may only sacrifice
the persistent chance to attain a winning configuration if this
can not be prevented by control. As a preliminary observation,

the following proposition establishes relevant closed-loop prop-
erties for the overall relaxation N.

Proposition 8. If € € M then N is closed, L and N are non-
conflicting, and

NNLeCNF(L,NNL). (19)
Proof (outline). The claim can be proved by verifying the
individual properties in a specific order. (1) By inspection of
the respective definition, N is seen to be closed and, thus,
N N L is relatively closed w.r.t. L. (2) Non-conflictingness can
be established by picking an arbitrary s € (pre L) N (pre N)
and considering distinct cases. All cases can be dealt with
elementary, except when s ¢ M and any extension v with svL
passes through M. Here, Proposition 7, part (iii), can be applied.
For (3) and (4), where one needs to prove controllability and
prefix-normality, respectively, non-conflictingness (2) can be
conveniently used. O

The main result from this section is an immediate consequence
of the above proposition.

Theorem 9. Given a control problem parameterised by A C
E C L C ¥, consider the relaxed upper bound E’ in
Egs. (17) and (18), referring to the controllability prefix 7.
Write K’ :=sup CNF(L, E’) for the supremal closed-loop be-
haviour implied by E’. Then,

ecpreACM (20)
implies that pre A C pre K’. If, in addition, A is relatively closed
w.r.t. L, then

ACK CE'. 2D

Proof (outline). From Proposition 8 one can derive that N N
L C supCNF(L, E") = K’ and, (pre N) N (pre L) C pre K'. With
€ € M we have M C N and thus obtain pre A C pre M C pre K'.
Intersecting both sides with L establishes the claim. O

Note that the requirement of A being relatively closed w.r.t. L
can always be satisfied by substituting A by its infimal relatively
closed superset. This is not restrictive, since any closed-loop
behaviour is relatively closed.

5. EXAMPLE (CNT.)

Recall from Section 2 that the supremal closed-loop behaviour
K[ obtained by applying the nominal upper-bound specification
E; to the fault-accommodating plant L; was an unacceptably
small subset of the supremal closed-loop behaviour KT obtained
for the nominal plant L. In particular, no high-level command
A is ever accepted by K]. We are now in the position to
formally identify problematic configurations by inspecting the
controllability prefix T; of E; w.r.t. L;; see Fig. 6.

Fig. 6. T} for plant L; and original upper bound E;

The state set {T1, T2, ..., T6} corresponds to the closed-loop
behaviour KIT . Note that each of the latter states is marked and,
hence, corresponds to strings within 75 ; i.e., the supervisor does
not need to risk to become unable to enforce E;. However,
when in state T2 or T3, there is the option to optimistically
enable additional events at the price to leave the guaranteed
safe region. Considering the particular semantics of the fault
event f, states T2 and T3 differ. If A becomes enabled while the
plant is in state T2, the closed loop can still comply with E,
provided that the fault does not occur before p, i.e., provided
that the wear-out does not show while the present workpiece
is being processed. In contrast, when B becomes enabled while
the plant is in state T3, the closed-loop can only comply with
E; if the fault actually occurs. However, for practical reasons, a
supervisor should not operate the plant such that the occurrence
of the fault is required to satisfy liveness properties. Moor



(2016) therefore proposes to intersect CNF(L;, Ey) with the
class

FF(Ly):={K; CL;|(¥sepreK; At T)[ste K; 1}, (22)
for controller synthesis. In particular, the cited literature verifies
that the class FF(-) is closed under arbitrary union. For the

example at hand, we pragmatically propose to restrict 7; by
T{ :=sup FF(T}); see Fig. 7.

Fig. 7. T{ := FF(T}) for plant L and original upper bound E¢

To this end, we denote Mj:=sup MN(L;, T{) and relax the
nominal specification by E':=E; U (N; N L;), referring to
Eq. (17) and substituting M by M;. Note that, by monotonicity,
we have M; C sup MN(L¢, 7). The resulting supremal closed-
loop behaviour for the present input data is given in Fig. 8.

Fig. 8. closed-loop behaviour for relaxed upper bound E’

As a further refinement, we propose to adapt N; in order to
pass on when it is known by observation that compliance with
the nominal specification can no longer be achieved. For a
distinguished external event F ¢ ¢, T := Z; U{F}, and with the
low-level alphabet Z;, :={g, p, 9, 1, f, a, b, x} let
N/ :={s|(VrteZy, o €Xp)[s=rot, re M}, ro ¢ M;

= oeX.andteX FZf]}. (23)
Proceeding as above, we end up with the same closed loop as
is in Fig. 8, expect that when leaving state F1 by event b, the
indicator event F is issued before entering state F2, i.e., there is
one extra state “between” F1 and F2). Projecting to the external
alphabet Zy; :={A, B, X, F}, the external closed-loop behaviour
turns out as given in Fig. 9.

A B
F A
OME O O Sk
X
Fig. 9. external behaviour L}’ obtained with relaxation N{’

CONCLUSION

Referring to a plant and an upper-bound specification, the con-
trollability prefix is defined as the set of words from which
a supervisor can take over the plant to enforce the specifica-
tion. This concept is well established for the supervision of w-
languages and we have elaborated a variation to address the

supervision of s-languages under partial observation. Our study
establishes algebraic properties of the controllability prefix that
can be used to systematically relax a given upper-bound spec-
ification by allowing the supervisor to take the risk in failing
on the upper bound while there is still the chance to win, but to
do so only if this is known by observation. We demonstrate by
example how this concept can be used in the context of fault-
tolerant supervisory control, where a core challenge is how
to relax a nominal specification to accommodate for a fault.
Preliminary studies towards a software implementation include
an early prototype to handle the example for the present paper.
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