
Hierarchical Control of Decentralized Discrete Event Systems

Theory and Application

Der Technischen Fakultät der

Universität Erlangen-Nürnberg

zur Erlangung des Grades

DOKTOR-INGENIEUR

vorgelegt von

Klaus Schmidt

Erlangen 2005

Als Dissertation genehmigt von
der Technischen Fakultät der
Universität Erlangen-Nürnberg

Tag der Einreichung: 23. 05. 2005
Tag der Promotion: 11. 07. 2005
Dekan: Prof. Dr. rer. nat. A. Winnacker
Berichterstatter: Prof. Dr.-Ing. T. Moor

Prof. Bruce Krogh

Acknowledgement

At first I would like to thank my thesis advisor Prof. Dr.-Ing.Thomas Moor for his interest in
my work and for his helpful and constructive comments and ideas. Further on I want to highlight
the hospitality of Prof. Bruce Krogh who gave me the opportunity to participate in his research
activites on various topics at the Carnegie Mellon University in Pittsburgh.

I am grateful to Prof. Dr.-Ing. Günter Roppenecker, the chairman of my Ph.D. committee, for
supporting my work at the Lehrstuhl für Regelungstechnik andfor encouraging my studies and
research abroad. Also I want to thank Prof. Dr.-Ing. Christoph Plaum for his participation in the
Ph.D. committee as the external faculty member.

It was very important for my scientific career to work with my colleague Dr. Ing. Johann Reger who
introduced me to the area of discrete event systems. Along the same lines I would like to thank my
former student and colleague Dipl.-Ing. Sebastian Perk forhis collaboration, and my colleagues
Dipl.-Ing. Felix Antritter, Dr.-Ing. Joachim Deutscher and Dipl.-Ing. Gerald Drenckhahn for their
friendship.

In particular I would like to express my gratitude to my family for their constant love, availability
and support, and I would like to thank my parents-in-law for their encouragment and trust. Finally
my love and gratefulness goes to my wife for sharing my academic interests as well as my life and
for her love and care during the final time of my thesis work.

Erlangen, July 2005 Klaus Schmidt

IV

Table of Contents

1 Introduction 1

2 Basics of RW Supervisory Control Theory 9

2.1 Languages .10

2.1.1 General Definitions .. 10

2.1.2 Regular Languages . 14

2.2 Automata . 15

2.3 Supervisory Control in a Language based Framework 20

2.3.1 Basic Definitions . 20

2.3.2 Controllability and Nonblocking Control 23

2.4 Automata Representation in Supervisory Control 27

3 Nonblocking Hierarchical Control 31

3.1 Basic Definitions .. 33

3.2 Hierarchical Consistency 36

3.3 Nonblocking Control .. . 42

3.3.1 Condition on the High-level Closed Loop 43

3.3.2 Structural Condition .. 46

3.4 Hierarchical Control For Finite Automata 48

3.4.1 Natural Projection .. 48

3.4.2 Algorithmic Verification of Marked String Acceptance. 53

3.4.3 Algorithmic Verification of the Locally Nonblocking Condition 56

VI TABLE OF CONTENTS

3.4.4 Algorithmic Verification of Liveness 59

3.4.5 Algorithmic Verification of Marked String Controllability 59

3.4.6 Evaluation of the Hierarchical Approach 63

4 Hierarchical and Decentralized Control 65

4.1 Hierarchical and Decentralized Control Architecture 66

4.2 Hierarchical Consistency 74

4.3 Nonblocking Control .. . 75

4.3.1 Condition on the High-Level Closed Loop Subsystems 75

4.3.2 Structural Condition .. 77

4.4 Automata Implementation for the Decentralized Case 79

4.4.1 Notation . 79

4.4.2 Feasible Projected Decentralized Control Systems 79

4.4.3 Marked String Acceptance and Locally Nonblocking Condition 82

4.4.4 Liveness and Marked String Controllability 82

4.4.5 Supervisor Computation .. 82

5 Manufacturing System Case Study 85

5.1 Manufacturing System Overview 86

5.2 Notation .87

5.3 Supervisor Synthesis for the Distribution System 88

5.3.1 Stack Feeder . 88

5.3.2 Conveyor Belt cb1 . 91

5.3.3 Conveyor Belts cb2 and cb3 . 97

5.3.4 Overall Distribution System 98

5.3.5 Performance Evaluation .. . 101

5.4 Controller Design for the Manufacturing System 102

5.4.1 Production Cell pc1 . 103

5.4.2 exit1 . 107

VII

5.4.3 exit2 . 109

5.4.4 Production Cell pc2 . 110

5.4.5 Interchange System ics .. . 114

5.4.6 Overall Manufacturing System 118

5.5 Summary . 119

6 Conclusions 121

Appendix 123

A Proofs 123

A.1 Projection of a Regular Language 123

A.2 Computation of the Projection 123

A.2.1 Space Complexity . 123

A.2.2 Time Complexity . 125

A.3 Computation of the High-Level Plant 126

A.4 Feasible Projected Decentralized Control Systems 127

A.5 Mutual Controllability 128

B Table of Events 130

VIII TABLE OF CONTENTS

Zusammenfassung

Gegenstand dieser Arbeit ist der hierarchische und dezentrale Steuerungsentwurf für ereignisdis-
krete Systeme (DES). Ereignisdiskrete Systeme besitzen einen diskreten Zustandsraum und auch
die Zeitwerte sind als diskrete Zeitpunkte aufzufassen. Das dynamische Verhalten von DES ist
dabei ereignisgetrieben, das heißt diskrete Zustandsänderungen werden durch das Auftreten asyn-
chroner Ereignisse verursacht.

Mitte der 80er Jahre wurde von P.J. Ramadge und W.M. Wonham eine Steuerungstheorie (RW-
Steuerungstheorie) für ereignisdiskrete Systeme entwickelt. Ereignisdiskrete Systeme werden durch
formale Sprachen über dem Alphabet der Systemereignisse charakterisiert, wobei die Sprache
selbst die Systemtrajektorien beschreibt. Durch Verhindern sogenannter “steuerbarer“ Ereignisse
kann das Systemverhalten eingeschränkt werden, um einem spezifizierten Verhalten zu genügen.

Da ereignisdiskrete Systeme sehr viele Zustände haben können, ist die RW-Steuerungstheorie für
große zusammengesetzte Systeme nicht direkt anwendbar. Aufgrund dessen werden in der Lite-
ratur verschiedene Ansätze — modulare, dezentrale und hierarchische Ansätze — untersucht, um
durch die Ausnutzung der Systemstruktur die theoretischenErgebnisse der RW-Steuerungstheorie
umzusetzen.

Unser Ansatz verbindet dabei dezentrale und hierarchischeVerfahren, um die RW-Steuerungs-
theorie für große ereignisdiskrete Systeme zu erweitern. Es wird ausgenutzt, dass große DES aus
vielen Systemkomponenten zusammengesetzt sind, welche interagieren. Die einzelnen Kompo-
nenten werden lokal gesteuert und dann auf das für die Interaktion relevante Verhalten abstrahiert.
Die abstrahierten dezentralen Systemmodelle werden in einem höheren Level der Hierarchie zu-
sammengesetzt und dort gesteuert. Diese mit geringerem Rechenaufwand ermittelte Steuerung
wird dann in dezentrale Steuerungen im unteren Level der Hierarchie übersetzt. Unser Verfahren
stellt dabei strukturelle Bedingungen an die Komponentenmodelle sowie ihre Abstraktionen. Sind
diese Bedingungen erfüllt, so garantiert unsere Methode hierarchisch konsistentes sowie blockie-
rungsfreies Verhalten des gesteuerten Systems, d.h. im oberen Level entworfene Steuerungen kön-
nen im unteren Level implementiert werden und das gesteuerte System bleibt nicht in einem un-
erwünschten Systemzustand hängen. Außerdem läßt sich unser Ansatz für eine beliebige Anzahl
von hierarchischen Ebenen anwenden.

X ZUSAMMENFASSUNG

Die Funktionsfähigkeit unseres Verfahrens wird anhand eines umfassend ausgearbeiteten Labor-
beispiels mit einer Zustandsanzahl in der Größenordnung von 1024 illustriert. Dabei wird ein Fi-
schertechnik Laborexperiment1 einer Fertigungsanlage modelliert und eine Spezifikation für das
Gesamtmodell in einer 4-Level Hierarchie implementiert.

1Die Fischertechnikanlage befindet sich am Lehrstuhl für Regelungstechnik der Universität Erlangen-Nürnberg.

Chapter 1

Introduction

Various technical systems and processes, such as manufacturing systems, telecommunication net-
works, traffic systems, logistics, to name just a few, can be described as discrete event systems
(DES). These systems exhibit the common characteristic feature that they are discrete in both state
space and in time. The dynamic behavior of a DES is event driven, that is changes of the discrete
system state are triggered by the occurrence of asynchronous events.

In the mid 80s, a framework for the control of DES was established by P.J. Ramadge and W.M.
Wonham. In [RW87b], the concept of a feedback controller is employed to achieve that the system
behaves as specified by the system designer. This feedback controller is denoted supervisor, as it
observes the events occurring in the system and disables events according to its control strategy,
whereby the strategy depends on past event sequences. The feedback loop is shown in Figure 1.1.

events

control action

Plant Supervisor

Figure 1.1: Feedback loop with a DES plant and a supervisor

In the Ramadge/Wonham (RW) framework, DES are formally modeled as recognizers of formal
languages where the alphabet of the language consists of thesystem events. The language itself
describes the set of trajectories of the system. Some of the events (controllable events) can be
directly influenced (disabled) by the supervisor, whereas there is no immediate effect on other
events (uncontrollable events). The task of the supervisoris to disable controllable events such
that a specified system behavior is obtained. In the RW framework, specifications are given as
formal languages and there are algorithms, which compute supervisors that are provably correct.
On the one hand, a supervisor has to be able to fulfill the specification by applying its control

2 CHAPTER 1 — INTRODUCTION

action to the DES. On the other hand, it has to be nonblocking,that is, it must not lead the system
to configurations where no more operation is possible.

In industrial practice, DES are controlled by ProgrammableLogic Controllers (PLC). A PLC re-
ceives output signals from the DES plant and computes the respective input signals in a cyclic
fashion. Informally, the program running on the PLC is nothing but a realization of a supervisor.
In each program cycle, the output signals of the DES (events)are read and a list of instruction is
executed, determining the input signals (enabled events) of the plant for the next cycle.

The main challenge in computing a supervisor in the RW framework is the combinatorial explosion
of the state space for large-scale systems. This is due to thefact that a composite system is based
on the cartesian product of its subsystems. For large-scalesystems, both supervisor computation
and PLC implementation become impractical, which is illustrated with the following example.

Limitations of monolithic supervisory control

An example for a discrete event system is the small production cell with two machines (M1 and
M2) and one automated guided vehicle (AGV) (see [Won04]). The discrete event models are
represented as automata, where nodes (circles) and arrows indicate states and state-transitions,
respectively. The two machines can load parts (M1l andM2l) and unload again (M1u andM2u).
Initially both machines are empty (in state 1). The AGV can accept one part from either machine
(M1u andM2u) and also load the second machine (M2l) or remove parts from the production cell
(out). Automata for the system components and sample PLC code forM1 are shown in Figure
1.2.1

11

2

1

2

3

2

M1l M1uM1u M2lM2l

M2u

M2u
out

AGVM2M1 //*******************
AN "m1unload"//if the machine does not unload
A "m1l" //and the event "m1l" happens
S "m1load" //the machine is loading
//*******************
AN "m1load" //if the machine does not load
A "m1u" //and the event "m1u" happens
S "m1unload"//the machine is unloading

Figure 1.2: Components of the small production cell

As can be seen from Figure 1.2, the AGV receives parts from machine M1 and M2 (via the shared
eventsM1u, M2l and M2u). Thus, its action is synchronized with the other components of the
system, i.e. the eventsM1ul, M2l andM2u have to occur at the same time. Formally, the system
interaction is represented by the synchronous product of the components M1, M2 and AGV, as
depicted in Figure 1.3.

1The PLC code checks which events occur in the system and the corresponding action is written to the system input
(S "m1load" and S "m1unload"). The "A" and "AN" commands stand for "AND" and "AND NOT", respectively.

3

1,1,1 1,1,2 1,2,12,1,2 1,1,32,1,1

2,2,1 2,2,21,2,22,1,3

M1l

M1l

M1l M1l

M1u

M1u

M2l

M2l

M2u

M2u

out

out

Figure 1.3: Synchronized components of the small production cell

Each state in the synchronous product represents the stateswhich the respective component is in.
For example, in state (1,1,2), M1 is in state 1, M2 is in state 1and AGV is in state 2.

The system in Figure 1.3 is blocking. If the state (2,2,2) (shaded in Figure 1.3) is reached, no
further event can occur, that is, the system is stuck. Intuitively, in the blocking state M2 contains a
part and is waiting for the AGV to unload. At the same time M1 has already been unloaded, such
that AGV is full and cannot receive the part from M2. Formally, there are no transitions possible
in the blocking state (2,2,2) and hence it is a "bad" state for the supervisor computation, if it is
specified that the supervised system must not contain any blocking. In this case, the supervisor
must prevent that the states (1,2,2) and (2,2,2) are reached2. Assuming that the event M1u is
controllable, it has to disable this event, if the synchronized production cell is in state (2,2,1). This
shows that a DES supervisor can prevent blocking with its control action. In the RW framework,
such supervisor is computed by efficient algorithms.

The RW framework reaches its computational limit, if systems with many components are con-
sidered. As can be seen for the small example, the number of states of a synchronized system
grows with the product of the number of states of its components. Although it is possible to handle
systems with millions of states, already relatively small manufacturing systems exceed this order
of magnitude by far, which makes the application of the monolithic approach infeasible (for exam-
ple, a composite system with 10 components with 10 states each would have 1010 states). Thus,
the benefit of computing supervisors which guarantee the specified behavior is paid at the price of
dealing with large state spaces.

Yet, experienced programmers manage to write PLC code, and thus implicitly implement DES
supervisors for large-scale systems. With their expert knowledge about the system, they apply a
"divide and conquer" strategy, paying attention to one system component at a time.

We want to formalize the idea of exploiting the system structure for supervisor synthesis. To this
end, we combine decentralized and hierarchical supervisory control approaches.

2From (1,2,2) only the "bad state" (2,2,2) can be reached.

4 CHAPTER 1 — INTRODUCTION

Modular and Decentralized Control

The decentralized control architecture is illustrated in Figure 1.4.

P1

P2

Pn

Plant

S1

S2

Sn

Supervisor

Figure 1.4: Decentralized control of discrete event systems

A first approach to reducing the complexity of supervisor synthesis ismodular controlas elabo-
rated in [RW87a, WR88, RW89]. Monolithic supervisors for different specifications are designed
and implemented together. Although controllability can beverified easily, checking if the modular
supervisors are nonconflicting, that is, if their joint action is nonblocking, is computationally ex-
pensive (see also [RL02]). An improvement of this technique is given in [dQC00, QC00, dQ00],
where the plant is considered as a composite system. Controllability and nonconflicting behavior
only need to be checked for system components with specified behavior. [GM04] elaborates the
modular computation of controllable sublanguages of a specification language using abstractions
of the composite plant, to avoid the composition of the system components.

In contrast to the modular approach,decentralized controlapproaches focus on the computation
of distributed interacting supervisors as investigated in[CDFV88, LW90, BGK+90]. The decen-
tralized supervisors only have partial observations of theplant events, and to guarantee that spec-
ifications can be fulfilled, a property, called co-observability, is needed. There are several ways
how to fuse the control actions of the supervisors, such asconjunctiveor disjunctivearchitectures
[Bar99, YL00, Yoo02, YL02]. Recent work also includes communication between the supervi-
sors. The decentralized approach is formulated in a co-algebra setting in [KvS03]. Extensions
of the method to nondeterministic systems and to concurrentsystems with modular specifications
are given in [KS97] and [JK02, JCK01], respectively. Unfortunately, for composite systems, the
decentralized method still needs the computation of the overall system model. Thus, its computa-
tional effort equals the monolithic approach. Complexity results are provided in [RW95, YL02].

A different view on the decentralized control of concurrent(composite) discrete event systems is
taken in [WH91, LW97, LW02, KvS04]. Purely structural conditions of the subsystems of the
discrete event plant are used, instead of the conditions on the specification with respect to the
system. The overall system does not have to be computed, and thus, after verifying the required
system properties, supervisor synthesis can be performed with a smaller computational effort than
for the monolithic approach. Because of this reason, the ideaof identifying structural system
properties is adopted in our work.

5

Hierarchical Control

The basic idea of hierarchical control is presented in Figure 1.5.

The hierarchical control approach employs system models with different degrees of detail. On the
one hand, hierarchical system models can be constructed "bottom-up", that is, the low-level model
is abstracted to higher levels by aggregation of information. (see [ZW90, Zho92, WW96, Pu00,
dCCK02, HC02, MG02, Led02, MRD03, SRM04, SPM05, SMP05, MS05]. On the other hand,
hierarchies can also be built "top-down" as in [BH93, Wan95, Goh03, Ma04, GM05b, GM05a].
Then, a high-level model (for example an automaton) of the system is generated first, and the struc-
tural components of the high-level model are filled with moredetailed information (for example
states of the high-level automaton represent a whole set of states on the lower level). All these
approaches have in common that supervisors are designed on the high level and then translated to
the low level for implementation.

control action

eventsPlant Supervisor

control action

eventsPlant Supervisor

Figure 1.5: Hierarchical Control of discrete event systems

The development of bottom-up hierarchical control techniques was initiated by the work in [ZW90,
Zho92]. Output control consistencyis used as a structural condition to construct the high-level
model in the RW framework. The low-level system model is aggregated, and the high-level con-
trollability properties are determined based on local low-level behavior. One drawback of the
approach is the fact that marking is not considered and thus low-level supervisors can be blocking.
This problem is solved in [WW96] in an algebraic setting by introducingcontrol structures. Con-
trol structures denote a generalization of the RW frameworkfor representing controllability prop-
erties on the high level.Causal mapsare employed for hierarchical abstraction, and theobserver
property helps guaranteeing nonblocking system behavior.The results in [Pu00] adopt the idea
of control structures and observers to present a theory generalizing the RW framework, combined
with the corresponding algorithms. In addition to that, decentralized systems without any shared
events are investigated.Consistentandreliable abstractions are required for decentralized super-
visor synthesis. The idea of control structures is further elaborated in [dCC02]. On the low level
of the hierarchy, the RW framework is used. On the high level,the concept of control structures,

6 CHAPTER 1 — INTRODUCTION

equipped with a flexible marking function (see also [CTdC01a, CTdC01b]), is employed. Based on
anassume guarantee reasoning, this method is extended to decentralized systems without shared
events in [dCCK02]. The work in [MRD03, MS05] presents a hierarchical design method for
systems with an input/output structure in the behavioral framework, where it is possible to use a
high-level specification as the system abstraction.

The approaches in [TC02, HC02] perform an aggregation (partition) of the state space to get an
abstraction of the low-level system. Elaborating on the connectivity of the high-level states, non-
blocking supervisors are designed.

A method which explicitly uses structural information of the discrete event plant is presented in
[LWL01, LLW01, Led02]. It is based on the definition of interfaces, which indicate how the hier-
archical levels can interact. Both the serial (monolithic) and the parallel (decentralized) cases are
investigated and the computation of nonblocking supervisors is elaborated for large-scale systems.
In this approach, the use of structural information is indispensable for handling large systems.

Opposed to the bottom-up methods, the top-down approaches build the hierarchy starting from the
high-level system model. Unifying the work in [BH93, Wan95, Goh98, Ma99], the technique in
[Ma04] constructs a hierarchy based on state tree structures (STS). Incorporating (AND) and (OR)
superstates, the hierarchical model also accounts for large-scale composite systems. The method
in [GM05b, GM05a] employs a fixed-point computation to compute nonblocking controllers for
hierarchical state machines.

Contribution and Outline of the Thesis

In our work, a bottom-up approach is elaborated for hierarchical control. We use a particular causal
map, thenatural projection, for system abstraction. Different from [ZW90, Zho92, WW96, Pu00,
dCCK02, HC02, MG02], the high-level event set is a subset of the low-level event set, and the
low-level model is projected on the high-level events. Thisabstraction method makes it possible
to carry over the controllability properties of events fromthe low level to the high level. Thus,
the RW framework can also be employed for the high-level model. As a consequence, the method
qualifies for a multi-level hierarchy.

Theconsistent implementationis defined for the low-level realization of high-level supervisors. It
guaranteeshierarchical consistencyof the hierarchical architecture by default, that is the low-level
closed-loop system behaves as expected in the high level. Moreover, the consistent implementa-
tion does not involve an extensive evaluation of controllability results for local behavior like in
[Zho92, Pu00, dCCK02, HC02]. For being able to apply this supervisor implementation for non-
blocking low-level control, structural conditions are required. The abstraction, which is the natural
projection, has to be an observer. In addition to that, we introducemarked string acceptanceas a
relation between the marking on the high level and the low level. Our hierarchical architecture is
nonblocking and hierarchically consistent for systems with the above properties.

7

Our approach is further extended to decentralized systems,for making use of the structure of com-
posite systems. In this setting, we require that all events which are shared by different subsystems
have to be carried over to the high level. This makes it possible first to abstract the decentralized
system components and then to compose them to a high-level composite system with a low com-
putational effort. As the synchronized behavior of the subsystems is captured in the high-level,
the problem of conflicting behavior, which is a main issue in modular approaches, does not occur.
Defining a decentralized version of the consistent implementation and requiring the same system
properties as above, our hierarchical and decentralized multi-level architecture is nonblocking and
hierarchically consistent.

The thesis is organized as follows. In Chapter 2, the basic notation used throughout the thesis is
presented. Different from [ZW90, Zho92, WW96, Pu00, dCCK02, HC02,MG02, Led02, SRM04,
SPM05, SMP05], which are based on a finite automata formulation, our theoretical results are elab-
orated in a language framework as defined in Section 2.3. The equivalent automata representation
is also given at the end of the chapter. For later use in the hierarchical and decentralized frame-
work, our purely hierarchical method is presented in Chapter3. The main theorem of this chapter
establishes nonblocking hierarchical control if the system is locally nonblocking and marked string
accepting. In Chapter 4, we extend the hierarchical architecture to decentralized systems, and we
prove that it is nonblocking and hierarchically consistent. In addition to the theoretical results,
algorithms for both the verification of system properties and supervisor synthesis are developed
along with the respective complexity results. The applicability of the approach to large-scale com-
posite systems is demonstrated with a laboratory case studyin Chapter 5, and the performance of
the method is evaluated.

8 CHAPTER 1 — INTRODUCTION

Chapter 2

Basics of RW Supervisory Control Theory

Discrete event systems are systems which are discrete in both time and state space. Also changes
in the system state occur asynchronously and driven by events rather than by a clock. Examples
for discrete event systems are manufacturing systems, networks, digital circuits, communication
protocols, etc.

A natural framework for describing such systems areformal languages[HU79], where sequences
of events form so-calledstringsand there are distinguished strings — words — which represent
the event sequences accepted by the discrete event system.Regular languagesare of particular
importance as these languages are recognized by finite automata which can model systems with a
finite number of discrete states.

Starting from this, a framework for the control of discrete event systems has been elaborated in
[RW87a]. It is called supervisor control theory and its main goal is to synthesize controllers —
supervisors — which restrict the possible behavior of the system to some desired behavior without
causing blocking, i.e. without the closed loop getting stuck.

It is possible to represent discrete event systems as a set ofregular languages or model them as finite
automata. For sake of clarity, this work provides a clear separation of both concepts. Theoretical
considerations are stated in the regular language framework. As both approaches are equivalent,
the formulation of the theoretical results is also given in the automata framework. The automata
representation is then used for the algorithmic implementation of the theoretical result.

The chapter is organized as follows. Section 2.1 recalls formal language definitions and states
various results on regular languages which will be relevantin this thesis. Automata are introduced
in Section 2.2, and the relation between finite automata and regular languages is established. In
Section 2.3, a language-based framework for the control of discrete event systems is developed.
The computability of the results is outlined by working out an automata representation of the
language-based theoretical results presented before.

10 CHAPTER 2 — BASICS OFRW SUPERVISORYCONTROL THEORY

2.1 Languages

Formal languages are used in different areas of computer science, such as compiler generation,
pattern recognition, search algorithms, parser development, etc. In this thesis, formal languages
represent the behavior of discrete event systems. Section 2.1.1 gives a short review of the basic
notions. Mainly, it refers to the comprehensive introduction to automata and formal languages in
[HU79]. A thorough description of the control theoretic ideas is given in [Won04, CL99]. We also
construct examples for illustrating the theoretical concepts.

2.1.1 General Definitions

Let Σ = {σ1,σ2, . . . ,σm}, m∈N be a finite set of distinct symbols.Σ is denoted analphabetand ar-
bitrary concatenationss= σi1σi2 . . .σik of symbolsσi1,σi2, . . . ,σik ∈ Σ with i1, . . . , ik ∈ {1, . . . ,m},
are calledstrings, wherek ≥ 1 is the length of the strings. The set of all strings with elements
from Σ is written asΣ+ and the empty sequence (sequence with no symbols) isε, whereε 6∈ Σ. ε
is also called theempty string. Together withΣ+, Σ∗ := Σ+∪{ε} is theKleene closureof Σ.

Using the terms from above, the concept of alanguageover an alphabetΣ can be introduced.

Definition 2.1 (Language [HU79])
Let Σ be an alphabet. A languageL overΣ is a setL ⊆ Σ∗. �

Note that both the empty language/0 and the Kleene closureΣ∗ are included in this definition. Also
observe that there is a distinction between/0 (the language with no strings) andε (the string with
no symbols).

As languages are sets, the common set operations such as union, intersection and difference are
applicable. Further important operations are theconcatenation, theprefix-closureand theKleene-
closure([HU79]). Let s andt be two strings withs, t ∈ Σ∗. The concatenation ofs andt is written
st, and it holds thatst∈ Σ∗. The strings is called aprefix, andt is called asuffixof st. A language
which includes all prefixes of its strings is calledprefix-closed. For an arbitrary languageL, the
prefix-closureoperation yields a language which contains all prefixes of strings in L. Theset of
active symbolsΣ(s) describes the set of symbols which can extend the strings∈ L such that the
resulting string is still inL, i.e. Σ(s) := {σ ∈ Σ|sσ ∈ L}1.

The operations defined above for strings are generalized to languages as shown in Definition 2.2.

Definition 2.2 (Language Operations [HU79])
Let L,K ⊆ Σ∗. The following operations on languages are defined:

1Later this set will be referred to as theactive event set

SECTION 2.1 — LANGUAGES 11

(i) the concatenationLK of L andK: LK := {s∈ Σ∗|s= uvwith u∈ L andv∈ K}.

(ii) the prefix-closureL of L: L := {s∈ Σ∗|∃u∈ Σ∗ s.t. su∈ L}.

(iii) the Kleene-closure ofL: L∗ := {ε}∪L∪LL∪LLL · · · .
�

The following example illustrates the concept of formal languages and the operations defined
above.

Example 2.1
Let Σ = {a,b,c} be an alphabet.s= ab andt = a are strings overΣ andst = aba is the concatena-
tion of sandt. The Kleene-closure ofΣ can be represented asΣ∗ = {ε,a,b,c,aa,ab,ac,ba,bb,bc,
ca,cb,cc,aaa, . . .}. An example for a language over the alphabetΣ is L = {ab,aba,abc,abca}

with the words (strings)ab, aba, aca andabca. L is not a prefix-closed language as the prefixa

of ab is not contained inL. The prefix-closure ofL is L = {ε,a,ab,aba,abc,abca}. The concept
of a language is illustrated in Figure 2.1. Strings are represented as lines, and ticks symbolize the
symbols which are concatenated to form a string. Strings arealways read from left to right. The
line enclosing a set of strings represents the corresponding language. �

L L a

a

a

a

a
aa

a

a

a

a
aa

b

b

b

b

b

b

b

b

c

c
c

c

ε

Figure 2.1: Illustration of a formal languageL and the prefix closureL.

Thenatural projectionfrom Σ∗ to Σ∗
0 for two alphabetsΣ andΣ0 with Σ0 ⊆ Σ is defined as follows.

Definition 2.3 (Natural Projection [Won04])
Let Σ0 ⊆ Σ. The natural projectionp0 : Σ∗ → Σ∗

0 is defined recursively.

p0(ε) := ε

p0(σ) :=

{

σ if σ ∈ Σ0

ε else
p0(sσ) := p0(s)p0(σ)

for s∈ Σ∗ andσ ∈ Σ. �

12 CHAPTER 2 — BASICS OFRW SUPERVISORYCONTROL THEORY

This means that the natural projection erases symbols in a string with elements from the larger
symbol setΣ if they do not belong to the smaller symbol setΣ0. Note that the projection operation
is an increasing monotonic function on sets.2 There is also an inverse map corresponding to the
natural projection.

Definition 2.4 (Inverse Projection [Won04])
Let Σ0 ⊆ Σ. The inverse projection(p0)

−1 : Σ∗
0 → 2Σ∗

is

(p0)
−1(t) := {s∈ Σ∗|p0(s) = t}

for t ∈ Σ∗
0. �

The natural projectionp0 and the inverse projection(p0)
−1 can be generalized to languagesL ∈ Σ∗

andL0 ∈ Σ∗
0, respectively, by applying them to all strings of the given language:

p0(L) := {t ∈ Σ∗
0|∃s∈ L s.t. p0(s) = t},

(p0)
−1(L0) := {s∈ Σ∗|∃t ∈ L0 s.t. p0(s) = t}.

Note thatL ⊆ (p0)
−1(p0(L)) and it is often the case thatL ⊂ (p0)

−1(p0(L)). The computation of
the natural projection and its inverse is shown in the next example.

Example 2.2
Let L = {ab,aba,abc,abca} be the language from the previous example. The alphabet isΣ =

{a,b,c}, and the alphabetΣ0 = {a,b} is chosen as output alphabet for the natural projection
p0 : Σ∗ → Σ∗

0. Considering all strings inL, the corresponding projected strings arep0(ab) =

p0(a)p0(b) = ab, p0(aba) = p0(ab)p0(a) = aba, p0(abc) = p0(ab)p0(c) = ab and p0(abca) =

p0(abc)p0(a) = aba. Thus, the projected language isp0(L) = {ab,aba}. The projection is il-
lustrated in Figure 2.2. The convention of Example 2.1 is used except for symbols from the set
Σ0. These symbols are represented by crosses. The dashed linesindicate strings inL which are
projected to the respective string inp0(L).

For describing the inverse projection,(p0)
−1(p0(L)) shall be evaluated. As an example,

(p0)
−1(ab) = {c∗a c∗b c∗} and by analogous computations,(p0)

−1(p0(L)) = {c∗a c∗b c∗,

c∗a c∗b c∗a c∗}. This result indicates that the inverse projection of a projected language indeed
includes the original language. �

2The partial order on the input and output sets is the set inclusion, i.e. ifL1 ⊆ L2 ⊆ Σ∗, thenp0(L1)⊆ p0(L2)⊆ Σ∗
0.

SECTION 2.1 — LANGUAGES 13

L p0(L)

a
aa

a

a

a

a
aa

b

b

b

b

b

b

c

c

Figure 2.2: Projection of languages.

In the next Lemma a useful property of the natural projectionis given. The projection of the
prefix-closure of a language equals the prefix-closure of theprojected language.

Lemma 2.1 (Prefix-Closure of the Natural Projection [dQ00])
Let L ⊆ Σ∗ be a language and letp0 : Σ∗ → Σ∗

0 be the natural projection withΣ0 ⊆ Σ. Then

p0(L) = p0(L). �

An important operation for languages is thesynchronous productwhich can be introduced using
the inverse projection.

Definition 2.5 (Synchronous Product [Won04, CL99])
GivenΣ = Σ1∪Σ2 and the natural projectionsp1 : Σ∗ → Σ∗

1, p2 : Σ∗ → Σ∗
2, the synchronous product

of two languagesL1 ⊆ Σ∗
1 andL2 ⊆ Σ∗

2 is:

L1||L2 := p−1
1 (L1)∩ p−1

2 (L2).

�

The intersection of the languagesp−1
1 (L1) andp−1

2 (L2) in Definition 2.5 ensures that the projection
p1(s) is an element ofL1 and the projectionp2(s) is an element ofL2 for any strings in L1||L2.

The concept of the synchronous product is explained in the subsequent example.

Example 2.3
Let L1 = {ab,aba,abc,abca} andL2 = {ad} with alphabetsΣ1 = {a,b,c} andΣ2 = {a,d}, re-
spectively. Then the overall alphabet isΣ = Σ1 ∪ Σ2 = {a,b,c,d}. Using the natural projec-
tions defined in Definition 2.5 results in(p1)

−1(L1) = {d∗ad∗bd∗,d∗ad∗bd∗ad∗,d∗ad∗bd∗cd∗,

d∗ad∗bd∗cd∗ad∗}, and(p2)
−1(L2) = {{b,c}∗a{b,c}∗d{b,c}∗}. Thus, the synchronous product

of the two languages isL1||L2 = (p1)
−1(L1)∩ (p2)

−1(L2) = {abd,adb,abcd,abdc,adbc}. �

14 CHAPTER 2 — BASICS OFRW SUPERVISORYCONTROL THEORY

2.1.2 Regular Languages

The theory of formal languages distinguishes four classes of languages which are also known as
the Chomsky Hierarchy [HU79]. In our work, the class ofregular languagesis considered in
detail. Regular languages can be represented byregular expressions.

Definition 2.6 (Regular Expression and Regular Language [HU79, CL99])
Let Σ be an alphabet. The regular expressions overΣ and theregular languagesthey describe are
defined recursively.

(i) /0 is a regular expression.

(ii) ε is a regular expression, and it denotes the language{ε}.

(iii) for any σ ∈ Σ, σ is a regular expression, representing the language{σ}.

(iv) If r ands are regular expressions, characterizing the languagesR andS, respectively, then
the operations(r +s), rs andr∗ are regular expressions denoting the languagesR∪S, RSand
R∗.

(v) there are no regular expressions other that those constructed by applying rules (i) to (iv) a
finite number of times.

The regular language represented by a regular expression isthe set of strings which is expressed
by the regular expression. �

In the previous section, different operations on languageswere introduced. The operations which
conserve regularity are enumerated in the following lemma.

Lemma 2.2 (Operations on Regular Languages [HU79])
Let Σ be an alphabet andR andSbe regular languages overΣ. ThenR∪S, R∩S, R∗ andΣ∗−R
are regular languages. �

A proof of this lemma is given in [HU79].

Regular languages play a crucial role in describing the behavior of dynamical systems in this work.
Before relating the concept of regular languages to an automata representation in the next section,
the following lemma states a well-known result on the projection of regular languages [Won97].

Lemma 2.3 (Projection of a Regular Language)
Let L ⊆ Σ∗ be a regular language, and letp0 : Σ∗ → Σ∗

0 with Σ0 ⊆ Σ be the natural projection. Then
p0(L) is regular. �

SECTION 2.2 — AUTOMATA 15

An outline of the proof of this result is provided in AppendixA.

In the following example, the regular languages presented in the previous examples will be gener-
ated by regular expressions.3

Example 2.4
The languageL = {ab,aba,abc,abca} from Example 2.1 is a regular language which can be
expressed by the regular expressionl = ab(ε + a+ c+ ca). As L is regular, its projection on
the symbol set{a,b} according to Example 2.2 must also be regular. The regular expression for
p0(L) = {ab,aba} is lp = ab(ε+a). �

2.2 Automata

In the previous section, regular languages were introducedby using regular expressions. Another
very important tool for representing regular languages arefinite automata. In the sequel, the gen-
eral notion of an automaton is introduced, and the relation between finite automata and regular
languages is established.

Definition 2.7 (Automaton [HU79])
An automatonis a 5-tupleG := (X,Σ,δ,X0,Xm). X is the set of states andΣ is the finite set of
symbols which is also referred to as thealphabet. The transition functionδ : X ×Σ → 2X is a
partial function, i.e. it is only defined for a subset ofΣ in any statex ∈ X. The initial state set
of the automaton isX0 ⊆ X, andXm ⊆ X is the set of marked states, that is a set of distinguished
states4. The automaton is denotedfinite stateif the number of states is finite. If the initial state set
consists of one state, i.e.X0 = x0 and if the transition function is unique, i.e.δ : X×Σ → X, then
the automaton is calleddeterministic. �

The following example illustrates the concept of a finite state automaton.

Example 2.5
Let G = (Σ,X,δ,x0,Xm) be a deterministic finite state automaton. A graphical representation ofG
is shown in Figure 2.3. Nodes in the graph represent states ofthe automaton and arrows between
the states denote transitions between states according to the transition function. The alphabet ofG
is Σ = {a,b,c}, the state set isX = {1,2,3,4,5}, the initial state isx0 = 1 and the marked state set
is Xm = {3,4,5}. The transition functionδ states thatδ(1,a) = 2 andδ(2,b) = 3 for example. �

3Note that there are many ways of representing the same regular expression.
4For example, a marked state can represent the termination ofa task in a discrete event system model.

16 CHAPTER 2 — BASICS OFRW SUPERVISORYCONTROL THEORY

a

a
a

b
c

G

1 2

3

4

5

Figure 2.3: Automaton graph ofG

For convenience,δ(x,σ)! expresses thatδ is defined forσ at statex, and theset of active symbols
is defined asΛ(x) := {σ ∈ Σ|δ(x,σ)!} for statesx∈ X. The transition functionδ can be extended
to a partial function on 2X ×Σ∗. Recursively letδ(X,ε) := X and defineδ(X,sσ) := {x′ ∈ X|x′ ∈
δ(x′′,σ) for x′′ ∈ δ(x,s)}. For deterministic automata, this definition simplifies to apartial function
on X ×Σ∗ with δ(x,ε) = x andδ(x,sσ) = δ(δ(x,s),σ), whenever bothx′ = δ(x,s) andδ(x′,σ)!.
This means that for deterministic automata, a stringswhich is defined in a statex∈X always leads
to a unique successor statex′ = δ(x,s) ∈ X.

The definition of languages of an automaton is based on the directed paths which can be followed
in an automaton.

Definition 2.8 (Generated and Marked Language [Won04])
Let G = (X,Σ,δ,x0,Xm) be an automaton. Thelanguage generatedby G is

L(G) := {s∈ Σ∗|δ(x0,s) is defined for somex0 ∈ X0}.

The language markedby G is

Lm(G) := {s∈ Σ∗|δ(x0,s) ∈ Xm for somex0 ∈ X0}.

�

That is, the generated language includes all sequences of symbols which can be followed in the
automaton starting from an initial state. The marked language contains all sequences of symbols
which lead from an initial state to a marked state. In particular, it is readily observed thatLm(G)⊆

L(G). An automatonG generatesthe languageL(G) andrecognizesthe languageLm(G).

Example 2.6
The marked language of the automatonG in Figure 2.3 isLm(G) = {ab,aba,abc,abca}, and the
prefix-closed language isL(G) = {ε,a,ab,aba,abc,abca}. �

Having defined the language marked by an automaton, it is interesting to ask which type of lan-
guages can be spoken by a finite automaton. To this end, theNerode equivalenceon languages
which defines an equivalence relation on strings is recalled.

SECTION 2.2 — AUTOMATA 17

Definition 2.9 (Nerode Equivalence [Ner58])
The Nerode equivalence relation onΣ∗ with respect toL ⊆ Σ∗ (or modL) is defined as follows.
Fors, t ∈ Σ∗,

s≡L t or s≡ t modL iff ∀u∈ Σ∗ : su∈ L iff tu∈ L.

�

This means that two stringss, t ∈ Σ∗ are in the same equivalence class of the Nerode equivalence
iff they can be continued to a word inL in exactly the same way. The cardinality orindexof the
Nerode equivalence relation is denoted||L||. In case that||L|| < ∞, there is a finite number of
equivalence classes. In this case, the Myhill-Nerode Theorem shows that it is possible to represent
L by afinite automatonwhich recognizesL.

Theorem 2.1 (Myhill-Nerode Theorem [Ner58])
The following statements are equivalent

(i) The setL ∈ Σ∗ is recognized by a finite automaton

(ii) L is the union of some equivalence classes of a right-invariant equivalence relation with finite
index

(iii) Let the equivalence relation≡L be defined as in Definition 2.9. Then≡L is of finite index.
�

Thus, item (i) and item (iii) show that if the Nerode equivalence relation for a languageL yields
a finite set of equivalence classes, thenL can be represented by a finite automaton. In the proof
of Theorem 2.1, [HU79] provides a procedure for constructing such automaton. It is interesting
to note that if the languageL is recognized by a finite automaton, then there exists a minimal
automaton5 recognizingL [HU79].

Theorem 2.2 (Minimal Automaton [HU79])
The minimal automaton recognizingL is unique except for an isomorphism. �

There are algorithms for computing the minimal automaton for a given languageL (see also [HU79,
Hop71]), and the resulting automaton is referred to as thecanonical recognizerof the languageL.
In the canonical recognizer, each state represents an equivalence class of the Nerode equivalence
on Σ∗ w.r.t L.

In addition to relating finite automata to Nerode equivalence classes of languages with finite index,
a very useful property of deterministic finite automata is stated in the following theorem.

5In this context "minimal" means "minimum state".

18 CHAPTER 2 — BASICS OFRW SUPERVISORYCONTROL THEORY

Theorem 2.3 (Finite Automata and Regular Languages [HU79])
If the languageL ∈ Σ∗ is recognized by a finite automaton, thenL is regular. Also ifL is a regular
language, then there exists a finite automaton which recognizesL �

The second statement does not say whether the resulting automaton is deterministic or nonde-
terministic. Yet, the following result states that there isalways a deterministic automaton which
recognizes the language that is marked by a nondeterministic automaton.

Lemma 2.4 (Deterministic Automaton for a Nondeterministic Automaton [HU79])
Let L be a language which is recognized by a nondeterministic finite automatonGnd. Then there
exists a deterministic finite automatonGd which recognizesL, i.e. Lm(Gd) = Lm(Gnd). �

With Lemma 2.4 a useful corollary can be established.

Corollary 2.1 (Regular Languages and Deterministic Finite Automata)
If L∈Σ∗ is a regular language, then there exists a deterministic finite automatonG with Lm(G) = L.

�

Proof: Corollary 2.1 follows with the second statement in Theorem 2.3 and Lemma 2.4. �

Consequently, a regular language can be represented by a deterministic finite automaton. Analo-
gously to Definition 2.5 for languages, there is asynchronous compositionoperation for automata.6

It computes an automaton representing the common behavior of two given automata.7

Definition 2.10 (Synchronous Composition)
The synchronous product of two deterministic automataG1 = (X1,Σ1,δ1,x0,1,Xm,1) and G2 =

(X2,Σ2,δ2,x0,2,Xm,2) is

G1||G2 := (X1×X2,Σ1∪Σ2,δ1||2,(x0,1,x0,2),Xm,1×Xm,2)

with

δ1||2((x1,x2),σ) :=



















(δ1(x1,σ),δ2(x2,σ)) if σ ∈ Λ1(x1)∩Λ2(x2)

(δ1(x1,σ),x2) if σ ∈ Λ1(x1)−Σ2

(x1,δ2(x2,σ)) if σ ∈ Λ2(x2)−Σ1

undefined else

�

6This operation is also referred to as theparallel composition.
7Here, the synchronous product is defined for deterministic automata as a more general definition for nondeter-

ministic automata is not required in this thesis.

SECTION 2.2 — AUTOMATA 19

This means that ashared symbolσ ∈ Σ1 ∩ Σ2 can occur at a state of the composed automaton
G1||G2 only if it is in the set of active symbols of both of the respective states ofG1 and G2

(synchronization), while the rest of the symbols can occur whenever they are generated byG1 or
G2. A state of the resulting automaton is marked only if both respective states ofG1 andG2 are
marked. Also note that not all states in the canonical products X1×X2 andXm,1×Xm,2 need to be
reachable from the initial state.

Definition 2.10 is closely related to Definition 2.5. It is a well known fact from the literature
([Won04, CL99]) that the language generated by the synchronous composition of two automata
L(G1||G2) equals the synchronous product of the generated languagesL(G1)||L(G2).

Lemma 2.5
Let G1 = (X1,Σ1,δ1,x0,1,Xm,1) andG2 = (X2,Σ2,δ2,x0,2,Xm,2) be deterministic automata. Then it
holds that

L(G1)||L(G2) = L(G1||G2) and Lm(G1)||Lm(G2) = Lm(G1||G2).

�

The synchronous composition of automata is explained in thesubsequent example.

,, ,

,

,

,

,

,

a

a

a

a
a

a

a

a

b

b

b

c

c

c

d

d

d

d

1

11

1

2

2

2

2

22

2

3

3

33

3

3

3 44

4 4

4

5

5

G2

G1||G2

G1

Figure 2.4: Synchronous composition ofG1 andG2

Example 2.7
The synchronous composition of the automataG1 andG2, recognizing the languagesL1 = {ab,

aba,abc,abca} andL2 = {ad} in Example 2.3 is computed. Note thatLm(G2) ⊂ L(G2) in this
case, i.e. the generated language contains more strings than the prefix-closure of the marked
language ofG2. The corresponding automata graphs are depicted in Figure 2.4. The alphabet
of G1||G2 is Σ1||2 = {a,b,c,d}. Not all states inX1||2 = X1 × X2 are reachable from the ini-
tial state. Only reachable states are shown in the automatongraph ofG1||G2. Also note that

20 CHAPTER 2 — BASICS OFRW SUPERVISORYCONTROL THEORY

states inG1||G2 are only marked if the corresponding states inG1 and G2 are both marked.
For example, observe that in state(3,2), the state 3 is marked inG1 but 2 is not marked in
G2 and thus(3,2) is not marked inG1||G2. Further on, the language recognized byG1||G2 is
Lm(G1||G2) = {abd,adb,adbc,abdc,abcd}. This is equal to the languageL1||L2 computed in
Example 2.3, which complies with Lemma 2.5. �

This section introduced the notion of automata and related it to the concept of formal languages. It
holds that any regular language can be recognized by a finite automaton and that operations such
as the synchronous composition of languages can be computedby evaluating the synchronous
composition of the corresponding automata.

2.3 Supervisory Control in a Language based Framework

In the previous sections, general definitions of regular languages and finite automata were given.
Now, these notions are used to describe discrete event systems (DES), and in addition to that a
framework for the control of these systems is established. To this end, we present the approach
introduced in [RW87b] in a language framework. The equivalent formulation using finite automata
is given in the next section.

2.3.1 Basic Definitions

In our work, we formally describe discrete systems ascontrol systems. Similar to [Rut99], they
consist of a pair of languages which fulfill certain requirements.

Definition 2.11 (Control System)
Let Σ be a set of symbols, also denotedevents, and letL1,L2 ⊆ Σ∗ be two languages. The tuple
H = (L1,L2) is called a control system (CS) if

(i) L1 andL2 are regular,

(ii) L1 is prefix-closed,

(iii) L2 ⊆ L1,

(iv) Σ = Σuc∪̇Σc, whereΣuc is called the set ofuncontrollable eventsandΣc is the set ofcontrol-
lable events.

�

SECTION 2.3 — SUPERVISORYCONTROL IN A LANGUAGE BASED FRAMEWORK 21

The setΣ contains the events which can occur in a DES. The behavior of the control system is
represented by the sequences of events which can happen. In this regard, the languageL2 describes
the desirable strings of the system (for example strings which indicate the termination of a task).
We refer to these strings asmarked strings. L1 includes all strings which can be generated by
the system (in particular prefixes of strings inL2). In addition to that, the event set is partitioned
into controllable (Σc) and uncontrollable (Σuc) events. Controllable events can be prevented from
occurring (e.g. actuator signals in a manufacturing system), and uncontrollable eventsΣuc cannot
be disabled (e.g. sensor signals).

Considering the languagesL1 andL2, we define a subset relation for control systems. This subset
relation is useful for stating properties of control systems.

Definition 2.12 (Subset Relation for Control Systems)
Let H1 = (L1,1,L1,2) andH2 = (L2,1,L2,2) be control systems over the set of symbolsΣ. H1 ⊆ H2

iff L1,1 ⊆ L2,1 andL1,2 ⊆ L2,2. �

This means a control system is a subset of another control system if its languages are subsets of
the respective languages of the other control system.

Example 2.8 explains the notions defined above.

Example 2.8
Let H = (L1,L2) with L1 = {ε,a,ab,aba,abc,abca} andL2 = {ab,aba,abc,abca}. Also define
the uncontrollable event setΣuc = {a,b}, and the controllable event setΣc = {c}. It is readily
observed thatΣ = Σuc∪Σc, andΣuc∩Σc = /0. As shown in Example 2.4,L1 andL2 are regular.
It also holds thatL1 is prefix-closed andL2 ⊆ L1. Thus, H is a control system. A graphical
representation of the two languages is given in Figure 2.1 with L2 = L andL1 = L. The illustration
of control systems is facilitated (see Figure 2.5). If prefixess′ < s of a strings are contained in
the languageL1, then only the strings is shown. Also, strings in the languageL2 are not depicted
explicitly, but they are marked with circles around ticks. For example, the prefixab of the string
aba is not drawn as a separate string, and the corresponding tick, labeled withb, is marked with a
circle, asab is an element ofL2. �

H

a

a
a

b

c

Figure 2.5: Control systemH

22 CHAPTER 2 — BASICS OFRW SUPERVISORYCONTROL THEORY

The system behavior can be influenced by disabling or enabling controllable events according to
Definition 2.11. Formalizing the idea of imposing control actions on a control system, the partition
of the event set into controllable and uncontrollable events is used to introduce the concept of
control patterns.

Definition 2.13 (Control Pattern and Set of Control Patterns[Won04])
Let Σ = Σc∪̇Σuc be an event set with the controllable eventsΣc and the uncontrollable eventsΣuc.
A control patternis a setγ with Σuc ⊆ γ ⊆ Σ. The set of all control patterns isΓ := {γ|Σuc ⊆ γ ⊆
Σ} ⊆ 2Σ. 8

�

Analogous to [RW87b], we define the concept of a supervisor fora DES, where the events in a
control pattern are regarded as enabled events.9

Definition 2.14 (Supervisor [RW87b])
Let H = (L1,L2) be a control system. Asupervisor Sfor H is a map

S: L1 → Γ,

whereS(s) represents the set of enabled events after the occurrence ofa strings∈ L1. �

stringss∈ L1

control patterns

γ ∈ Γ
H S

Figure 2.6: Feedback loop with the control systemH and the supervisorS

The supervisorS together with the control systemH are used in a feedback loop as depicted in
Figure 2.6. That is, a supervisor observes the events occurring in the systemH, and it can disable
controllable events after any strings∈ L1, depending on the control patternγ ∈ Γ returned after
the current strings∈ L1. It is important to note that the supervisor is not allowed todisable
uncontrollable events according to the definition of the control patterns. A supervisory controller
reduces the behavior of a systemH to a smaller behaviorS/H.10 The languages ofS/H are
constructed iteratively.

82Σ is the power set ofΣ.
9Note that uncontrollable events are always enabled.

10S/H can be read as "ScontrollingH".

SECTION 2.3 — SUPERVISORYCONTROL IN A LANGUAGE BASED FRAMEWORK 23

Definition 2.15 (Closed Loop Languages [RW87b])
Let H be an control system, letS be a supervisor and writeS/H = (Lc

1,L
c
2).

11 The closed loop
languageLc

1 is defined as

ε ∈ Lc
1,

sσ ∈ Lc
1 iff sσ ∈ L1,s∈ Lc

1 and σ ∈ S(s),

and the closed loop languageLc
2 is

Lc
2 := Lc

1∩L2.

�

The next example describes the operation of a supervisor forthe control system in Example 2.8.

Example 2.9
We define a supervisorS for the control systemH in Example 2.8 for stringss∈ L1 as

S(s) :=

{

{a,b} if s= ab

{a,b,c} otherwise.

This meansSdisables the eventc after the occurrence of the stringab. The resulting closed-loop
behavior isS/H = (Lc

1,L
c
2) with Lc

1 = {ε,a,ab,aba}, andLc
2 = {ab,aba}. �

S/H

a

a
a

b

c

Figure 2.7: Supervisor and closed loop language

2.3.2 Controllability and Nonblocking Control

In the previous section, control systems and supervisors were introduced and it was pointed out,
that control actions can be applied, yielding a reduced system behavior. However, the question
how it is possible to control the system such that the closed loop system assumes some specified
behavior remained unanswered. In the supervisory control context, desired system properties are
formulated as regular languages. From thesespecifications, a supervisor which implements the
specified behavior can be computed as shown in the sequel. At firstcontrollability is introduced.

11The superscript "c"means "controlled".

24 CHAPTER 2 — BASICS OFRW SUPERVISORYCONTROL THEORY

Definition 2.16 (Controllability [RW87b])
Let L = L ⊆ Σ∗ be a prefix-closed language, and letΣuc ⊆ Σ be the set of uncontrollable events.
The languageE ⊆ L is said to becontrollablew.r.t. L, and the set of uncontrollable eventsΣuc if

EΣuc∩L ⊆ E.

�

We writeE is controllable w.r.t.L if the set of uncontrollable events is obvious from the context.
The above condition states that if a strings∈ E is extended with an uncontrollable eventσ ∈

Σuc such thatsσ is also inL, thensσ must also be element ofE, i.e. it must not be prevented.
Considering this, it can be shown that ifL = L1 for a control systemH = (L1,L2), then there exists
a supervisorSsuch thatLc

1 = E if E is controllable w.r.t.L1.

Lemma 2.6 (Controllability [RW87b])
Let H = (L1,L2) be a control system and letE ⊆ L1 be a specification language. There exists a
supervisorS: L1 → Γ such thatLc

1 = E for S/H = (Lc
1,L

c
2) iff E is controllable w.r.t.L1. �

A proof for Lemma 2.6 is provided in [CL99]. Precisely, iffE is controllable with respect toL1,
then a supervisorSexists which restricts the control systemH = (L1,L2) such thatLc

1 = E.

In addition to controllability,nonblocking behavioris a further desirable property of a control
system. We say that the control systemH = (L1,L2) is nonblocking if the prefix-closure ofL2

equalsL1.

Definition 2.17 (Nonblocking Control System)
Let H = (L1,L2) be a control system.H is nonblocking if

L2 = L1.

�

This means that every strings generated by the system (s∈ L1) can be extended to a string inL2

(∃u∈ Σ∗ s.t. su∈ L2). Thus, a supervised systemS/H = (Lc
1,L

c
2) is nonblocking ifLc

2 = Lc
1.

Up to now, it has only been considered thatE is a subset of the languageL1 and a controllability
result has been shown for this case. Yet, by controllingH, it might happen that the closed loop
systemS/H = (Lc

1,L
c
2) is blocking, i.e. controlling the system might lead to blocking behavior.

The following theorem states conditions for the case that a specification language is controllable
with respect to the control systemH and at the same time the closed loop system is nonblocking.
It is required thatE ⊆ L2.

SECTION 2.3 — SUPERVISORYCONTROL IN A LANGUAGE BASED FRAMEWORK 25

Theorem 2.4 (Nonblocking Controllability Theorem [RW87b])
Let H = (L1,L2) be a control system and letE ⊆ L2 be a specification language. There exists a
supervisorS: L1 → Γ such thatLc

2 = E andLc
1 = E iff

(i) E is controllable w.r.tL1,

(ii) E = E∩L2. 12

�

A proof is given in [Won04]. Condition (ii) is denoted theL2-closure andE is calledL2-closed if
it fulfills the condition. For convenience, the set ofL2-closed languages is writtenFL2. The above
theorem only applies if the languageE already complies with the properties(i) and(i). Now, the
question is, what can be done if the above properties are not fulfilled.

In case that a specification languageE is not controllable w.r.t a languageL, it is interesting to
investigate controllable sublanguages ofE. At first the set of controllable sublanguages of a given
languageL is defined.

Definition 2.18 (Set of Controllable Sublanguages [WR87])
Let L = L ⊆ Σ∗ be a prefix-closed language andΣuc ⊆ Σ be the set of uncontrollable events. The
setC(L) of controllable languages w.r.t.L andΣuc is

C(L) = {K ⊆ L| KΣuc∩L ⊆ K}.

�

The setC(L) is closed under arbitrary union. Hence, for every specification languageE, there
exists a uniquesupremal controllable sublanguageof E w.r.t L.

Definition 2.19 (Supremal Controllable Sublanguage [WR87])
Let L ⊆ Σ∗ be a prefix-closed language and letE ⊆ L be a specification language. The supremal
controllable sublanguage ofE with respect toL is

κL(E) := ∪{K ∈ C(L) | K ⊆ E}

�

κL(E) is the union of all controllable sublanguages ofL that do not violate the specificationE. It
holds thatκL1(E) is controllable w.r.t.L1 if H = (L1,L2) is a control system andE is a specification
for H. Thus there exists a supervisorSsuch thatLc

1 = κL1(E). As κL1(E) constitutes the union of
all controllable sublanguages ofE w.r.t. L1, S is called amaximally permissivesupervisor.

Assuming that specificationsE are chosen to beL2-closed, it is important to investigate if the
supremal controllable sublanguageκL2(E) is alsoL2-closed.

12An intuitive explanation of this requirement onE is given in section 2.4.

26 CHAPTER 2 — BASICS OFRW SUPERVISORYCONTROL THEORY

Lemma 2.7 (L2-closure of Supremal Controllable Sublanguages [ZC94, CL99])
Let E ∈ FL2. ThenκL2(E) ∈ FL2. �

Lemma 2.7 states that the property ofL2-closure is preserved under the computation of the supre-
mal controllable sublanguage. A proof is given in [ZC94, CL99].

The systems under investigation are control systems with certain properties according to Definition
2.11. A very important property is the regularity of the languages of the control system. The
following interesting result, which is provided by [WR87] states that regularity is preserved if both
the system behavior and the specification are described by regular languages.

Lemma 2.8 (Supremal Controllable Sublanguage for Regular Languages [RW87b])
Let L ⊆ Σ∗ be a prefix-closed language and letE ⊆ L be a specification language, where bothL
andE are regular. ThenκL(E) is regular. �

We use this result to show that the closed loopS/H is again a control system, ifH is a control
system, the specification languageE is regular and the supervisorS implements the supremal
controllable sublanguage ofE w.r.t L1.

Corollary 2.2
Let H = (L1,L2) be an control system and letE ∈ FL2. Then a supervisorSsuch thatLc

1 = κL2(E)

andLc
2 = κL2(E) is maximally permissive and nonblocking (see also [CL99]). If E is regular, then

S/H constitutes a control system. �

Proof: Maximal permissiveness holds as the supremal controllablesublanguageκL2(E) is com-
puted. Nonblocking behavior follows from Theorem 2.4, becauseκL2(E) is controllable and also
L2-closed with Lemma 2.7.S/H is a control system because

(i) Lc
2 is regular because of Lemma 2.8. ThusLc

1 = L2 is also regular.

(ii) Lc
1 = L2 is prefix-closed.

(iii) Lc
2 ⊆ L2 = Lc

1.

(iv) Σ = Σuc∪̇Σc because of the definition ofH.
�

SECTION 2.4 — AUTOMATA REPRESENTATION INSUPERVISORYCONTROL 27

The implementation of a nonblocking supervisor for a given specification is illustrated in the sub-
sequent example.

Example 2.10
Let H be the control system in Example 2.8 (recall thatL1 = {ε,a,ab,aba,abc,abca} andL2 =

{ab,aba,abc,abca}). The desired system behavior is given as a regular languageE = {ab,aba,

abc}.

At first the L2-closure is verified. E ∩ L2 = {ε,a,ab,aba,abc} ∩ {ab,aba,abc,abca} =

{ab,aba,abc} = E.

For checking controllability, the stringabca is investigated. It holds thatabca ∈ EΣuc, andabca ∈
L1, that isabca∈EΣuc∩L1 butabca 6∈E. This meansEΣuc∩L1 6⊆E, and thusE is not controllable
w.r.t. L1 andΣuc. Because of this reason, the supremal controllable sublanguage is determined.
Controllability fails because the specification requires that the eventa has to be disabled after the
string abc. This is not possible, asa is uncontrollable. Thus, the occurrence ofabc must be
prevented by disablingc after the stringab. This is done by the supervisor shown in Example
2.9. The closed loop behaviorS/H is also given in this example and it is readily observed that it
constitutes a nonblocking control system. �

To sum up, discrete event systems are represented by controlsystems in this thesis. Specifications
for these systems are given as languages and it is possible tocompute a supervisor which imple-
ments the supremal controllable sublanguage of a specification. Furthermore, an important special
case is taken into account. If the specification is a regular language, then the closed loop system is
again a control system, i.e. it fulfills all requirements according to Definition 2.11.

2.4 Automata Representation in Supervisory Control

Up to now, discrete event systems have been modeled as control systems, as this type of model is
convenient for theoretical considerations. It is more convenient to represent discrete event systems
as finite automata in regard to applications of the supervisory control theory. We establish the link
between control systems and finite automata, and relate the supervisory control methods elaborated
in the previous section to an automata formalism.

The control system in Definition 2.11 can be represented as a finite automaton.

Lemma 2.9 (Automaton from Control System)
Let H = (L1,L2) be a control system. Then there exists a minimal deterministic finite automaton
G= (Σ,X,δ,x0,Xm) which generatesL1 and which recognizesL2, i.e. L(G) = L1, Lm(G) = L2 and
|X| = ||L1||. �

28 CHAPTER 2 — BASICS OFRW SUPERVISORYCONTROL THEORY

Proof: As L1 and L2 are regular, there existGgen = (Σ,Xgen,δgen,x0,gen,Xm,gen) and Grec =

(Σ,Xrec,δrec,x0,rec,Xm,rec) such thatLm(Ggen) = L(Ggen) = L1 andLm(Grec) = L2 because of Corol-
lary 2.1. Grec is extended to a new automatoñGrec = (Σ, X̃rec, δ̃rec, x̃0,rec, X̃m,rec) with a new state
xd 6∈ X̃m, and the new transition function is defined forx∈ X andσ ∈ Σ as

δ̃rec(x,σ) :=

{

δrec(x,σ) if δrec(x,σ)!
xd otherwise

G̃rec is constructed such thatL(G̃rec) = Σ∗ andLm(G̃rec) = L2. Now we computeG̃ := Ggen||G̃rec.
As Lm(G̃rec) = L2 ⊆ Lm(Ggen) = L1, it holds thatLm(G̃) = L1∩L2 = L2. With L(Ggen) = L1 ⊆

L(G̃rec) = Σ∗ it is true thatL(G̃) = L1∩Σ∗ = L1. Applying a state minimization algorithm ([HU79])
to G̃, the resulting automatonG has a minimal number of states and alsoL(G) = L(G̃) = L1 and
Lm(G) = Lm(G̃) = L2. Because of Theorem 2.2, this automaton is unique and asG generatesL1,
it holds that|X| = ||L1||. �

This means that for any control system, a minimal automaton generating and marking the lan-
guagesL1 and L2, respectively, can be found. In return, given a finite automaton G, HG =

(L(G),Lm(G)) is written for the corresponding control system.

Lemma 2.10 (Control System from Automaton)
Let G = (Σ,X,δ,x0,Xm) be a finite automaton with a partitionΣ = Σc∪̇Σuc of the alphabetΣ into
uncontrollable eventsΣuc and controllable eventsΣc. Then HG := (L(G),Lm(G)) is a control
system. �

Proof: It has to be shown that all conditions in Definition 2.11 are fulfilled.

(i) L(G) andLm(G) are regular because of Theorem 2.3.

(ii) L(G) is prefix-closed because of Definition 2.8

(iii) Lm(G) ⊆ L(G) because of Definition 2.8.

(iv) Σ = Σc∪̇Σuc is given.

ThusHG is a control system. �

The equivalence of control systems and finite automata is illustrated by the next example.

Example 2.11
Consider the control systemH = (L1,L2) from Example 2.8 with the languagesL1 = { ε, a, ab, aba,
abc, abca} and L2 ={ab, aba, abc, abca}. The automatonG in Example 2.5 is the corresponding
automata representation. �

SECTION 2.4 — AUTOMATA REPRESENTATION INSUPERVISORYCONTROL 29

Considering that a control system can be represented as a finite automaton, it is clear that the
supervisor computation and implementation can also be realized in the finite automata framework.
This is useful, as the definitions in section 2.3.1 involve possibly infinite sets (languages), whereas
automata provide a finite representations of regular languages.

A regular language specificationE ⊆ L can always be represented by a finite automaton because
of Theorem 2.3. There is also a finite automata implementation R of a supervisorS, as shown in
the next lemma.13

Lemma 2.11 (Automata Representation of a Supervisor [Won04])
Let H = (L1,L2) be a control system. Also letS : L1 → Γ be a supervisor such thatLc

1 = E and
Lc

2 = E for a regular specification languageE. The automatonR recognizingE and generatingE,
implements the supervisorS, i.e. Lm(R)∩L2 = E andL(R)∩L1 = E. �

The event sets of the automaton realizationG of H andR are bothΣ. This observation together
with Lemma 2.11 and Lemma 2.5 can be used to find out how the supervisor automatonR has to
be interconnected withG to yield the desired behavior.

Corollary 2.3 (Supervisor Implementation [Won04])
Let G be an automata implementation of a control systemH, and letE andR be defined as above.
InterconnectingG andRwith the synchronous composition yields

(i) L(G||R) = E,

(ii) Lm(G||R) = E.
�

Proof: For the synchronous composition ofG and R, observe thatΣ1 = Σ2 = Σ and p1 =

p2 =: p : Σ∗ → Σ∗ is the natural projection. With Lemma 2.5, Definition 2.5 andLemma 2.11, it
holds thatL(G||R) = L(G)||L(R) = (p)−1(L(G))∩ (p)−1(L(R)) = L(G)∩L(R) = E andLm(G) =

Lm(G)||Lm(R) = (p)−1(Lm(G))∩ (p)−1(Lm(R)) = Lm(G)∩Lm(R) = E. �

This means that considering the feedback loop in Figure 2.6,the supervisorS (represented byR)
follows the event sequences generated byG and allows all events which can occur in the respective
state ofR. This can be written asS(s) = Λ(δR(xR,0,s))∪Σuc.14

Example 2.12
As an example, the supervisor computed in Example 2.10 is implemented. Figure 2.8 shows the
resulting finite automaton. It is readily observed that the controllable eventc is disabled in state
2.15

�

13Note that this supervisor implementation is not unique i.e.there are other automata implementing the same
supervisor.

14Recall that uncontrollable events are never disabled.
15Note that the event set ofR is ΣR = {a,b,c}, and thusc is a shared event ofG andR.

30 CHAPTER 2 — BASICS OFRW SUPERVISORYCONTROL THEORY

aa b1 2 3 4

R

Figure 2.8: Automata implementationR of the supervisorS

In addition to realizing a supervisor for a controllable languageE and a control systemH, it is
also possible to compute the supremal controllable sublanguage of a specification language based
on automata representations. Algorithms for this computation are given in [WR87, RK91]. They
initiate with an automata representationG andR of a control systemH and the specificationE ∈

FL2, respectively. Then, the supremal controllable sublanguageκL2(E) is computed by eliminating
states in the synchronous compositionG||R of G andR. For prefix-closed specificationsE = E,
the algorithm is of complexityO(mn) ([RK91]), wherem andn are the number of states ofR and
G, respectively. In case thatE is not prefix-closed, the complexity isO(m2n2) ([WR87]).

Summarizing, in this section a finite automata representation for both a control system and a super-
visor has been found. Hence, it is possible to implement the theoretical results by using a finite au-
tomata representation of control systems and supervisors.There are further control frameworks for
discrete event systems which shall not be considered in thiswork [Pu00, dCCK02, Ma04, ZW01].

Chapter 3

Nonblocking Hierarchical Control

In the previous chapter, it was pointed out that the complexity for supervisor synthesis is poly-
nomial in time (O(n2m2) if an automata implementation of a control system withn states and an
automata implementation of a specification withm states is given). However, this does not imply
that it is always possible to compute a supervisor. This is due to the fact that the number of statesn
of a discrete event systems which is composed of several components grows exponentially with its
number of components. This state explosion is the reason whysupervisory control for large scale
systems fails.

One approach dealing with this problem ishierarchical supervisory control. An abstracted model
(with fewer states) is computed, instead of synthesizing a supervisor for the real system model.
For thishigh-level model, supervisor synthesis is feasible and the resulting supervisor has to be
translated to thelow level. Note that although the hierarchical approach facilitatesthe supervisor
computation on the high level, it is still necessary to compute the overall low-level model.1

Within the framework elaborated in Chapter 2, we develop a control theory for hierarchical discrete
event systems. Figure 3.1 illustrates the architecture underlying this approach.

On the low level, there is a control systemH which describes the detailed behavior of the given
system. The supervisorSlo applies its low-level control action toH. Together,H andSlo form a
low-level closed-loop system, indicated by Conlo (control action from the supervisor) andIn f lo

(feedback information from the control system). Similarly, the high-level closed-loop consists of
an abstracted plant modelHhi and the supervisorShi. It is important to note that the standard
supervisory control framework can also be used on the high-level. The two levels are intercon-
nected via Comhilo and Inflohi. As the control action of the high-level supervisorShi on Ghi is just
virtual, it must be translated to the control action of a low-level supervisorSlo, which directly con-
trols the low-level systemH. This is done by Comhilo. The channel Inflohi provides the necessary
information for the progress of the high-level systemHhi.

1This issue is addressed in the next chapter.

32 CHAPTER 3 — NONBLOCKING HIERARCHICAL CONTROL

From the perspective of the high-level supervisor, the forward path sequence Comhilo, Conlo is usu-
ally designated “command and control”, while the feedback path sequence Inflohi, Infhi is identified
with “report and advise”.

H

HhiShi

Slo

Inf lohi

Infhi

Conhi

Comhilo

Conlo

Inf lo

Figure 3.1: Hierarchical control architecture

The hierarchical method is related to the work in [Pu00, dCCK02, WW96, Won04]. All these
approaches use the above hierarchical architecture, and are based on a low-level automata repre-
sentation of a control system. They introduce a reporter mapfor abstracting the low-level behavior
and represent the high-level model as an automaton. High-level events are generated if particu-
lar states which are labeled with tokens are reached. [Pu00], [Won04] and [WW96] investigate
the "observer" and "weak observer" property for relating the high-level behavior to the low-level
behavior and for implementing high-level supervisors in the low level. Also, controllability of
high-level events in each high-level state is determined byinvestigating the low-level behavior
corresponding to the respective high-level state. In [Pu00, Won04, WW96], high-level states are
marked, if all low-level states, which are reached, when themarked high-level state is entered, are
marked. Different from that, a new high-level control structure accounting for the controllability
and marking properties of local behavior is employed in [dCCK02]. While the method in [Pu00]
is worked out for multi-level hierarchies, the approach in [dCCK02] is formulated for a two-level
hierarchy.

In our work, the computation of the abstracted systemHhi is done by applying the natural pro-
jection of the control systemH on a predefined set of high-level events. This projection is the
operation carried out by the information channel Inflohi. As in [Won04], the observer property is
needed, but a less restrictive high-level marking condition is required. Furthermore, as high-level
events are elements of the low-level event set, the controllability properties are carried over from

SECTION 3.1 — BASIC DEFINITIONS 33

the low level2. Consequently, the Ramadge/Wonham framework is used on both the high and the
low level, and the method is readily extended to a multi-level hierarchy.

The chapter is organized as follows: In Section 3.1, basic definitions for the hierarchical control
framework are given. The notion ofhierarchical consistencyis explained in Section 3.2. Our
method forhierarchically consistentandnonblocking controlof hierarchical systems is established
in Section 3.3. These properties are guaranteed by making use of different conditions on the
structure of hierarchical systems. The chapter concludes with an algorithmic implementation of
the concepts described before in the automata representation.

3.1 Basic Definitions

The information channel Inflohi is realized by a natural projection. Formally, both languages of a
control system are projected to a given event set. The following lemma states that the resulting
languages again form a control system.

Lemma 3.1 (Projected Control System)
Let H = (L1,L2) be a control system and letp0 : Σ∗ → Σ∗

0 be the natural projection whereΣ0 =

Σ0,c∪̇Σ0,uc ⊆ Σ andΣ0,c = p0(Σc) andΣ0,uc = p0(Σuc). Further on, the projection is generalized
to control systems by definingp0

(

(L1,L2)
)

:=
(

p0(L1), p0(L2)
)

. ThenH0 := p0(H) is again a
control system. The tuple(H, p0,H0) is denoted aprojected control system(PCS). �

Proof: It has to be shown that the conditions in Definition 2.11 are fulfilled.

(i) Because of Lemma 2.3, bothp0(L1) andp0(L2) are regular.

(ii) With Lemma 2.1,p0(L1) is prefix-closed.

(iii) p0(L2) ⊆ p0(L1) directly follows from monotony of the projectionp0.

(iv) Σ0 = Σ0,c∪̇Σ0,uc by definition.

Consequently,H0 is a control system. �

2The latter condition may sound very restrictive, but it is tailored for the hierarchical and decentralized approach
presented in the next chapter.

34 CHAPTER 3 — NONBLOCKING HIERARCHICAL CONTROL

Integrating the projected control system, thehierarchical closed-loop systemis the basis for further
considerations. It establishes the abstraction of a low-level control systemH via the natural pro-
jection phi on the high-level eventsΣhi, yielding the high-level control systemHhi. It also includes
the high-level supervisorShi and the low-level supervisorSlo and poses a condition on the relation
betweenShi andSlo.

Definition 3.1 (Hierarchical Closed-Loop System)
Referring to Lemma 3.1, ahierarchical closed-loop system (HCLS) Q= (H, phi,Hhi,Shi,Slo) con-
sists of a projected control systemP = (H, phi,Hhi) equipped with ahigh-level supervisor Shi and
a low-level supervisor Slo, where

(i) Shi : Lhi
1 → Γhi with the high-level control patternsΓhi := {γ|Σhi

uc ⊆ γ ⊆ Σhi}.

(ii) Slo : L1 → Γ.

Slo is calledvalid w.r.t. Shi if phi(Slo/H) ⊆ Shi/Hhi. Q is finite if the languagesLc
1, Lc

2, Lhi,c
1 , Lhi,c

2
are regular withSlo/H =: (Lc

1,L
c
2) andShi/Hhi =: (Lhi,c

1 ,Lhi,c
2).3 �

In the above definition, the choice of the command channel Comhilo is still arbitrary unless validity
is required. If this is the case, the low-level supervisor must guarantee that the abstracted low-level
closed-loop behavior stays inside the high-level closed-loop behavior. This is a desirable property
as the low-level supervisor should be able to realize the control actions requested by the high-level
supervisor.

Starting from these observations, the crucial point is to find a valid low-level supervisor and to
achieve nonblocking behavior of the hierarchical closed-loop system. This requirement is formally
stated in the following definition.

Definition 3.2 (Hierarchical Control Problem)
Given a projected control systemP = (H, phi,Hhi) and a nonblocking high-level supervisorShi,
compute a valid low-level supervisorSlo such that the HCLSQ = (H, phi,Hhi,Shi,Slo) yields a
nonblocking low-level closed-loop systemSlo/H. �

If such low-level implementation of the a high-level supervisor has been found, the question re-
mains, if the corresponding abstracted behaviorphi(Lc

1,L
c
2) is also nonblocking. The positive an-

swer to this question is given in Lemma 3.2.

Lemma 3.2 (Nonblocking HCLS)
Let Q = (H, phi,Hhi,Shi,Slo) be a HCLS with a nonblocking valid low-level supervisorSlo. Then
the abstractionphi(Slo/H) is nonblocking. �

3This definition ofShi/Hhi andSlo/H will be used throughout the thesis.

SECTION 3.1 — BASIC DEFINITIONS 35

Proof: It has to be shown that for any stringshi ∈ phi(Lc
1), there existst ∈ (Σhi)∗ s.t. shit ∈

phi(Lc
2). Let shi ∈ phi(Lc

1). Then, there is a strings∈ Lc
1 s.t. phi(s) = shi. As Slo is nonblocking,

there exists au∈ Σ∗ s.t. su∈ Lc
2. But thenphi(su) ∈ phi(Lc

2) because of Lemma 3.1. �

The above notions are explained in the next example.

Example 3.1
Consider the projected control system(H, phi,Hhi) in Figure 3.2 with the control systemH, the nat-
ural projectionphi : Σ∗→ (Σhi)∗ and the abstracted control systemHhi. The low-level languages are
L1 = αa(ba(dc)∗(γ+dβ)+dγ) andL2 = ε+αaba(dc)∗(ε+ γ+dβ)+αadγ with the low-level al-
phabetΣ = Σuc∪̇Σc = {α,a,d}∪̇{β,γ,b,c}. The high-level alphabet is chosen asΣhi = Σhi

uc∪̇Σhi
c =

{α}∪̇{β,γ}, and the high-level languages areLhi
1 = Lhi

2 = α(β+ γ).

The supervisorShi with

Shi(shi) :=

{

{α,β} for shi = α
{α,β,γ} otherwise

(3.1)

is chosen forshi ∈ Lhi
1 for high-level control, i.e. the eventγ is disabled after the high-level string

α. A valid low-level supervisor forShi is for example

Slo(s) :=







{α,β,a,b,c,d} if s= αad
{α,β,γ,a,c,d} if s= αa
Σ otherwise.

(3.2)

It disables the eventγ andb for the stringsαad andαa, respectively. For the other low-level strings
all events are enabled.

α

α

β

β

β
β

γγ

γ

γ
γ γ

a
a b

c
c

c

d
d

d
d

ε

ε

Hhi

H

Figure 3.2: Hierarchical closed-loop system

36 CHAPTER 3 — NONBLOCKING HIERARCHICAL CONTROL

The resulting closed-loop projected system is(Slo/H, phi,Shi/Hhi) with the low-level closed-loop
languagesLc

1 = αad andLc
2 = ε. The closed-loop languages in the high level areLhi,c

1 = Lhi,c
2 = αβ.

Note thatphi(Lc
1) = α ⊂ Lhi,c

1 andphi(Lc
2) = ε ⊂ Lhi,c

2 , which proves validity ofSlo asphi(Slo/H)⊆

Shi/Hhi. �

The example shows an instance of a valid low-level supervisor Slo for the high-level supervisor
Shi, i.e. the high-level abstraction of the low-level controlled behavior is included in the desired
high-level behaviorShi/Hhi. In the subsequent section, the preferable case ofhierarchical con-
sistencyis addressed, i.e. the abstraction of the low-level closed-loop behavior equals the desired
high-level behavior. It can be proven that the hierarchicalclosed-loop system in Definition 3.1 is
hierarchically consistent for a particularconsistent implementationof the low-level supervisor.

3.2 Hierarchical Consistency

Before elaborating the main results of this section, some basic representations of local behavior of
projected control systems are introduced. Similar concepts are used in [Pu00, dCCK02, Won04].
The set ofentry strings4 contains all low-level strings which are just projected to agiven high-level
string.

Definition 3.3 (Entry Strings [dCCK02])
Let P = (H, phi,Hhi) be a projected system and assumeshi ∈ Lhi

1 . The set of entry strings ofshi is

Len,shi := {s∈ L1|p
hi(s) = shi∧ 6 ∃s′ < s s.t. phi(s′) = shi} ⊆ Σ∗

�

Lhi
1

L1

shi

sen

Figure 3.3: Illustration of entry strings.

4Entry strings also called vocal strings in the literature.

SECTION 3.2 — HIERARCHICAL CONSISTENCY 37

The local behavior after stringss∈ L1 is described next. It represents the behavior which can
occur locally after the observation of a high-level event. For any strings∈ L1, the continuation of
s with stringsu ∈ (Σ−Σhi)∗(Σ∪ ε) in L1 is a prefix-closed language. A second (not necessarily
prefix-closed) language contains local continuations ofs in L2 and also local continuations inL1

terminating with a high-level event.

Definition 3.4 (Local Languages [SMP05])
Let (H, phi,Hhi) be a projected control system, and lets∈ L1 for shi := phi(s) ∈ Lhi

1 . The local
prefix-closed languageLs,1 is

Ls,1 := {u∈ (Σ−Σhi)∗|su∈ L1} ⊆ Σ∗

and the local languageLs,2 is

Ls,2 := {u∈ (Σ−Σhi)∗|su∈ L2} ⊆ Σ∗.

�

Ls,1
Ls,2

σhi
1

σhi
1

σhi
1

σhi
2

σhi
2

σhi
2

σhi
2

shishi

ss

Figure 3.4: Illustration of the local languages.

Ls,1 can be thought of as the local behavior ofH after the strings until a new high-level event
occurs, i.e. until the progress of the system can be observedfrom the high-level. The language
Ls,2 consists of all continuations ofs in Ls,1 which are either marked strings or which can just be
observed in the high-level.5

Combining the two languages defined above, it turns out that the tuple(Ls,1,Ls,2) is a control
system. As pointed out above, it represents the local behavior which is possible after the occurrence
of the strings. We show this result in the following lemma.

5Ls,2 ⊆ Ls,1 is shown below.

38 CHAPTER 3 — NONBLOCKING HIERARCHICAL CONTROL

Lemma 3.3 (Local Control System)
Let P = (H, phi,Hhi) be a projected control system, and lets∈ L1 for shi := phi(s) ∈ Lhi

1 . Also let
Ls,1 andLs,2 be defined as in Definition 3.4. ThenHs := (Ls,1,Ls,2) forms a control system. �

Proof: The properties required in Definition 2.11 have to be verified.

(i) s(Σ−Σhi)∗ is a regular set because of Definition 2.6 and 3.4. AlsoL1 andL2 are chosen to be
regular. Considering Lemma 2.2, the intersectionss(Σ−Σhi)∗∩L1 ands(Σ−Σhi)∗∩L2 are
regular. By Definition 3.4, it holds thats(Σ−Σhi)∗∩L1 = sLs,1 ands(Σ−Σhi)∗∩L2 = sLs,2.
Again, because of Lemma 2.2,sLs,1 andsLs,2 are regular sets and with Definition 2.6,Ls,1

andLs,2 are regular.

(ii) s(Σ−Σhi)∗ andL1 are prefix-closed. Hences(Σ−Σhi)∗∩L1 = sLs,1 is prefix-closed. As a
consequence,Ls,1 is prefix-closed.

(iii) Showing Ls,2 ⊆ Ls,shi is equivalent to showingsLs,2 ⊆ sLs,1. Let s′ ∈ sLs,2. Thens′ ∈ s(Σ−

Σhi)∗∩L2. Hence, asL2 ⊆ L1, it holds thats′ ∈ s(Σ−Σhi)∗∩L2 ⊆ s(Σ−Σhi)∗∩L1 = sLs,1.

(iv) Σ = Σuc∪̇Σc by definition.
�

In the hierarchical control framework, the high-level supervisor is designed for a high-level spec-
ification, and a corresponding low-level supervisor is computed. A change in the control strategy
of the low-level supervisor is only meaningful, if the control action of the high-level supervisor
changes. As entry strings are just projected to high-level strings, we synthesize one local super-
visor for each local behavior which can happen after the respective entry string. We denote these
local supervisorsconsistent implementations.

Definition 3.5 (Consistent Implementation [SMP05])
Given a projected control system(H, phi,Hhi) and a supervisorShi, the consistent implementation
Slo is defined as follows. Fors∈ L1, let shi := phi(s) andsen∈ Len,shi, u∈ (Σ−Σhi)∗ s.t. s= senu.
Then

Slo(s) :=

{

Shi(shi)∪ (Σ−Σhi) if Σhi(shi)∩Shi(shi) 6= /0,

{σ ∈ (Σ−Σhi)|uσ ∈ κLsen,1
(Lsen,2)}∪Σuc else.

(H, phi,Hhi,Shi,Slo) is called a HCLS with a consistent implementation. �

The consistent implementationneeds the computation of a supremal controllable sublanguage if
there are no successor events allowed by the high-level supervisor after a high-level string. This
guarantees that no blocking can occur in the low-level behavior if there are no successor events

SECTION 3.2 — HIERARCHICAL CONSISTENCY 39

after the corresponding high-level string. Otherwise, theconsistent implementation enables all
low-level events and just disables the occurrence of high-level events if necessary.

Taking into account the properties of a hierarchical closed-loop system, it has to be shown that the
supervisor implementation in Definition 3.5 is admissible,i.e. it agrees with Definition 2.14.

Lemma 3.4 (Admissible Supervisor Implementation)
Let (H, phi,Hhi) be a projected control system, andShi be an admissible supervisor with a consis-
tent implementationSlo. ThenSlo is admissible, i.e.(H, phi,Hhi,Shi,Slo) is a HCLS. �

Proof: It must be proven thatΣuc ⊆ Slo(s). Let s∈ L1 andshi := phi(s). Then eitherShi(shi)∩

Σhi(shi) 6= /0 or Shi(shi)∩Σhi(shi) = /0. In the first case,Σhi
uc ⊆ Shi(shi) and(Σuc−Σhi

uc) ⊆ (Σ−Σhi).
Thus,Σuc ⊆ Shi(shi)∪ (Σ−Σhi) = Slo(s). In the second caseΣuc ⊆ Slo(s) by definition.

�

Looking at Definition 3.1, a low-level supervisor is considered to bevalid if the projection of the
low-level closed-loop behavior stays inside the high-level closed-loop behavior, i.e. the system
restriction imposed by the virtual high-level supervisor can be implemented by low-level control.

Yet, this requirement does not guarantee that the controlled low-level behavior is nonempty. A
more restrictive condition,hierarchical consistencyensures nonempty low-level closed-loop be-
havior. It states that the low-level control is such that thebehavior of the abstracted low-level
supervised system equals the behavior of the high-level closed-loop system.

Definition 3.6 (Hierarchical Consistency [ZW90])
Let Q = (H, phi,Hhi,Shi,Slo) be a hierarchical closed-loop system.Q is hierarchically consistent

if phi(Lc
1) = Lhi,c

1 . �

Lhi
1

L1

Figure 3.5: Illustration of hierarchical consistency.

40 CHAPTER 3 — NONBLOCKING HIERARCHICAL CONTROL

The consistent implementation in Definition 3.5 only disables low-level events after a low-level
string, if there is no feasible high-level event after the corresponding high-level string. Because of
this reason, using a consistent implementation for the low-level supervisor is sufficient for hierar-
chical consistency of a hierarchical closed-loop system.

Proposition 3.1 (Hierarchical Consistency)
Let (H, phi,Hhi) be a projected control system, and letShi be a high-level supervisor. IfSlo is the
consistent implementation ofShi, then the HCLS(H, phi,Hhi,Shi,Slo) is hierarchically consistent.

�

Before proving this result, we establish the following technical lemmas.

In Lemma 3.5, we assume that a low-level string in the low-level closed-loop behavior has a local
extension to some high-level event in the uncontrolled system. Then it has the same extension
in the closed-loop system if the high-level event is enabledby the high-level supervisor after the
corresponding high-level string.

Lemma 3.5
Let (H, phi,Hhi,Shi,Slo) be a hierarchical closed-loop system with a consistent implementation.

Assume thatshi ∈ Lhi,c
1 ands∈ Lc

1 with phi(s) = shi. If suσ ∈ L1 for u ∈ (Σ−Σhi)∗, σ ∈ Σhi and
shiσ ∈ Lhi,c

1 , thensuσ ∈ Lc
1. �

Proof: su∈ Lc
1 is proven by induction. We writeu = σ0σ1 . . .σm with σ0 = ε andσi ∈ (Σ−Σhi)

for i = 1, . . . ,m. Thensσ0 = s∈ Lc
1. Now assume thatsσ0 . . .σi−1 ∈ Lc

1 for i ∈ {1, . . . ,m}. From
sσ0 . . .σi−1σi ∈ L1 andσi ∈Slo(sσ0 . . .σi−1) = Shi(shi)∪(Σ−Σhi), observe thatsσ0 . . .σi−1σi ∈ Lc

1.
As this is true for alli = 1, . . . ,m, it holds thatsu∈ Lc

1. But then, alsosuσ ∈ Lc
1 assuσ ∈ L1 and

σ ∈ Slo(su) = Shi(shi)∪ (Σ−Σhi). �

The next lemma shows that any entry string corresponding to ahigh-level stringshi in the closed-
loop behaviorShi/Hhi is an element of the low-level closed-loop behaviorSlo/H.

Lemma 3.6
Let (H, phi,Hhi,Shi,Slo) be a hierarchical closed-loop system with a consistent implementation. If

shi ∈ Lhi,c
1 andsen∈ Len,shi, thensen∈ Lc

1. �

Proof: sen andshi can be written assen= u0σ0u1σ1 . . .umσm andshi = σ0σ1 . . .σm, respectively,
whereui ∈ (Σ−Σhi)∗ andσi ∈ Σhi for i = 1, . . . ,mandu0 = σ0 = ε. It is shown thatsen∈ Lc

1 by in-
duction. It is readily observed thatu0σ0 = ε ∈ Lc

1 andσ0 = ε ∈ Lhi,c
1 . Now letu0σ0u1 . . .ui−1σi−1 ∈

Lc
1. Thenu0σ0u1 . . .ui−1σi−1uiσi ∈ L1 and because of Lemma 3.5,u0σ0 . . .σi−1uiσi ∈ Lc

1. As this
holds for alli = 1, . . . ,m, the result isu0σ0 . . .umσm = sen∈ Lc

1. �

SECTION 3.2 — HIERARCHICAL CONSISTENCY 41

Using the above Lemmas, hierarchical consistency is proven.

Proof: Validity of the supervisorSlo, i.e. phi(Lc
1) ⊆ Lhi,c

1 , is shown by induction. First,ε ∈ Lc
1

follows from the admissibility ofSlo (see also Lemma 3.4). Now lets∈ Lc
1, sσ ∈ Lc

1 for someσ ∈ Σ
andshi := phi(s)∈ Lhi,c

1 . It holds that eitherσ∈ Σhi or σ∈ (Σ−Σhi). In the first case,σ∈Shi(shi) as
σ∈Slo(s) = Shi(shi)∪(Σ−Σhi) andσ 6∈ (Σ−Σhi). In the second case,phi(sσ) = phi(s) = shi ∈ Lhi,c

1 .
For the reverse direction, it has to be proven thatLhi,c

1 ⊆ phi(Lc
1). Assume thatshi ∈ Lhi,c

1 . Then
there exists asen∈ Len,shi asLhi,c

1 ⊆ Lhi
1 = phi(L1). But this meanssen∈ Lc

1 with Lemma 3.6. �

Summing up, the consistent implementation is a straightforward supervisor implementation that
guarantees hierarchical consistency without further requirements on the system behavior. This
means any hierarchical closed-loop system equipped with a consistent implementation is hierar-
chically consistent. However, it need not be the case that the closed-loop low-level system is non-
blocking. It can happen that although the desired high-level behavior can be achieved by low-level
control, there are local paths which lead to deadlock or livelock situations. This is demonstrated in
the following example.

Example 3.2
Let H, Hhi andShi be the control system, abstracted control system and high-level supervisor of
Example 3.1, respectively. The local control system of the high-level stringα with the correspond-
ing entry stringα ∈ Len,α is Hα,α = (Lα,α,Lα,α,{α,β,γ}) with Lα,α = a

(

ba(dc)∗(γ+dβ)+dγ
)

and
Lα,α,{α,β,γ} = a

(

ba(dc)∗(ε+γ+dβ)+dγ
)

. AsShi(α)∩Σhi(α) = {α,β}∩{β,γ} 6= /0, the consistent
implementation for the high-level stringα is

Slo(s) :=

{

{α,β,a,b,c,d} if s∈ α a(ba(dc)∗ +d)

Σ otherwise.
(3.3)

The resulting closed-loop behavior isSlo/H = (Lc
1,L

c
2) with Lc

1 = αa
(

ba(dc)∗dβ+d
)

andLc
2 =

αaba(dc)∗(ε + dβ). It is readily observed that the hierarchical control system is hierarchically
consistent but blocking, asLc

1 6= Lc
2. �

In Example 3.2, nonblocking control fails because of two reasons.

(i) the high level considers the stringα as marked although there are both marked and non
marked corresponding low-level stringsαaba(dc)∗ andαad, respectively.

(ii) the high level assumes that the eventβ can always be generated after the occurrence ofα,
but this is not possible after the low-level stringαad.

42 CHAPTER 3 — NONBLOCKING HIERARCHICAL CONTROL

3.3 Nonblocking Control

The two blocking issues from above are addressed by investigating sufficient conditions for non-
blocking control of hierarchical closed-loop systems. Therefore, two additional conditions —
marked string acceptanceand locally nonblocking projected control systems— are introduced.
Before discussing these properties, the set of exit strings is defined. It contains all strings which
have a high-level successor event.

Definition 3.7 (Exit Strings)
Let P = (H, phi,Hhi) be a projected control system, and assumeshi ∈ Lhi

1 . The set of exit strings of
shi is

Lex,shi := {s∈ L1|p
hi(s) = shi ∧ (∃σhi ∈ Σhi s.t. sσhi ∈ L1)} ⊆ Σ∗.

�

In Example 3.2, one reason why nonblocking control fails is that not all local strings corresponding
to marked high-level strings are also marked. A solution to this problem is the requirement that if
the high-level observes a string inLhi

2 , the low-level also has to pass a string inL2. This means if a
high-level stringshi is contained in the languageLhi

2 , then it must be guaranteed that any low-level
string which is projected toshi and which has a high-level successor event, must have a prefixin
L2 and with the same projectionshi. This property is denotedmarked string acceptance.

Definition 3.8 (Marked String Acceptance)
Let P= (H, phi,Hhi) be a projected control system. The stringshi ∈ Lhi

2 is marked string accepting6

if for all sex ∈ Lex,shi

∃s′ ≤ sex with phi(s′) = shi ands′ ∈ L2.

P is marked string accepting ifshi is marked string accepting for allshi ∈ Lhi
2 . �

Example 3.3
The hierarchical closed-loop system in Example 3.1 is not marked string accepting. For the marked
high-level stringα, the stringαad is an exit string inLex,α but there is no strings′ ∈ L2 s.t.s′ ≤ αad
andphi(s′) = α. �

The second issue in Example 3.2 originates from the construction of the low-level supervisor. It is
based on the assumption that after a low-level string, all high-level events which are feasible in the
corresponding high-level string can be generated.

6Note thatshi ∈ Lhi
1 −Lhi

2 ⇒ (phi)−1(shi)∩L2 = /0.

SECTION 3.3 — NONBLOCKING CONTROL 43

The property for dealing with this issue is equivalent to theobserverproperty in [WW96, Pu00,
Won04]. We state it for the choice of the natural projection as a causal reporter map, where the
high-level events are a subset of the event set of the low-level system. Systems with this property
are denotedlocally nonblocking projected control systemsin the sequel.

Low-level stringss fulfill the following condition if the projected control system is locally non-
blocking: For all high-level events which are feasible after the corresponding high-level string
phi(s), a local path starting fromsmust exist, such that the high-level event is possible.

Definition 3.9 (Locally Nonblocking Projected Control Systems)
Let (H, phi,Hhi) be a projected control system. The stringshi ∈ Lhi

1 is locally nonblocking if for all
s∈ L1 with phi(s) = shi and∀σ ∈ Σhi(shi), ∃uσ ∈ (Σ−Σhi)∗ s.t. suσσ ∈ L1. (H, phi,Hhi) is locally
nonblocking ifshi is locally nonblocking∀shi ∈ Lhi

1 . �

Locally nonblocking projected control systems prove very useful in the decentralized framework
which is addressed in Chapter 4. Yet, there are also interesting results concerning nonblocking
control for the monolithic hierarchical architecture. Twoalternative requirements are discussed
in the subsequent sections that — apart from each other — guarantee hierarchical consistent and
nonblocking behavior of the HCLS. First, a condition for the high-level closed-loop behavior is
investigated. It is required to belive, i.e. any of its strings must have successor events. The second
condition involves the system structure of the projected control system. It deals with low-level
strings corresponding to high-level strings without any successor events in the high-level closed
loop behavior.

3.3.1 Condition on the High-level Closed Loop

A language islive, if any of its strings can be extended by some successor event.

Definition 3.10 (Live Regular Language)
A regular languageL ∈ Σ∗ is called live if∀s∈ L,∃σ ∈ Σ s.t. sσ ∈ L. �

Looking at hierarchical closed-loop systems, the high-level closed-loop language being live means
that there is always a continuation of high-level strings. Together with the locally nonblocking
condition, this means that also low-level strings can always be extended and thus the low level can
never get stuck.

In the following theorem, we consider locally nonblocking and marked string accepting projected
control systems with a consistent implementation. The additional requirement of a live high-
level closed-loop language guarantees that the hierarchical closed-loop system is nonblocking and
hierarchically consistent.

44 CHAPTER 3 — NONBLOCKING HIERARCHICAL CONTROL

Theorem 3.1 (Live Nonblocking Control [SPM05])
Let (H, phi,Hhi,Shi,Slo) be a hierarchical closed-loop system with a consistent implementation.
Also let the projected control system(H, phi,Hhi) be marked string accepting and locally non-
blocking. If the high-level closed-loop languageLhi,c

1 is live, thenSlo solves the hierarchical control
problem in Definition 3.2, and the HCLS is hierarchically consistent. �

The following three technical Lemmas support the proof of Theorem 3.1.

Lemma 3.7 states that if a locally nonblocking projected control system is equipped with a con-
sistent implementation of a nonblocking high-level supervisor, then the resulting projected control
system is again locally nonblocking.

Lemma 3.7
Let (H, phi,Hhi) be a locally nonblocking projected control system, and letShi be a high-level
supervisor. Also letSlo be a consistent implementation ofShi. Then (Slo/H, phi,Shi/Hhi) is a
locally nonblocking projected control system. �

Proof: Let shi ∈ Lhi,c
1 and lets∈ Lc

1 s.t. phi(s) = shi. For proving Lemma 3.7, it has to be shown
that∀σ ∈ Shi(shi)∩Σhi(shi) there existsuσ ∈ (Σ−Σhi)∗ s.t.suσσ ∈ Lc

1. If Shi(shi)∩Σhi(shi) = /0, the
condition is fulfilled automatically. Thusσ ∈ Shi(shi)∩Σhi(shi) 6= /0 is assumed. As(H, phi,Hhi)

is locally nonblocking, there existsuσ ∈ (Σ−Σhi)∗ s.t. suσσ ∈ L1. Then, because of Lemma 3.5,
suσσ ∈ Lc

1. As s andσ were chosen arbitrarily, Lemma 3.7 is true. �

It is also valid that if a high-level string can be extended inthe high-level closed-loop behavior,
then any corresponding low-level string can be extended such that its projection yields the extended
high-level string. This is shown in the subsequent lemma.

Lemma 3.8
Let (H, phi,Hhi,Shi,Slo) be a hierarchical closed-loop system with a locally nonblocking projected
control system(H, phi,Hhi), and letSlo be a consistent implementation. Assumes∈ Lc

1 andshi :=
phi(s) ∈ Lhi,c

1 . If t ∈ (Σhi)∗ s.t. shit ∈ Lhi,c
1 , then there exists au ∈ Σ∗ with phi(u) = t andsu∈

Lc
1∩Len,shit . �

Proof: Let shi,s andt be given as in Lemma 3.8. Definingu0 = σ0 = ε, t can be represented
as t = σ0σ1σ2 · · ·σm with σi ∈ Σhi for i = 1, . . . ,m. First it is shown that there exists a string
u = u0σ0u1σ1 · · ·umσm ∈ Σ∗ with ui ∈ (Σ−Σhi)∗ for i = 1, . . . ,m s.t. su∈ Lc

1 by induction. The
base case is easily verified assu0σ0 = s ∈ Lc

1. For the induction step, letu0σ0u1σ1 · · ·uiσi ∈

Σ∗ s.t. su0σ0u1 · · ·σi ∈ Lc
1 for i ∈ 1, . . . ,m. Then, as(Slo/H, phi,Shi/Hhi) is locally nonblocking

(Definition 3.9 and Lemma 3.7), there existsui+1 ∈ (Σ−Σhi)∗ s.t. su0σ0u1 · · ·σiui+1σi+1 ∈ Lc
1. As

this applies for alli = 0, . . . ,m, it holds thatsu= su0σ0 · · ·umσm ∈ Lc
1 andphi(u) = t. Because of

the construction ofu and with Definition 3.3,su∈ Len,shit ∩Lc
1. � �

SECTION 3.3 — NONBLOCKING CONTROL 45

It is also valid that every entry string in the low-level closed-loop behavior can be extended to a
marked low-level string if the projected control system is marked string accepting and the hierar-
chical closed-loop system has a consistent implementation.

Lemma 3.9
Let (H, phi,Hhi,Shi,Slo) be a hierarchical closed-loop system with a marked string accepting and
locally nonblocking projected control system(H, phi,Hhi) and letSlo be a consistent implemen-
tation. Also letsen ∈ Len,shi ∩ Lc

1 for shi ∈ Lhi,c
2 with Shi(shi)∩ Σhi(shi) 6= /0. Then there exists

u′ ∈ (Σ−Σhi)∗ s.t. senu′ ∈ Lc
2. �

Proof: Let σ ∈ Shi(shi)∩Σhi(shi) 6= /0. Considering that(H, phi,Hhi) is locally nonblocking and
with Lemma 3.5, there existsu ∈ (Σ− Σhi)∗ s.t. senuσ ∈ Lc

1. Then, because of Definition 3.7,
senu∈ Lex,shi. Marked string acceptance states that there existsu′ ≤ u s.t. senu′ ∈ L2. Because of
the consistent implementation,senu′ ∈ Lc

2. �

Now, Theorem 3.1 can be proven.

Proof: Let s∈ Lc
1 andshi := phi(s) ∈ Lhi,c

1 . Then, asLhi,c
1 is live, ∃σ1 ∈ Σhi s.t. shiσ1 ∈ Lhi,c

1 . As
Shi is nonblocking,∃t = σ2 · · ·σm ∈ (Σhi)∗ s.t. shiσ1t ∈ Lhi,c

2 . Considering Lemma 3.8,∃u∈ Σ∗ s.t.
su∈ Lc

1∩Len,shiσ1t . Then, using Lemma 3.9,∃u′ ∈ (Σ−Σhi)∗ s.t. suu′ ∈ Lc
2 and hences∈ Lc

2. �

Recapitulating, three conditions have to be fulfilled. Projected control systems are required to be
marked string accepting and locally nonblocking. Furthermore the high-level closed-loop behav-
ior has to be live. Altogether, these conditions guarantee nonblocking behavior of the hierarchical
closed-loop system, if a particular low-level supervisor implementation — the consistent imple-
mentation — is chosen.

Marked string acceptanceensures that if a marked string is passed in the high-level, then also a
marked low-level string is passed. If the control system islocally nonblocking, then any low-level
string can be extended to generate the high-level events which are feasible after the corresponding
high-level string. Together with theconsistent implementationwhich allows all low-level paths by
default, this condition guarantees that if a high-level event is enabled after some high-level string,
then for any corresponding low-level string, there is an extension containing the high-level event.
Consideringliveness, this means that the closed-loop system will not get stuck, as there are always
enabled high-level events and thus any low-level path can beextended. This already explains why
the hierarchical control system is hierarchically consistent. Combining the last observation with
marked string acceptanceyields nonblocking behavior. It is interesting to note thatthe second part
in the definition of the consistent implementation (Definition 3.5) is never used as the high-level
closed-loop system is live. This observation leads to the following lemma.

46 CHAPTER 3 — NONBLOCKING HIERARCHICAL CONTROL

Lemma 3.10
Let (H, phi,Hhi,Shi,Slo) be a hierarchical closed-loop system with a consistent implementation and
the low-level closed-loop systemSlo/H. Then it holds that

Lc
1 = Lhi,c

1 ||L1.

�

Proof: At first note thatLhi,c
1 ||L1 = Lhi,c||(Σ−Σhi)∗∩L1, asLhi,c ⊆ (Σhi)∗ andL1 ⊆ Σ∗. As Shi is

admissible, it holds thatε∈ Lhi,c. Observing thatε∈ L1, it is also true thatε∈ Lhi,c||(Σ−Σhi)∗∩L1.
Analogously,ε ∈ Lc

1 becauseSlo is an admissible supervisor. Starting from this, Lemma 3.10is
proven by induction. Assumes∈ Lc

1 ands∈ Lhi,c||(Σ−Σhi)∗∩L1.

It is first shown thatLc
1 ⊆ Lhi,c||(Σ−Σhi)∗∩L1. Letσ∈ Σ s.t.sσ∈ Lc

1. Thensσ ∈ L1 andσ∈Slo(s).
If σ∈ Σhi, thenσ∈Shi(shi) because of Definition 3.5 andσ 6∈ (Σ−Σhi). Thussσ∈ Lhi,c

1 ||(Σ−Σhi)∗.
If σ ∈ (Σ−Σhi), thensσ ∈ Lhi,c

1 ||(Σ−Σhi)∗, too. Thussσ ∈ Lhi,c
1 ||(Σ−Σhi)∗∩L1.

For the reverse direction,Lhi,c||(Σ−Σhi)∗∩L1 ⊆ Lc
1 has to be shown. Letσ ∈ Σ s.t.sσ ∈ Lhi,c

1 ||(Σ−

Σhi)∗∩L1. Thensσ ∈ L1 andphi(sσ) ∈ Lhi,c
1 . If σ ∈ Σhi, thenphi(s)σ ∈ Lhi,c

1 and thusσ ∈ Shi(shi).
Because of Definition 3.5,σ ∈ Slo(s) and hencesσ ∈ Lc

1. If σ ∈ (Σ−Σhi), thenσ ∈ Slo(s), too.
Consequentlysσ ∈ Lc

1. �

The above result is of particular interest for implementation purposes. It states that the high-level
closed-loop system can directly be used as the low-level supervisor, i.e. now additional low-level
supervisor has to be computed. This facilitates implementing the supervisor tremendously as will
be shown in Section 3.4.6.

In the above consideration, thelivenesscondition made sure that the control system cannot get
stuck.

Now we consider the case that the high-level closed loop system is not supposed to be live. Then, it
is possible that a marked high-level string cannot be extended any further. According to Definition
3.5, corresponding low-level strings (which need not be marked) also might not have a further
extension. This leads to blocking in the low level. Thus, forhigh-level strings with no successor
events, a controllability computation for the local control system of the respective high-level string
is necessary. The next section addresses this issue, andmarked string controllabilityis introduced
to solve the problem.

3.3.2 Structural Condition

In case a high-level supervisor disables all events after some high-level string, a nonblocking low-
level supervisor must take care of the possible future localbehaviors as no more changes in the
high-level can happen. This is achieved by computing the supremal controllable sublanguage of

SECTION 3.3 — NONBLOCKING CONTROL 47

the second language (L2) of the local control system w.r.t. its first language (L1). A nonblocking
supervisor can only be implemented if this supremal controllable sublanguage is nonempty. This
is guaranteed if themarked string controllabilitycondition is fulfilled.7

Definition 3.11 (Marked String Controllability)
Let (H, phi,Hhi) be a projected control system. Letshi ∈ Lhi

2 with γhi ∈ Γhi s.t. γhi ∩Σhi(shi) = /0.
shi is marked string controllable if for allsen∈ Len,shi, the languageκLsen,1

(Lsen,2) 6= /0. (H, phi,Hhi)

is marked string controllable ifshi is marked string controllable∀shi ∈ Lhi
2 . �

With the above property, it is no longer necessary that the high-level closed-loop behavior must
always be able to generate events. Replacing liveness with marked string controllability, the fol-
lowing theorem provides the same result as Theorem 3.1.

Theorem 3.2 (Nonblocking Hierarchical Control)
Let (H, phi,Hhi,Shi,Slo) be a hierarchical closed-loop system with a marked string accepting,
marked string controllable and locally nonblocking projected control system(H, phi,Hhi). Also
let Shi be a high-level supervisor with a consistent implementation Slo. ThenSlo solves the hierar-
chical control problem in Definition 3.2, and the HCLS is hierarchically consistent. �

The proof is similar to the proof of Theorem 3.1. It also accounts for the case that there are
high-level strings which cannot be extended.

Proof: Hierarchical consistency directly follows from Proposition 3.1.

For proving nonblocking supervision, it has to be shown that∀s∈ Lc
1, ∃u∈ Σ∗ s.t.su∈ Lc

2. Because
of hierarchical consistency,shi := phi(s)∈ Lhi,c

1 . There are two cases. First letShi(shi)∩Σhi(shi) = /0.
Then, writings = senu′ with sen ∈ Len,shi, u′ ∈ (Σ − Σhi)∗ and noting thats∈ Lc

1, it holds that

u′ ∈ κLsen,1
(Lsen,2). Thus, there existsu′′ ∈ (Σ−Σhi)∗ s.t. u = u′u′′ ∈ κLsen,1

(Lsen,2). Because of
the consistent implementation,su∈ Lc

2. Now let Shi(shi)∩Σhi(shi) 6= /0. As Shi is nonblocking,
there existst 6= ε s.t. shit ∈ Lhi,c

2 . Because of Lemma 3.7 and Lemma 3.8, there isu′ ∈ Σ∗ s.t.
su′ ∈ Lc

1∩Len,shit . Then, considering thatshit ∈ Lhi,c
2 andsu′ ∈ Len,shit , there existsu′′ ∈ (Σ−Σhi)∗

s.t. su′u′′ ∈ Lc
2 because of Lemma 3.9. In both cases,u = u′u′′ ∈ Σ∗ s.t. su∈ Lc

2. �

Thus, if liveness of the controlled high-level behavior is not given, marked string controllability
ensures nonblocking behavior of the hierarchical control system.8

In this section, two theorems for nonblocking and hierarchically consistent control were derived.
Nonblocking supervision was established by focusing on twocases. In the first case, the high-level
closed-loop system was required to be live. In the second case, a structural condition for local

7Note that the definition of the consistent implementation already captures this case.
8Hierarchical consistency is already guaranteed by the consistent implementation.

48 CHAPTER 3 — NONBLOCKING HIERARCHICAL CONTROL

behaviors was needed. In the next section the language-based results are worked out in a finite
automaton framework. In this representation, algorithms for checking the above conditions are
elaborated.

3.4 Hierarchical Control For Finite Automata

It has been pointed out how nonblocking hierarchical control for discrete event systems can be
achieved. For this purpose, a language based framework withseveral conditions on control systems
was provided. We rewrite the above results in an automata framework for algorithmic realization of
these concepts. The relevant algorithms for verifying the required conditions and for synthesizing
supervisory controllers are also provided.

We use the following notation for a high-level automatonGhi and a low-level automatonG, for
investigating the computational complexity of the algorithms.

• Ghi: number of states:nhi := |Xhi| and number of events:ehi := |Σhi|.

• G: number of states:n := |X|.

3.4.1 Natural Projection

From Lemma 2.9, it is clear that any projected system(H, phi,Hhi) can be represented by automata
G and Ghi, whereL(G) = L1, Lm(G) = L2, andL(Ghi) = Lhi

1 , Lm(Ghi) = Lhi
2 , respectively. In

addition to that Lemma 2.11 states that the supervisors in a hierarchical closed-loop system can
be implemented as automata, too. If the hierarchical closed-loop system is finite9, then any of the
above automata is finite, and thus a finite representation of the HCLS is given.

Corollary 3.1 (Automata Representation of a Hierarchical Closed Loop System)
Let Q = (H, phi,Hhi,Slo,Shi) be a hierarchical closed-loop system. There exists a finite automata
representation(G,Ghi,R,Rhi), whereG,Ghi,R,Rhi are finite automata, s.t.

(i) H = (L(G),Lm(G)),

(ii) Hhi = (L(Ghi),Lm(Ghi)),

(iii) Slo/H = (L(R),Lm(R)),

(iv) Shi/Hhi = (L(Rhi),Lm(Rhi)).

9Recall that a hierarchical closed-loop system is finite if its languages are regular.

SECTION 3.4 — HIERARCHICAL CONTROL FOR FINITE AUTOMATA 49

�

Proof: Item (i) and (ii) directly follow from Lemma 2.9. Corollary 3.1 states thatSlo/H and
Shi/Hhi are control systems and thus applying Lemma 2.9 proves(iii) and(iv). �

Considering this result raises the question of computing thevarious automata. The automatonG is
the system model, and it is the automaton which is provided bythe system designer or modeler. For
determining the automata representation of the abstractedsystem behaviorGhi, an implementation
of the natural projection is needed.

To this end, a nondeterministic automatonGnd, generating and recognizing the languages of the
projected control system is constructed. This is done by eliminating local paths in the given au-
tomatonG = (Σ,X,δ,x0,Xm).10 Gnd = (Σhi,Xnd,δnd,x0,nd,Xm,nd) has the high-level event setΣhi

as its alphabet and its state setsXnd = X, x0,nd = x0 andXm,nd = Xm are directly adopted fromG.

The transition function ofGnd is given for every statex∈ X as follows. For anyσ ∈ Σhi

δnd(x,σ) :=

{

x̃ if δ(x,uσ) = x̃ for u∈ (Σ−Σhi)∗

not defined else

For constructing a deterministic high-level automaton from Gnd, Lemma 2.4 can be used, and the
corresponding algorithm ([HU79]) can be applied.11 The result of this computation is a deter-
ministic automatonGhi, every state of which corresponds to a set of states inGnd. The function
mapping a high-level state to its corresponding set of states in Gnd is defined asf hilo : Xhi → 2X

with f hilo(xhi) := {x∈ Xnd|δnd(x0,nd,shi) = x} for xhi = δhi(xhi
0 ,shi) ∈ Xhi.12

An algorithmic implementation of the natural projection operation is given in the sequel. The
main function "compute_gnd" gets the low-level automatonG and the high-level alphabetΣhi as
its inputs. In the main loop, the recursive function "hl_reachable" is called. It returns the states
which are reachable via a string including a high-level event from a state inG. Note that in the
theoretical representation, the state set ofGnd equals the state set ofG, i.e. Xnd = X. In the
practical computation, it turns out that there are states (states which are reached by local strings)
in Xnd which are not reachable from the initial state. The algorithm just considers the reachable
states and thusXnd ⊆ X in the resulting automaton.

10A local path is a sequence of low-level events inΣ−Σhi.
11Normally, this is the costly step in the computation. In the worst case, the complexity of the projection is expo-

nential in the number of states of the original automaton. Yet, it will be shown that the complexity is polynomial for
our approach.

12 f hilo is needed later.

50 CHAPTER 3 — NONBLOCKING HIERARCHICAL CONTROL

/* Computation of Gnd: compute_gnd */
compute_gnd(G, Σhi)

/* Initialization of the waiting list */
waiting= {x0}

/* Initialization of Gnd */
Σnd = Σhi, Xnd = {x0}, δnd = n.def.,X0,nd = {x0}, Xm,nd = Xm∩{x0}

/* Loop through all states in the waiting list */
while waiting 6= /0

pick x∈ waiting, set waiting= waiting−{x}.

/* Initialize the state set xdonefor each cycle */
xdone= {x}

/* Call the recursive function hl_reachable */
xnext = x
(xdone,Gnd) = hl_reachable(x,xnext,xdone,Σhi,Gnd),

end while

return(Gnd)

Figure 3.6: Computation of the nondeterministic automatonGnd

Starting from the statex, the recursive function hl_reachable proceeds along localstrings until a
high-level event can occur. To this end, the function loops through all successor events of the
current statexnext and checks if they are high-level events or not. In the first case, the successor
state for the detected high-level event is a high-level successor of the statex. If it is not an element
of Xnd yet, the transition functionδnd of Gnd as well as the state setsXnd andXm,nd are updated and
the new successor state is added to the waiting list. If it is an element ofXnd, just the transition
function is updated. In the second case, the transition to the new state is not seen by the high level
and thus the function "hl_reachable" is evaluated for the newstate.

The recursive function terminates if either a state is reached which has already been investigated
before, i.e. it is contained in thexdone list, or if all transitions have been examined.

As mentioned before, the automatonGnd is nondeterministic. It can be represented by a determin-
istic finite automaton as stated in Lemma 2.4. An algorithm for computing such automatonGhi

is given in [HU79]. In this thesis, the function is called "gnd2ghi". Its output is a deterministic

SECTION 3.4 — HIERARCHICAL CONTROL FOR FINITE AUTOMATA 51

automatonGhi, recognizingLm(Gnd), i.e. Lm(Ghi) = Lm(Gnd).

/* Find all states which are reachable from x via a local path terminated with a high-level event:
hl_reachable */
hl_reachable(x, xnext, xdone, Σhi, Gnd)

/* If xnext was not investigated yet, it is put into the xdone list */
if xnext 6∈ xdone

xdone= xdone∪{xnext}

/* If xnext was already examined, it need not be examined again */
else
return (xdone,Gnd)

/* The current state x is marked if any of the locally reachable states is marked. */
if x 6∈ Xm,nd∧xnext∈ Xm

Xm,nd = Xm,nd∪{x}

/* All transitions in xnext are investigated */
T = transitions(xnext)
while(T 6= /0)

pick t ∈ T, T = T −{t}

/* If t is a high-level event, a new transition from the original state x is added toδnd.
if (t ∈ Σhi)

δnd(x, t) := δ(xnext, t)

If the new state is not an element of Xnd, it is added to Xnd and to the waiting list */
if (δ(xnext, t) 6∈ Xnd)

Xnd = Xnd∪{δ(xnext, t)}
waiting= waiting∪{δ(xnext, t)}

/* If t is a low-level event, the recursive function is called for the new successor state */
else

(xdone,Gnd) = hl_reachable(x,δ(xnext, t),xdone,Σhi,Gnd)

end while

/* Base case of the recursive function: end of the loop is reached */
return (xdone,Gnd)

Figure 3.7: Computation of locally reachable states

52 CHAPTER 3 — NONBLOCKING HIERARCHICAL CONTROL

Combining the functions "compute_gnd" and "gnd2ghi" , it is possible to compute a determin-
istic automaton which recognizes the projected languagephi(Lm(G)). The complete algorithm
"projection" is shown in the next figure.

/* Compute a deterministic automaton Gd recognizing phi(Lm(G): projection */
projection(G, Σhi)

/* Compute the nondeterministic automaton Gnd */
Gnd = compute_gnd(G,Σhi)

/* Compute the deterministic automaton Ghi */
(Ghi, f hilo) = gnd2ghi(Gnd)
return(Ghi)

Figure 3.8: Computation of the projected automatonGhi

The function f hilo is explained in the next section. In the worst case, the number of states of a
canonical recognizer for the natural projection of a language is exponential in the number of states
of the original automaton. Nevertheless, [Won97] providesa more positive result which is adapted
to the framework presented in this chapter.

Theorem 3.3 (Automata Representation of Projected Languages[Won97])
Let (H, phi,Hhi) be a marked string accepting and locally nonblocking projected control system
with the automata representation(G,Ghi). Then,Ghi has an equal or smaller number of states than
G, i.e. |Xhi| ≤ |X|.13

�

This means that for systems considered in this chapter, it isnever the case that the projected au-
tomaton has a larger number of states than the original automaton. In applications, it turns out
that the number of states ofGhi is smaller than the number of states ofG. The proof of Theorem
3.3 is given in Appendix A.2. It is based on the fact that locally nonblocking and marked string
accepting projected control systems obtain the observer property used in the result in [Won97].

For the time complexity of the natural projection, there is asimilar result.

Theorem 3.4 (Time Complexity of the Natural Projection [Won97])
Let (H, phi,Hhi) be a marked string accepting and locally nonblocking projected control system
with the automata representation(G,Ghi). The time complexity of computingGhi is at worst
polynomial in the state size ofG and the number of high-level eventsΣhi. �

13Note that bothG andGhi are canonical recognizers.

SECTION 3.4 — HIERARCHICAL CONTROL FOR FINITE AUTOMATA 53

In [Won97], an algorithm with the complexityO(n7(ehi)2) is developed (n is the number of states
of G andehi is the number of high-level events).

After providing an algorithm for computing the natural projection, it is possible to compute au-
tomata representations of projected control systems. In the next step, the properties established in
Section 3.3 have to be verified. At first, marked string acceptance is inspected.

3.4.2 Algorithmic Verification of Marked String Acceptance

Marked string acceptance can be verified algorithmically using finite automata. Marked string
acceptance fails, if for some marked high-level string, it is possible to find a local path from a
corresponding entry string to an exit string without passing a marked string. For checking this
property, a representation of entry strings in the automataframework ir required. It turns out,
that this representation can be derived by evaluating the states of the automataG andGnd defined
above. It is denoted theset of entry statesin the sequel.

Definition 3.12 (Entry States)
Let G andGhi be given as above. Also assumeshi ∈ L(Ghi) andxhi = δhi(xhi

0 ,shi). The set of entry
statesXen,xhi is

Xen,xhi := {x∈ X|x = δ(x0,sen) for sen∈ Len,shi} ⊆ X.

�

Regarding Definition 3.12, it is interesting to take a closer look at the mapf hilo. It turns out that
the set of statesf hilo(xhi) for some high-level statexhi ∈ Xhi equals the setXen,xhi of entry states of
xhi.

Lemma 3.11 (Entry States)
Let G, Ghi and f hilo be given as above. Also assumeshi ∈ L(Ghi) andxhi = δhi(xhi

0 ,shi). The set of
entry statesXen,xhi of xhi is

Xen,xhi = f hilo(xhi).

�

Proof: Assumexm ∈ Xen,xhi. Then∃sen ∈ Lsen,shi s.t. δ(x0,sen) = xm. sen can be written as
sen= u0σ0 · · ·umσm for u0 = σ0 = ε andui ∈ (Σ−Σhi)∗, σi ∈Σhi for i = 1, . . . ,m. xm∈ δnd(x0,nd,shi)

is shown by induction. It holds thatx0,nd ∈ δnd(x0,nd,σ0) andx0,nd = x0 ∈ δ(x0,σ0). Now assume
thatxi−1 ∈ δnd(x0,nd,σ0 · · ·σi−1) for xi−1 = δ(x0,u0σ0 · · ·ui−1σi−1). Thenxi ∈ δnd(xi−1,σi) for xi =

δ(x0,u0σ0 · · ·uiσi) asui ∈ (Σ−Σhi)∗ andδ(xi−1,uiσi)= xi and consequentlyxi ∈ δnd(x0,nd,σ0 · · ·σi)

with the definition ofGnd. As this is valid for alli = 1, . . . ,m, xm ∈ δnd(x0,nd,shi) follows. Hence
xm ∈ f hilo(xhi).

Now letxm∈ f hilo(xhi). Thenxm∈ δnd(x0,nd,shi) and thus∃s= u0σ0 · · ·umσm as above s.t.δ(x0,s)=

xm. But asphi(s) = shi, it holds thats∈ Len,shi and thusxm ∈ Xen,xhi. �

54 CHAPTER 3 — NONBLOCKING HIERARCHICAL CONTROL

In view of the above lemma, the mapf hilo is directly obtained from the construction of the au-
tomatonGnd. As an effect, the set of entry states for each high-level state can easily be determined.
Knowing that the transition functionδhi of the deterministic automatonGhi is unique, it is readily
observed, that for every string inL(Ghi) there is exactly one statexhi ∈ Xhi. Thus, a finite represen-
tation of the set of entry stringsLen,shi of a high-level stringshi ∈ L(Ghi) is obtained by computing
xhi = δ(xhi

0 ,shi) and determining the set of entry states viaXen,shi = f hilo(xhi).

The subsequent example illustrates the computation of a projected system from an automatonG
and also describes the concept of entry states.

8

9

a

a

b c

d

d
α

α

β

γ

γ

β,γ

1

1 2

2

3

3

4

5

6

7

Ghi

G

Figure 3.9: Projected control system with the low-level automatonG and the high-level automatonGhi

Example 3.4
Let G in Figure 3.9 be the automata representation of the control system in Example 3.1.14 For
computing the abstracted automatonGhi, all local paths have to be filtered out. The resulting high-
level automaton is also depicted in Figure 3.9. All states ofGhi are marked, as there is always
a low-level string inL2 which is projected to the corresponding high-level string,e.g. ε ∈ L2

is projected toε ∈ Lhi
2 and αaba ∈ L2 is projected toα ∈ Lhi

2 . The set of entry states ofG is
highlighted by the shaded nodes. It holds thatXen,1 = {1}, Xen,2 = {2} andXen,3 = {8,9}. �

The marked string controllability condition can be examined, as it is possible to represent entry
strings as a finite set of entry states. It has to be verified forthe automata implementation, that for
every entry state of a marked high-level state, any local path must first reach a marked state before
a high-level event is active. The corresponding algorithm is presented in Figure 3.10. The function
"check_msa"is explained in Figure 3.11.

14Controllable transitions are labeled by a tick and high-level transitions are dashed.

SECTION 3.4 — HIERARCHICAL CONTROL FOR FINITE AUTOMATA 55

/* Verify marked string acceptance: marked_string_acceptance */
marked_string_acceptance(G, Ghi, f hilo)

/* Investigate each marked high-level state */
X̃hi

m = Xhi
m

while X̃hi
m 6= /0

pick xhi ∈ X̃hi
m , setX̃hi

m = X̃hi
m −{xhi}.

/* Compute the set of entry states corresponding to xhi*/
X̃en = f hilo(xhi)

/* Investigate all entry states */
while X̃en 6= /0

pick xen∈ X̃en, setX̃en = X̃en−{xen}.

if !check_msa(xen,Xdone,Σhi,Xm)

return(false)
end if

end while
end while
return(true)

Figure 3.10: Verification of marked string acceptance

The function "check_msa"is a recursive function determiningif the current low-level state is
marked. If not, it is checked if a high-level event is active.If this is the case, marked string
acceptance is violated as there exists a local path from an entry string to a high-level event without
passing a marked state. The algorithmic description of "check_msa"is given in Figure 3.11.

For analyzing the computational complexity of the algorithm in Figure 3.10, the following items
are considered.

(i) loop through all marked high-level statesxhi ∈ Xhi
m . This set is bounded bynhi.

(ii) loop through every entry state corresponding toxhi. This set is bounded byn.

(ii) Perform the function "check_msa"for the entry statex corresponding toxhi. The function is
mainly a reachability computation on states which are locally reachable fromx. This set is
also bounded byn.

Consequently the complexity of the above algorithm isO(nhin2).

56 CHAPTER 3 — NONBLOCKING HIERARCHICAL CONTROL

/* check_msa */
check_msa(x, Xdone, Σhi, Xm)

/* Check if x is marked in the low level */
if x∈ Xm

return(true)

/* Check the successor states and events of x */
else

Σx = Λ(x)
while Σx 6= /0

pick σ ∈ Σx, setΣx = Σx−{σ}

/* if the successor event is a high-level event, marked string acceptance is violated */
if σ ∈ Σhi

return(false)

/* if the state has not been investigated yet */
else ifδ(x,σ) 6∈ Xdone

x′ = δ(x,σ)

Xdone= Xdone∪{x′}
if !check_msa(x′,Σhi,Xdone,Xm)

return(false)
end if

end if
end while

end if

/* marked string acceptance is valid for the current state x */
return(true)

Figure 3.11: Function check_msa

3.4.3 Algorithmic Verification of the Locally Nonblocking Condition

For verifying if a projected system is locally nonblocking,local behaviors starting from entry
strings are examined. It has to be determined if from any state in the local behavior corresponding
to some high-level state and for each high-level event whichis in the active event set of that high-
level state, a local path terminating with the respective high-level event can be found.

For a projected control systemH, phi,Hhi and its automata realizationG,Ghi, the locally nonblock-

SECTION 3.4 — HIERARCHICAL CONTROL FOR FINITE AUTOMATA 57

ing condition can be checked by the algorithm in Figure 3.12.

/* Verify Locally Nonblocking Condition: locally_nonblocking */
locally_nonblocking(G, Ghi, f hilo)

/* Investigate each high-level state */
X̃hi = Xhi

while X̃hi 6= /0

pick xhi ∈ X̃hi, setX̃hi = X̃hi −{xhi}.
/* Compute the set of low-level states corresponding to xhi */
Xlo = reach(xhi)

/* Investigate all low-level states */
while Xlo 6= /0

pick x∈ Xlo, setXlo = Xlo −{x}.

/* Investigate all forward paths (recursive function lnb) */
var = lnb_reachability(x,Λhi(xhi),Σhi

x = /0,xdone= {x})
if !var

print ("The hierarchical control system is not locally nonblocking")
return(false)

end while
end while

return(true)

Figure 3.12: Verification of the local nonblocking condition

For every high-level statexhi ∈ Xhi, the set of corresponding low-level states is computed by a
standard forward reachability computationXlo = reach(xhi). The entry statesf hilo(xhi) of xhi are
used as the seeds for this computation. For any state inXlo it has to be checked if all high-
level eventsΛhi(xhi) can be reached via a local path starting fromx. This is done by using the
function "lnb_reachability", with the argumentsx∈ Xlo (current state),Λhi(xhi) (high-level event
set), Σhi

x (list of reachable high-level events) andXdone (list of states which have already been
investigated). It returns true if all events inΛhi(xhi) can be reached and false otherwise. If none
of these computations returns "false", the projected controlsystem is locally nonblocking. The
function "lnb_reachability" is realized by the following algorithm.

58 CHAPTER 3 — NONBLOCKING HIERARCHICAL CONTROL

/* Compute local reachability for the current low-level state: lnb_reachability */
lnb_reachability(x, Λhi(xhi), Σhi

x , Xdone)

/* Compute and investigate the outgoing events of x */
Σx = Λ(x)

while Σx 6= /0

pick σ ∈ Σx, setΣx = Σx−{σ}.
/* Check if the event is a high-level event */
if σ ∈ Σhi

Σhi
x = Σhi

x ∪σ

/* Check if all high-level events are already reached */
if Σhi

x = Λhi(xhi)

return(true)
end if

/* apply "lnb_reachability"onδ(x,σ) if that state has not been investigated, yet */
else ifδ(x,σ) 6∈ Xdone

x′ = δ(x,σ)

Xdone= Xdone∪{x′}
if lnb_reachability(x′,Λhi(xhi),Σhi

x ,Xdone)

return(true)
end if

end if
end while

/* the locally nonblocking condition is not fulfilled */
return(false)

Figure 3.13: Realization of the function "lnb_reachability"

For determining the computational complexity of the algorithm in Figure 3.12, the following list
provides the necessary information.

(i) Loop through all states inxhi ∈ Xhi. The cardinality of the set is|Xhi| = nhi.

(ii) Investigate all low-level states corresponding toxhi. This set comprises the low-level states
which are locally reachable from the entry states ofxhi. It is bounded by the number of
low-level states|X| = n.

SECTION 3.4 — HIERARCHICAL CONTROL FOR FINITE AUTOMATA 59

(iii) Perform the function "lnb_reachability" for allx corresponding toxhi. The function is a
reachability computation of states which are locally reachable from x. This set is also
bounded byn.

Evaluating the above enumeration, the complexity of the algorithm isO(nhin2). It has to be men-
tioned that the bound on the state sizes of the local automatais very conservative. In practical
applications, the number of states which are locally reachable from some low-level state is consid-
erably smaller thann.

3.4.4 Algorithmic Verification of Liveness

In addition to the system properties verified in Section 3.4.2 and 3.4.3, liveness of the high-level
closed-loop language is needed for nonblocking control according to Theorem 3.1. Every state of
the high-level supervised automaton has to be checked for outgoing events. The system is live if
all these states have successor events, and the complexity for computing this result only depends
on the number of states of the high-level supervised system.This number is bounded bynhimhi,
wheremhi is the number of states for the canonical recognizer of the high-level specification. Thus
the complexity isO(nhimhi).

3.4.5 Algorithmic Verification of Marked String Controllability

In Theorem 3.2 the liveness condition is replaced by marked string controllability. For checking
this property, local control systems as in Section 3.3 are needed. Local control systems were
derived by computing the local behavior after some entry string of a low-level control system.
Analogously,local automataare defined in the automata framework.

Definition 3.13 (Local Automaton)
Let G andGhi be given as above and letxen∈ Xen,xhi be an entry state for somexhi ∈ Xhi. The local
automatonGxen,xhi = (Σxen,Xxen,δxen,x0,xen,Xm,xen) is defined as

• Σxen := Σ,

• Xxen := {x∈ X|∃u∈ (Σ−Σhi)∗ s.t. x = δ(xen,u)},

•

δxen(xen,ε) := xen

δxen(x,σ) :=

{

δ(x,σ) if ∃u′ ∈ (Σ−Σhi)∗ s.t. x = δ(xen,u) andσ ∈ Σ}
not defined otherwise

,

• x0,xen := xen,

60 CHAPTER 3 — NONBLOCKING HIERARCHICAL CONTROL

• Xm,xen := {x∈ Xxen|x∈ Xm}.
�

Local control systems capture the local behavior of a control system after some entry string. Anal-
ogously, local automata represent the local behavior of an automaton after some entry state. We
establish the link between local control systems and local automata in Lemma 3.12, using the ob-
servation that an entry state in an automaton represents a set of entry strings in the corresponding
control system (see Lemma 3.11).

Lemma 3.12 (Automata Realization of a Local Control System)
Let (H, phi,Hhi) be a projected control system with the automata realization(G,Ghi). Also letHsen

be a local control system forsen∈ Len,shi with shi ∈ Lhi
1 . The local subautomatonGxen,xhi for xen :=

δ(x0,sen) is an automata representation ofHsen, i.e. L(Gxen,xhi) = Lsen,1 andLm(Gxen,xhi) = Lsen,2. �

Proof: First it is shown thatL(Gxen,xhi) ⊆ Lsen,1 and Lm(Gxen,xhi) ⊆ Lsen,2. Assume thatu ∈

L(Gxen,xhi). Then, considering Definition 3.13,u ∈ (Σ−Σhi)∗. Also senu ∈ L(G) and because of
Lemma 2.9, withL(G) = L1, it follows thatsenu∈ L1. Observing thatu∈ (Σ−Σhi)∗, Definition
3.4 states thatu∈ Lsen,1.

Now letu∈ Lm(Gxen,xhi). Asδxen(xen,u)∈Xm,xen, then alsoδ(x0,senu)∈Xm by definition ofGxen,xhi.
Then, because of Lemma 2.9,senu∈ L2 and with Definition 3.4u∈ Lsen,2.

For proving the reverse direction it has to be shown thatLsen,1⊆ L(Gxen,xhi) andLsen,2⊆ Lm(Gxen,xhi).
Assume thatu∈ Lsen,1. Thensenu∈ L1∩sen(Σ−Σhi)∗ = L(G)∩sen(Σ−Σhi)∗. As u∈ (Σ−Σhi)∗,
Definition 3.13 states thatδxen(xen,u)! asδ(x0,senu)!. Hence,u∈ L(Gxen,xhi).

For showingu∈ Lsen,2, assume thatsenu∈ L2 for u∈ (Σ−Σhi)∗. Thensenu∈ Lm(G) because of
Lemma 2.9. But thenδxen(xen,u)! and thusu∈ Lm(Gxen,xhi). �

Consequently, it is true that any property which can be established for the local automaton at an
entry statexen is also valid for the local control systems of all corresponding entry stringssen with
δ(x0,sen) = xen.15

With the above result, marked string controllability can bechecked by computing a controllabil-
ity result for the local automata of each marked high-level statexhi with a specification automa-
ton Dxen,xhi which has the marked languageLm(Dxen,xhi) = Lm(Gxen,xhi) and the closed language

L(Dxen,xhi) = Lm(Gxen,xhi). (G,Ghi) is marked string controllable, if the supremal controllable sub-
languageκLm(Gxen,xhi)

(

Lm(Dxen,xhi)
)

is nonempty for the local automata of all marked high-level
states and corresponding entry states.

The number of marked high-level states is bounded bynhi and the number of states of the local au-
tomata is bounded byn. Furthermore, the controllability computation (with complexity O(n2m2))

15In particular, the local control systems of these entry strings are all equivalent.

SECTION 3.4 — HIERARCHICAL CONTROL FOR FINITE AUTOMATA 61

is carried out with a specification automaton with one state,i.e. m= 1. Thus, the complexity of
the algorithm isO(nhin2).

Combining these results, the condition relying on the liveness of the high-level controlled behavior
(Section 3.3.1) can be verified inO(nhin2), and the purely structural condition in Section 3.3.2 can
also be computed in polynomial time withO(nhin2).

The following detailed example illustrates the automata-based concepts explained in this section.

Example 3.5
The automaton modelG used in this example is equivalent to the model in Example 3.4, except
for marking of the states 5 and 9 and the transitiona from state 5 to state 7. Analogously, the
high-level event setΣhi = {α,β,γ} is used andΣuc = {α,a,d} andΣc = {b,c,β,γ}. The high-level
and low-level automata are shown in Figure 3.14.

8

9a

a

a

b c
d

d
α

α

β

γ

γ

β,γ

1

1

2

2

3

3

4

5

6

7

Ghi

G

Figure 3.14: Low-level and high-level automataG andGhi.

For verifying marked string acceptance and the locally nonblocking condition, a closer look at the
local automatonG2,2 is taken in Figure 3.15.16 It is readily observed that from any local state of
G2,2, there is a local path to a state where any of the high-level eventsβ or γ can occur. According
to Definition 3.9, the locally nonblocking condition is fulfilled. Furthermore, all local paths from
the entry state 2 to any of the exit states 5, 6 or 7 pass a markedstate. Hence, with Definition 3.8,
marked string acceptance is also true.

16The evaluation is trivial for the remaining local automata.

62 CHAPTER 3 — NONBLOCKING HIERARCHICAL CONTROL

a

a

a

b c
d

d
2 3

4

5

6

7

G2,2

Figure 3.15: Local automatonG2,2

It is readily observed that the high-level closed-loop system cannot be live as there are no cy-
cles in the automaton graph. Thus, the structural conditionin Theorem 3.2 has to be used.
Checking for marked string controllability involves computing the supremal controllable sublan-
guageκLm(G2,2)

(

Lm(D2,2)
)

with D2,2 as in Figure 3.16, which results inκLm(G2,2)

(

Lm(D2,2)
)

=

aba(dc)∗ + adac(dc)∗ + ad. It turns out, that this language is nonempty and thus the projected
system is marked string controllable, too.

a

a

a

b c
d

d

2 3

4

5

6

7

D2,2

Figure 3.16: Specification automatonD2,2 for marked string controllability in the high-level state 2

Considering the above results, it is possible to design a supervisor for the high-level modelGhi and
translate it to the low level. As a high-level specification,it is desired that the eventγ is disabled
in the high-level state 2, i.e.Shi(2) = {α,β}. The resulting high-level closed-loop systemRhi||Ghi

with the automata realizationRhi of the supervisorShi is depicted in Figure 3.17.

α β
1 2 3

Rhi||Ghi

Figure 3.17: High-level supervised system

SECTION 3.4 — HIERARCHICAL CONTROL FOR FINITE AUTOMATA 63

The supervisor implementing the low-level control is the same supervisor as shown in Equation
3.3. It disables the eventγ in all states corresponding to the high-level state 2. The low-level
closed-loop behavior is shown in Figure 3.18. Note that the corresponding hierarchical closed-
loop system is hierarchically consistent as well as nonblocking.

8

a

a

a

b c
d

d
α β1 2 3

4

5

6

7

Rlo||G

Figure 3.18: Low-level supervised systemRlo||G

�

3.4.6 Evaluation of the Hierarchical Approach

We have shown that it is possible to verify all the conditionsintroduced in Section 3.3, i.e. the lo-
cally nonblocking condition, marked string acceptance, marked string controllability and liveness,
algorithmically. The complete procedure for synthesizinga hierarchical supervisor is presented in
the following list.G is the low-level system model.17

• Compute the projected automatonGhi with Lm(Ghi) = phi(Lm(G)). For the systems under
consideration, this computation can be done in polynomial time O(n7(ehi)2) according to
Section 3.4.1.

• Verify marked string acceptance. The complexity isO(nhin2).

• Check the locally nonblocking condition. This is done with complexityO(nhin2).

• Synthesize the high-level supervisorShi for a high-level specification automatonDhi with
mhi states. The complexity isO((nhi)2(mhi)2).

Using the consistent implementation, nonblocking low-level control is guaranteed if either the
high-level closed-loop system is live or the projected control system is marked string controllable.

17Recall thatn is the number of states ofG, ehi is the number of high-level events,nhi is the number of states ofGhi

andmhi is the number of states of a high-level specification automaton.

64 CHAPTER 3 — NONBLOCKING HIERARCHICAL CONTROL

• Test for liveness. The complexity isO(nhimhi).

• The verification of marked string controllability is done inO(nhin2).

It is obvious that the complexity of the complete procedure is dominated by the natural projection.
Evaluating the complexities of the subtasks, the overall complexity of the hierarchical approach
is O

(

max(n7(ehi)2,(nhi)2(mhi)2)
)

. The limiting factor is clearly the number of states of the low-
level model. As pointed out in the beginning of this chapter,this number can be huge for composed
systems.

However, composed systems have an inherent structure whichis destroyed by the composition to
the overall system. Because of this, it is worthwhile considering decentralized architectures where
the low-level components need not be composed and thus the state explosion in the low-level model
does not occur. The next chapter introduces a hierarchical and decentralized architecture which
both makes use of this structural information and provides amethod for applying the presented
hierarchical control method in a decentralized setting.

Chapter 4

Hierarchical and Decentralized Control

As pointed out in the previous chapter, hierarchical architectures reduce the computational com-
plexity of supervisor synthesis, by only taking into account the relevant behavior of the control
system. The architecture in Chapter 3 guarantees that the automata representation of the high-level
model always has less or equal states than the automata representation of the low-level model. It
is pointed out that in applications, the number of states of the high-level model is always smaller.
However, for computing the high-level model, the projection operation must be carried out for the
low-level control system. To this end, a representation of the complete low-level automaton must
be provided. Especially for composed systems, this automaton can have a very large number of
states.

Addressing these issues, we provide an approach for the hierarchical and decentralized control
of discrete event systems in this chapter. In particular, composed systems are investigated. They
consist of several smaller components which have their own functionality. These smaller compo-
nents interact to make up the behavior of the overall system.An instance of a composed system is
presented in Chapter 5. It is important to be aware of the fact that the state sizes of the components
multiply if they are put together to form the complete system. Therefore, it is highly desirable to
preserve the decentralized structure for supervisor synthesis. This is indeed possible if the abstrac-
tion method and the consistent implementation of low-levelsupervisors outlined in the previous
chapter is used. The decentralized low-level models can be projected to the high level, where they
are composed to an overall high-level plant. Then, supervisory control is applied for the high-level
model, and the resulting supervisor is implemented as a decentralized low-level supervisor for the
subsystems. This hierarchical and decentralized architecture is based on the hierarchical architec-
ture in Chapter 3 for monolithic systems. We extend these results to decentralized systems and
provide sufficient conditions which guarantee nonblockingand hierarchically consistent behavior
of the closed-loop system.

As in Chapter 3, we first elaborate a language-based description of the theoretical concepts, fol-

66 CHAPTER 4 — HIERARCHICAL AND DECENTRALIZED CONTROL

lowed by an automata representation along with the algorithms which are necessary for implemen-
tation.

4.1 Hierarchical and Decentralized Control Architecture

An informal characterization of composed systems has been given above. The following definition
formalizes this description in the form ofdecentralized control systems.

Definition 4.1 (Decentralized Control System)
A decentralized control system‖n

i=1Hi (DCS) consists of subsystems, modeled by finite control
systemsHi = (Li,1,Li,2), i = 1, . . . ,n over the respective alphabetsΣi. The overall system is defined
asH := ||ni=1Hi =: (L1,L2) over the alphabetΣ :=

⋃n
i=1Σi . The controllable and uncontrollable

events areΣi,c := Σi ∩Σc andΣi,uc := Σi ∩Σuc, respectively, whereΣc∪̇Σuc = Σ. �

A decentralized control system can be considered as a low-level model of a composed discrete
event system as shown in Figure 4.1.

H1 H2 Hn

shared events

Figure 4.1: Decentralized control system

The different components of a DCS interact via shared events,i.e. events that are elements of the
intersections of at least two alphabets. This interaction is crucial for the behavior of the overall
system because the different components can block each other, which is clarified in the following
example portrayed in Figure 4.2.

Example 4.1
The stringss1, s2 in L1,2 and the strings3 in L2,2 contain the shared eventsα, β andγ. The strings
s1 and s3 agree on the order of these events, such that the strings ins1||s3 in the synchronous
compositionH1||H2 are also elements ofL2 (i.e. they are marked strings of the control system
H = H1||H2). However, the order of the high-level events is different for the stringss2 ands3.
Thus, none of the strings ins2||s3 is a marked string inL2. �

SECTION 4.1 — HIERARCHICAL AND DECENTRALIZED CONTROL ARCHITECTURE 67

This indicates that although the control systemsH1 andH2 are nonblocking, the composed system
H1||H2 can be blocking. If this is the case, then the decentralized components areconflicting(see
also [RW87a, Won04, dQC00, QC00, LW02]).

α

α

α α

α

β

β

β

β

γ

γ γ

γ

H1

H2

s1

s2

s3

H = H1||H2

s1,3

s2,3

Figure 4.2: Blocking in a decentralized control system

This observation suggests that the abstraction of the decentralized components must always pre-
serve the shared behavior and thus an abstraction alphabet must always contain the shared events.

Accordingly, the high-level alphabet is chosen such that
n
⋃

i, j=1,i 6= j
(Σi ∩Σ j) ⊆ Σhi ⊆ Σ. The abstrac-

tion of the DCS results in theprojected decentralized control system.

Definition 4.2 (Projected Decentralized Control System)
Let ‖n

i=1Hi be a DCS, letΣhi s.t.
n
⋃

i, j,i 6= j
(Σi ∩Σ j) ⊆ Σhi ⊆ Σ, i = 1, . . . ,n and letphi : Σ∗ → (Σhi)∗

be a natural projection. Also define the decentralized high-level alphabets asΣhi
i := Σhi ∩Σi with

the corresponding decentralized natural projectionspdec
i : Σ∗

i → (Σhi
i)∗ for i = 1, . . . ,n. A projected

decentralized control system(‖n
i=1Hi , phi,‖n

i=1Hhi
i) (PDCS) is composed of finite control systems

Hhi
i := pdec

i (Hi), i = 1, . . . ,n. The overall high-level model isHhi = ||ni=1Hhi
i . 1 High-level control-

lable and uncontrollable events are defined asΣhi
c := Σc∩Σhi andΣhi

uc := Σuc∩Σhi, respectively.�

1For H1 = (L1,1,L1,2) andH2 = (L2,1,L2,2), the notationH1||H2 = (L1,1||L2,1,L1,2||L2,2) is introduced.

68 CHAPTER 4 — HIERARCHICAL AND DECENTRALIZED CONTROL

Figure 4.3 illustrates the concept of the projected decentralized control system with the decentral-
ized control system||ni=1Hi on the low level, the projectionspdec

i , i = 1, . . . ,n and the projected
decentralized high-level system||ni=1Hhi

i .

H1 H2 Hn

pdec
1 pdec

2 pdec
n

Hhi
1 Hhi

2 Hhi
n

Figure 4.3: Projected decentralized control system

Definition 4.2 suggests the computation of the overall high-level model asHhi = ||ni=1Hhi
i . Now,

the question arises if this high-level model equals the model derived from projecting the overall
low-level system, i.e. if||ni=1pdec

i (Hi) = phi(||ni=1Hi). For our particular choice of the high-level
event set, this equality indeed holds, as established in ourwork in [SRM04, SMP05]. Proposition
4.1 states the respective result.

Proposition 4.1 (High Level Plant [SRM04, SMP05])
Let (||ni=1Hi, phi, ||ni=1Hhi

i) be a projected decentralized control system. Then the high level control
system isHhi = phi(||ni=1Hi) = ||ni=1pdec

i (Hi). �

The proof of Proposition 4.1 is based on a result in [Won04, dQ00]. It is given in Appendix A.3.

Proposition 4.1 provides an important result which reducesthe computational complexity of the
projection operation for decentralized systems tremendously. Now, it is no longer necessary to
compute the overall low-level control system and then project it to the high level, but it is possible
to project the decentralized subsystems to the high level first and then compose the projected
systems to form the high-level control system.

Due to the fact that all shared events are contained in the high-level alphabet, the complete shared
behavior is preserved in the high-level control system. It is possible that the feasible shared be-
havior of each subsystem is different from their independent behavior, i.e. it can happen that
phi

i (Lhi
1) ⊂ Lhi

i,1. This means that there are strings which are feasible in an independent system but

SECTION 4.1 — HIERARCHICAL AND DECENTRALIZED CONTROL ARCHITECTURE 69

which don’t agree with the strings in the other systems. Furthermore, as already seen in Example
2.3, if a string is marked in one subsystem, a corresponding string in another subsystem need not
be marked. This means that the string in the composed system is not marked, either.

The feasible projected decentralized control systemof a decentralized control system represents
its possible behavior after the synchronization.

Definition 4.3 (Feasible Projected Decentralized Control System)
Let (‖n

i=1Hi, phi,‖n
i=1Hhi

i) be a PDCS and letphi
i : (Σhi)∗ → (Σhi

i)∗ be a natural projection.2 The

feasible projected decentralized control system (FPDCS)(H f
i , phi,Hhi,f

i), i = 1, . . . ,n, is defined as

(i) Hhi,f
i = (Lhi,f

i,1 ,Lhi,f
i,2) := phi

i (Hhi)

(ii) H f
i := (Lf

i,1,L
f
i,2) with Lf

i,1 := {s∈ Li,1|pdec
i (s) ∈ Lhi,f

i,1 } andLf
i,2 := {s∈ Li,2|pdec

i (s) ∈ Lhi,f
i,2 }.

�

It is clear that the feasible projected decentralized control system for a projected decentralized
control system exactly represents the possible shared behavior for the interacting decentralized
control systems. We give a formal statement of this result inthe following lemma.

Lemma 4.1
Let Hi , H f

i , Hhi
i andHhi,f

i , i = 1, . . . ,n be defined as in Definition 4.3. Then

||ni=1Hhi
i = ||ni=1Hhi,f

i and ||ni=1Hi = ||ni=1H f
i .

�

The proof of Lemma 4.1 uses the fact that the composed system must agree with the shared behav-
ior of the decentralized subsystems. It is provided in Appendix A.4.

Because of the above equivalence, the feasible projected subsystems(||ni=1H f
i , phi, ||ni=1Hhi,f

i) are
considered in the sequel, instead of the projected high-level subsystems(||ni=1Hi, phi, ||ni=1Hhi

i).

After establishing the connection between the high level and the low level of a decentralized control
system, supervisors for both the high level and the low levelare added to the architecture. This
leads to the formal definition of thehierarchical and decentralized closed-loop system.

Definition 4.4 (Hierarchical and Decentralized Closed Loop System [SPM05, SMP05])
A hierarchical and decentralized closed-loop system (HDCLS) (‖n

i=1H f
i , phi,‖n

i=1Hhi,f
i ,Shi,Slo) con-

sists of the following entities

2The natural projectionsphi andpdec
i are given in Definition 4.2.

70 CHAPTER 4 — HIERARCHICAL AND DECENTRALIZED CONTROL

• a FPDCS(‖n
i=1H f

i , phi,‖n
i=1Hhi,f

i) according to Definition 4.3,

• a high-level supervisorShi : Lhi →Γhi with the high-level closed-loop control systemShi/Hhi,

• a valid low-level supervisorSlo : L1 → Γ s.t. phi(Slo/H) ⊆ Shi/Hhi.
�

That is, the low-level model of a hierarchical and decentralized control system is a decentralized
subsystem which is abstracted by projecting to a superset ofthe shared events of its components.
Because of the decentralized nature of the system, the controllability properties of the low-level
events are directly transferred to the high-level in this approach, i.e. a high-level event is control-
lable if it is controllable in the low-level, and it is uncontrollable if it is uncontrollable in the low
level.3 On the high level, standard supervisory control is applied,yielding the high-level supervi-
sor. The translation of the high-level control action to thelow level is considered to be valid if the
low-level control achieves the desired behavior in the highlevel.

In this approach, the low-level control is defined by using a decentralized implementation of the
high-level supervisor which is similar to the consistent implementation introduced in Section 3.2.
Definition 4.5 introduces thedecentralized consistent implementation.

Definition 4.5 (Decentralized Consistent Implementation)
Let (‖n

i=1H f
i , phi,‖n

i=1Hhi,f
i ,Shi,Slo) be a hierarchical and decentralized closed-loop system. Also

implement

(i) decentralized high-level supervisorsShi
i : (Σhi

i)∗ → Γhi
i s.t. Shi

i /Hhi,f
i = phi

i (Shi/Hhi),4

(ii) decentralized low-level supervisorsSlo
i : Σ∗

i → Γi for the projected control systems
(H f

i , pdec
i ,Hhi,f

i) as consistent implementations ofShi
i for i = 1, . . . ,n.

If the low-level supervisorSlo : Σ∗ → Γ is defined s.t.

Slo/H = Shi/Hhi||
(

||ni=1Slo
i /H f

i

)

,

then(‖n
i=1H f

i , phi,‖n
i=1Hhi,f

i ,Shi,Slo) is called a HDCLS with a decentralized consistent implemen-
tation. �

The HDCLS with a decentralized consistent implementation isillustrated in Figure 4.4.

3This choice of the high-level controllable and uncontrollable events is called control delay freedom in [Zho92,
WW96].

4Conditions for the existence of such supervisors are given in the next lemma.

SECTION 4.1 — HIERARCHICAL AND DECENTRALIZED CONTROL ARCHITECTURE 71

H1

H2

Hn

Hhi
1

Hhi
2

Hhi
n

||

Hhi

Inf lohi

Infhi

Conhi

Comhilo

Conhi
2

Conhi
n

Conhi
1

Inf lo
2

Conlo
2

Inf lo
n

Conlo
n

Inf lo
1

Conlo
1

pdec
2 pdec

1 pdec
n

Slo
1

Slo
2

Slo
n

Shi
1

Shi
2

Shi
n

Shi

phi
2 phi

1 phi
n

Figure 4.4: Hierarchical architecture

A decentralized high-level supervisor, implementing the projection of the high-level closed-loop
behavior to the event set of the decentralized component, iscomputed for each of the decentralized
projected control systems. The control action of this high-level supervisor is then translated to a
decentralized low-level supervisor as a consistent implementation according to Definition 3.5. The
joint action of the decentralized low-level supervisorsSlo

i and the high-level supervisorShi yields
the overall low-level supervisorSlo.

From Section 3.2, it is known how a consistent low-level supervisor can be computed if the cor-
responding high-level supervisor exists. However, the existence of the high-level supervisors in

72 CHAPTER 4 — HIERARCHICAL AND DECENTRALIZED CONTROL

Definition 4.5 is not automatically guaranteed. There need not be admissible high-level supervi-
sors implementing the projection of the overall high-levelclosed-loop behavior to the event set of
the respective decentralized subsystem. Yet, if the feasible projected control systems are required
to bemutually controllable, then it is true that these supervisors always exist. Mutualcontrolla-
bility ensures that the decentralized subsystems agree on the control action to be executed. It was
established by Lee and Wong in [LW02].

Lemma 4.2
Let (‖n

i=1H f
i , phi,‖n

i=1Hhi,f
i) be a feasible projected decentralized control system and let Shi be a

high-level supervisor for the overall high-level systemHhi. Also the natural projectionspi, j :
(Σhi

i)∗ → (Σhi
i ∩Σhi

j)∗ for i, j = 1, . . . ,n are defined. If the high-level subsystemsHhi,f
i , i = 1, . . . ,n

are mutually controllable, i.e.∀i, j = 1, . . . ,n, i 6= j

Lhi,f
j,1 (Σi,uc∩Σ j,uc)∩ (p j,i)

−1(pi, j(L
hi,f
i)

)

⊆ Lhi,f
j ,

thenphi
i (Lhi,c

1) is controllable w.r.t.Lhi,f
i,1 for all i = 1, . . . ,n. �

Lemma 4.2 is proven in Appendix A.5. A short illustration of the concept of mutual controllability
is given in the subsequent example.

Example 4.2
Let L1 andL2 be two languages with the controllable shared eventα and the uncontrollable shared
eventσuc. Also let a ∈ Σ1 andb ∈ Σ2 be non-shared events. Figure 4.5 illustrates some strings
from L1 and L2.The strings2 ∈ L2 is chosen for verifying mutual controllability. It holds that
s2bσuc ∈ L2Σuc and s2bσuc ∈ (p2,1)

−1(p1,2(L1)) as p1,2(s1) = p2,1(s2) = αα. Thus, s2bσuc ∈

L2 ∩ (p2,1)
−1(p1,2(L1)) but s2bσuc 6∈ L2. This indicates that mutual controllability fails for the

example.

The problem is that the uncontrollable eventσuc can either happen or not after different low-level
strings (e.g.s2 ands2b) which are perceived as the same string from the other system. (L1 just
perceives the shared stringαα). Mutual controllability prevents this ambiguity. �

L1 L2

α
α

αα

α
ααα

s1

s1
s2

s2

a b b

σuc

σuc

σucσuc

Figure 4.5: Illustration of mutual controllability

SECTION 4.1 — HIERARCHICAL AND DECENTRALIZED CONTROL ARCHITECTURE 73

To sum up, Lemma 4.2 ensures that the projection of the high-level closed-loop behavior to the
decentralized event sets is controllable w.r.t. the respective feasible high-level language. Con-
sequently, the decentralized high-level supervisors in Definition 4.5 can be implemented. The
application of the hierarchical and decentralized architecture is shown in the following example.

Example 4.3
Let H1 andH2 be control systems with the languagesL1,1 = αb(α+cα), L1,2 = αb+αbα+αbcα
andL2,1 = αdα, L2,2 = αd+αdα, respectively. The shared eventα and the eventc are controllable
and for the high-level projectionHhi = phi(H1)||phi(H2), the languages areLhi

1 = αα andLhi
2 = α.

Note that both decentralized projected control systems(H1, phi,Hhi
1) and(H2, phi,Hhi

2) are feasible
as p1(Hhi) = Hhi

1 and p2(Hhi) = Hhi
2 . The resulting hierarchical and decentralized structure is

denoted in Figure 4.6. The high-level supervisorShi is defined such thatShi(α) = /0 andShi(shi) =

{α} for all othershi ∈ Lhi
1 . Mutual controllability of the high-level subsystems can be verified.

As the two high-level systemsHhi
1 and Hhi

2 have the same event set asHhi, the corresponding
decentralized high-level supervisors are equal toShi.5 Applying the consistent implementation, the
supervisorsSlo

1 andSlo
2 are

Slo
1 (s1) =

{

{b} if s1 ∈ αb
{α,b,c} else

Slo
2 (s2) =

{

{d} if s2 = αd
{α,d} else

(4.1)

The resulting low-level closed-loop behaviors areSlo
1 /H1 = (αb,αb) andSlo

2 /H2 = (αd,αd). �

αα

αααα

α
α

α

α
α b

c
d

ε

εε

εε
H2H1

Hhi
1 Hhi

2

Hhi

Figure 4.6: Illustration of the decentralized supervisor implementation

5Note that in this case, the projectionsphi
1 andphi

2 are the identity map.

74 CHAPTER 4 — HIERARCHICAL AND DECENTRALIZED CONTROL

4.2 Hierarchical Consistency

The decentralized consistent implementation is based on the consistent implementation in Section
3.2. As this low-level supervisor realization is sufficientfor hierarchical consistency of a HCLS, a
similar result is expected for the decentralized case. Proposition 4.2 confirms this conjecture.

Proposition 4.2 (Hierarchical Consistency)
Let Let (‖n

i=1H f
i , phi,‖n

i=1Hhi,f
i) be a feasible projected decentralized control system with ahigh-

level supervisorShi and the high-level closed-loop systemShi/Hhi = (Lhi,c
1 ,Lhi,c

2). If Slo is a decen-
tralized consistent implementation ofShi and the feasible high-level subsystemsHhi,f

i are mutually
controllable, then(‖n

i=1H f
i , phi,‖n

i=1Hhi,f
i ,Shi,Slo) is a hierarchically consistent HDCLS. �

Proof: Considering Lemma 4.2, it holds for alli = 1, . . . ,n that phi
i (Lhi,c

1) is controllable w.r.t.
Lf

i,1. Thus, for alli, there exists aShi
i : (Σhi

i)∗ → Γhi
i s.t. Shi

i /Hhi,f
i = phi

i (Shi/Hhi).6 Using con-
sistent implementationsSlo

i for the high-level supervisorsShi
i and the projected control systems

(H f
i , pdec

i ,Hhi,f
i), the hierarchical control systems(H f

i , pdec
i ,Hhi,f

i ,Shi
i ,Slo

i) are hierarchically consis-
tent because of Proposition 3.1, and hencepdec

i (Slo
i /H f

i) = Shi
i /Hhi,f

i = phi
i (Shi/Hhi).

Implementing the low-level supervisor as in Definition 4.5 results in phi(Slo/H) =

phi
(

Shi/Hhi||(||ni=1Slo
i /Hi)

)

= phi(Shi/Hhi)||phi(||ni=1Slo
i /Hi) = Shi/Hhi||pdec

i (||ni=1Slo
i /Hi) because

of Lemma 4.1. Also with Lemma 4.1 and with the above observation, it is true thatphi(||ni=1Slo
i /H f

i)

= ||ni=1pdec
i (Slo

i /H f
i) = ||ni=1phi

i (Shi/Hhi). Noting thatShi/Hhi ⊆ ||ni=1phi
i (Shi/Hhi) (Lemma A.6), it

holds thatShi/Hhi||pdec
i (||ni=1Slo

i /Hi) = Shi/Hhi||(||ni=1phi
i (Shi/Hhi)) = Shi/Hhi. Consequently, the

hierarchical and decentralized control system is hierarchically consistent. �

The above result makes use of the fact that the joint behaviorof the decentralized high-level super-
visorsShi

i results in consistent behavior on the high-level, i.e. the high-level controlled decentral-
ized systems combined with the overall high-level supervisor yield the same behavior as the overall
high-level plant. Further on, the fact that the low-level control of the decentralized projected con-
trol systems is achieved by consistent implementations makes sure that the high-level closed-loop
behavior of the decentralized subsystems can be implemented by low-level supervisors.

Example 4.4
The HDCLS in Example 4.3 is hierarchically consistent. Thereis a corresponding string in the
low-level closed-loop behavior for all strings in the high-level closed-loop behavior. �

After showing that the behavior implemented by the low-level supervisor is hierarchically consis-
tent, it has also to be verified if the specified language can really be implemented. The subsequent
lemma states the required result.

6Also observe thatphi
i (Lhi,c

2) = phi
i (Lhi,c

2) = phi
i (Lhi,c

1) asShi/Hhi is nonblocking.

SECTION 4.3 — NONBLOCKING CONTROL 75

Lemma 4.3
Let (‖n

i=1H f
i , phi,‖n

i=1Hhi,f
i ,Shi,Slo) be a HDCLS with a decentralized consistent implementation.

ThenShi/Hhi||
(

||ni=1Slo
i /H f

i

)

is controllable w.r.t.L1. �

Proof: Assume thatShi/Hhi||
(

||ni=1Slo
i /H f

i

)

is not controllable w.r.t.L1. Then it holds that
∃s∈ L1∩Shi/Hhi||

(

||ni=1Slo
i /H f

i

)

, σ ∈ Σuc s.t.sσ ∈ L1 butsσ 6∈ Shi/Hhi||
(

||ni=1Slo
i /H f

i

)

. Let σ ∈ Σhi.

Thenphi(sσ) ∈ Lhi
1 andphi(sσ) 6∈ phi(Lc

1) = Lhi,c
1 because of Proposition 4.2. Asphi(sσ) ∈ Lhi

1 , this
means thatLhi,c is not controllable w.r.t.Lhi which leads to contradicion.

Now assumeσ ∈ Σ−Σhi. Then∃i such thatσ ∈ Σi and i is unique (otherwiseσ ∈ Σhi). Then
pi(sσ) ∈ Li,1 andpi(sσ) 6∈ Lf,c

i,1 (otherwisesσ ∈ Lc
1). HenceLf,c

i,1 is not controllable w.r.t.Lf
i,1 which

contradicts the admissibility ofSlo
i . �

4.3 Nonblocking Control

Looking at the decentralized consistent implementation inDefinition 4.5, it is readily observed
that the supervised system consists of decentralized hierarchical closed-loop systems. Thelocally
nonblockingandmarked string acceptanceconditions are needed to guarantee that the hierarchical
closed-loop systems are nonblocking. Consequently, these conditions are also required for feasible
decentralized projected control systems.

In addition to the above mentioned properties, two different requirements were formulated in Sec-
tion 3.3. Analogous to the approach in Chapter 3, two alternative versions of the main theorem
are elaborated in the sequel. The first version provides a condition on the high-level closed-loop
subsystems, and the second condition requires marked string controllability as a further structural
condition for the feasible decentralized projected control systems.

4.3.1 Condition on the High-Level Closed Loop Subsystems

The main theorem of this section is similar to Theorem 3.1. Instead of requiring the overall fea-
sible projected control system to be locally nonblocking and marked string accepting, only the
decentralized components need to fulfill these conditions.The decentralized consistent imple-
mentation ensures hierarchical consistency and nonblocking behavior of the overall hierarchical
and decentralized closed-loop system in combination with liveness of the decentralized high-level
closed-loop systems.

76 CHAPTER 4 — HIERARCHICAL AND DECENTRALIZED CONTROL

Theorem 4.1 (Main Result)
Let (‖n

i=1H f
i , phi,‖n

i=1Hhi,f
i) be a feasible decentralized projected control system7 with a nonblock-

ing high-level supervisorShi. Assume that all projected control systems(H f
i , pdec

i ,Hhi,f
i), i =

1, . . . ,n are marked string accepting, locally nonblocking and that the decentralized high-level lan-
guagesLhi,f

i,1 are mutually controllable. Also letSlo be a decentralized consistent implementation of

Shi. If all languagesLhi,f,c
i,1 are live, then the HDCLS(‖n

i=1H f
i , phi,‖n

i=1Hhi,f
i ,Shi,Slo) is nonblocking

and hierarchically consistent. �

The subsequent lemma provides a property of feasible projected decentralized control systems
with live high-level subsystems. It says that any high-level string in the overall behavior can be
extended to a marked high-level string such that the extension contains symbols from all alphabets
in a specified set of alphabets.

Lemma 4.4
Let (‖n

i=1Hi, phi,‖n
i=1Hhi

i), i = 1, . . . ,n be a projected decentralized system with a nonblocking
high-level control systemHhi and assume thatLhi

i,1 is live for i = 1, . . . ,n. Also letI be an index set
with I = {i1, . . . , im} ⊆ {1, . . . ,n}. Then for allshi ∈ Lhi

1 , there exists at ∈ (Σhi)∗ s.t. shit ∈ Lhi
2 and

for all j ∈ I, phi
j (t) 6= ε. �

Proof: The following algorithm for constructing a suitable stringt is proposed for proving
Lemma 4.4. Assumeshi ∈ Lhi

1 andI are given.

1. k := 1, Ĩ = I

2. chooseik ∈ Ĩ

3. find tk ∈ (Σhi)∗ s.t. shit1 · · ·tk ∈ Lhi
2 andphi

ik
(tk) 6= ε

4. remove allj with phi
j (tk) 6= ε from Ĩ

5. if Ĩ = /0, setk∗ := k andterminate
elsek := k+1 andgo to2.

First note thattk as in item 3. exists for eachk. Observing thatphi
ik
(shit1 . . .tk−1) ∈ Lhi

ik,1
and with

Lhi
ik,1

being live, there exists aσik ∈ Σi i s.t. phi
ik
(shit1 . . .tk−1)σik ∈ Lhi

ik,1
. As Lhi

ik,1
= phi

ik
(Lhi

1), there is
a t̂k s.t. shit1 . . .tk−1t̂k ∈ Lhi

1 andphi
ik
(t̂k) = σik. But asHhi is nonblocking, there exists ãtk such that

shit1 . . .tk−1t̂kt̃k ∈ Lhi
2 . Thus,tk := t̂kt̃k fulfills the condition in item 3. of the algorithm. Secondly,

observe that the algorithm terminates as the setI is finite and in each loop through the algorithm
at least one element is removed fromI. After termination of the algorithm, the stringt = t1 · · ·tk∗

fulfills Lemma 4.4. It holds thatshit ∈ Lhi
2 andphi

i (t) 6= ε for all i ∈ I by construction oft. �

7Note that the theorem can also be stated for the original decentralized projected control system
(‖n

i=1Hi , phi,‖n
i=1Hhi

i). However, as this DPCS contains redundant behavior, conditions would be more restrictive.

SECTION 4.3 — NONBLOCKING CONTROL 77

The proof of Theorem 4.1 is supported by Lemma 4.4.

Proof: Hierarchical consistency is provided by Proposition 4.2.

The stringss∈ Lc
1 are considered for showing nonblocking behavior. Note thatshi := phi(s)∈ Lhi,c

1 ,
shi
i := phi

i (shi)∈ phi
i (Lhi,c

1) andsi : = pi(s)∈ pi(Lc
1). Now letI : = {i ∈ {1, . . . ,n}| 6 ∃ui ∈ (Σi −Σhi)∗

s.t.siui ∈ Lf,c
i,2}. Because of Lemma 4.4, it is possible to find at ∈ (Σhi)∗ with shit ∈ Lhi,c

1 s.t.∀i ∈ I,

phi
i (t) 6= ε.

Applying Lemma 3.7,(Slo
i /Hi, phi,Shi

i /Hhi
i) is a locally nonblocking projected control system for

all i = 1, . . . ,n. With this observation, Lemma 3.8 states that for alli with phi
i (t) 6= ε, there exists

ui ∈ Σ∗
i s.t. siui ∈ Lf,c

i,1∩Len,shi
i pi(t)

. Furthermore, because of Lemma 3.9, there is a ˆui ∈ (Σi −Σhi)∗

s.t. siuiûi ∈ Lf,c
i,2 for i with phi

i (t) 6= ε.

For i with phi
i (t) = ε, defineui = ε and note that there also exists ˆui ∈ (Σi −Σhi)∗ s.t. siuiûi ∈ Lf,c

i,2
asi 6∈ I.

Consequently, for anyu ∈ ‖n
i=1ui ûi it holds thatsu∈ ||ni=1Lf,c

i,1. Just as well,pi(su) ∈ Lf,c
i,2, for all

i = 1, . . . ,n andphi(su) = shit ∈ Lhi,c
2 . Thussu∈ Lhi,c

2 ||(||ni=1Lf,c
i,2) which meanss∈ Lhi,c

2 ||(||ni=1Lf,c
i,2).

Thus,(‖n
i=1H f

i , phi,‖n
i=1Hhi,f

i ,Shi,Slo) is nonblocking. �

Looking at Theorem 4.1, it turns out that the conditions required for nonblocking control are very
similar to the monolithic case. The reason for this is that the decentralized consistent implemen-
tation is chosen for the low-level supervisor. It uses the concept of a consistent implementation
for each decentralized high-level supervisor. In this framework, the decentralized high-level super-
visors exist, because the high-level languages are mutually controllable. Together, the existence
of the high-level supervisors and the decentralized consistent implementation guarantee hierarchi-
cally consistent and nonblocking control.

4.3.2 Structural Condition

The main result in the previous section is dependent on the fact that the high-level closed-loop
subsystems are live, that is a condition on the closed-loop system is imposed. In the sequel, this
condition is replaced by a structural condition which covers the case that liveness is not given for
the high-level closed-loop subsystems, i.e. there are high-level strings which cannot be extended
further. The second condition in the consistent implementation in Definition 3.5 covers this case if
marked string controllability is required.

Theorem 4.2 (Main Result)
Let (‖n

i=1H f
i , phi,‖n

i=1Hhi,f
i) be a feasible decentralized projected control system with anonblocking

high-level supervisorShi. Assume that all projected control systems(H f
i , pdec

i ,Hhi,f
i), i = 1, . . . ,n

78 CHAPTER 4 — HIERARCHICAL AND DECENTRALIZED CONTROL

are marked string accepting and locally nonblocking. Also let the decentralized high-level lan-
guagesLhi,f

i,1 be mutually controllable and letSlo be a decentralized consistent implementation of

Shi. If all projected systems(H f
i , pdec

i ,Hhi,f
i), i = 1, . . . ,n are marked string controllable, then the

HDCLS (‖n
i=1H f

i , phi,‖n
i=1Hhi,f

i ,Shi,Slo) is nonblocking and hierarchically consistent. �

Proof: Hierarchical consistency follows from Proposition 4.2.

For proving nonblocking behavior, first note thatLc
1 6= /0 asLhi,c

1 6= /0 and phi(Lc
1) = Lhi,c

1 . Now
assume thats∈ Lc

1 andshi = phi(s) ∈ Lhi,c
1 . It has to be shown thats∈ Lc

2.

Because of Definition 4.5,s∈ Lhi,c
1 ||

(

||ni=1Lf,c
i,1

)

. Thussi := pi(s) ∈ Lf,c
i,1 andshi

i := pdec
i (si) ∈ Lhi,f,c

i,1 .

Let I := {i|1≤ i ≤ n∧ 6 ∃ui ∈ (Σi −Σhi)∗ s.t. siui ∈ Lf,c
i,2}. The following algorithm is performed to

find an appropriate string leading to a marked sring in the high-level.

1. k = 1, Ĩ = I.

2. chooseik ∈ Ĩ.

3. find tk ∈ (Σhi)∗ s.t. shit1 · · ·tk ∈ Lhi,c
2 andphi

ik
(tk) 6= ε.

4. remove allj with phi
j (tk) 6= ε from Ĩ.

5. if Ĩ = /0: setk∗ := k andterminate
elsek := k+1 andgo to 2.

First note that the stringtk in 3. always exists. There are two possible cases. In case that Σhi
i (shi

i)∩

Shi
i (shi

i) = /0 for somei, it holds thati 6∈ I, as there must beui ∈ (Σi−Σhi)∗ s.t.siui ∈ Lf,c
i,2 becauseH f,c

i

is nonblocking according to Theorem 3.2. Thus, for alli ∈ I, it holds thatΣhi
i (shi

i)∩Shi
i (shi

i) 6= /0. For
this case, there exists atik 6= ε s.t. phi

ik
(shit1 . . .tk−1)tik ∈ Lhi,f,c

i,2 becauseHhi,f,c
i is nonblocking. With

Lhi,f,c
i,2 = phi

i (Lhi,c
2) it is readily observed that∃tk ∈ (Σhi)∗ with phi

i (tk) = tik 6= ε andshit1 . . .tk−1tk ∈

Lhi,c
2 .

Secondly, note that the algorithm terminates asI is a finite index set which is reduced in every step.

Hence, the above algorithm provides a high-level stringt := t1 · · ·tk∗ s.t. shit ∈ Lhi,c
2 andphi

i (t) 6= /0
for all i ∈ I. It holds thatshi

i ti := phi
i (shit) ∈ Lhi,f,c

i,1 asLhi,c
i,1 = phi

i (Lhi,c
1). Then, because of Lemma

3.8,∀i ∈ I, ∃ui ∈ Σ∗
i s.t. siui ∈ Lf,c

i,1∩Len,shi
i ti

. Further on, because of Lemma 3.9,∃ûi ∈ (Σ−Σhi)∗

s.t. siuiûi ∈ Lc
i,2.

For i 6∈ I, defineui := ε and note that there is a ˆui ∈ (Σ−Σhi)∗ s.t. siui ûi ∈ Lf,c
i,2 by definition of

I. Then∀u ∈ ||ni=1uiûi , it holds thatsu∈ ||ni=1siuiûi ⊆ ||ni=1Lf,c
i,2 and phi(su) = shit ∈ Lhi,c

2 . Thus

su∈ Lhi,c
2 ||

(

||ni=1Lf,c
i,2

)

= Lc
2, which proves thats∈ Lc

2. �

SECTION 4.4 — AUTOMATA IMPLEMENTATION FOR THEDECENTRALIZED CASE 79

The proof of Theorem 4.2 is very similar to the proof of Theorem 4.1. The difference comes in,
if high-level strings do not have any extension in the respective controlled high-level subsystem.
Then, analogous to Section 3.3, the combination of the consistent implementation and the marked
string controllability of the feasible decentralized projected systems results in nonblocking behav-
ior of the hierarchical and decentralized control system.

4.4 Automata Implementation for the Decentralized Case

After elaborating the theoretical concepts of the hierarchical and decentralized control method, an
algorithmic implementation of the presented results is given in the automata framework.

4.4.1 Notation

At first, the notation used for evaluating the computationalcomplexity of the algorithms presented
in this section is introduced.

• Ghi: number of states:nhi.

• Dhi: number of states:mhi.

• Gi : bound on the number of states:ni.

• Ghi
i : bound on the number of states:nhi

i and bound on the number of events:ehi
i .

• Gf
i : bound on the number of states:nf

i .

• Ghi,f
i : bound on the number of states:nhi,f

i .

4.4.2 Feasible Projected Decentralized Control Systems

According to Definition 4.1, a decentralized control systemconsists of finite local control sys-
temsHi. With Corollary 3.1, these control systems can be represented as finite automataGi =

(Σ,Xi,δi,x0,i,Xm,i) s.t. L(Gi) = Li,1 andLm(Gi) = Li,2, and also the overall control systemH =

||ni=1Hi corresponds to the finite automatonG = ||ni=1Gi with L(G) = L1 andLm(G) = L2. Thus the
automata representation of a decentralized control system||ni=1Hi is given by||ni=1Gi.

Applying the natural projection to the high-level events, also projected decentralized control sys-
tems(||ni=1Hi, phi, ||ni=1Hhi

i) can be formulated as a set of finite automata, with the automata repre-
sentationsGhi

i of the high-level control systemsHhi
i . The algorithm providing this result is shown

in the following figure.

80 CHAPTER 4 — HIERARCHICAL AND DECENTRALIZED CONTROL

/* Compute a projected decentralized control system: compute_pdcs */
compute_pdcs(Gi, . . . ,Gn, Σhi)

/* project all automata to their high-level event set */
for (1≤ i ≤ n)

Σhi
i = Σhi ∩Σi

(Ghi
i , f hilo

i) = projection(Gi ,Σhi
i)

end for

return (Ghi
1 , . . . ,Ghi

n , f hilo
1 , . . . , f hilo

n)

Figure 4.7: Computation of a projected decentralized control system

The natural projection has to be executed for alln control systems of the decentralized control
system||ni=1Gi . Considering Section 3.4.1, the complexity of the algorithmis O(nn7

i (e
hi
i)2).

With the finite automata representation(||ni=1Gi , phi, ||ni=1Ghi
i) of a projected decentralized control

system(||ni=1Hi, phi, ||ni=1Hhi
i), it is possible to compute the high-level plantGhi. According to

Lemma 4.1, the high-level subautomata have to be composed, i.e. Ghi = ||ni=1Ghi
i . This is done in

the subsequent algorithm.

/* Compute the high-level automaton: compute_ghi */
compute_ghi(Ghi

1 , . . . ,Ghi
n)

/* Initialize Ghi with the first decentralized high-level automaton */
Ghi = Ghi

1

/* Loop through all high-level subautomata and compute the synchronous composition */
for (2≤ i ≤ n)

Ghi = Ghi||Ghi
i

end for
return (Ghi)

Figure 4.8: Computation of the high-level automaton

The algorithm evaluates the synchronous composition for all n high-level subautomata. Recall-
ing the complexity of the synchronous composition, the computational effort for the algorithm is
O((nhi

i)n). Here, the positive effect of Lemma 4.1 can be recognized. Tthe computational effort

SECTION 4.4 — AUTOMATA IMPLEMENTATION FOR THEDECENTRALIZED CASE 81

is exponential in the number of states of the high-level components of the decentralized control
system instead of being exponential in the number of states of the low-level subautomata. As the
number of states of the high-level subautomata is expected to be smaller than the number of states
of the low-level automata, (Theorem 3.3), this denotes a considerable computational gain.

The feasible projected decentralized control system can bedetermined according to Definition 4.3
with the projected decentralized control system(||ni=1Hi, phi, ||ni=1Hhi

i) and the overall high-level
control systemHhi. The following Lemma states how this is done in an automata representation.

Lemma 4.5
Let (Gi ,Ghi

i) be an automata representation of a projected control system(Hi , phi,Hhi
i) and letGhi

be the automata representation of the high-level control systemHhi. ThenGhi,f
i is an automata

representation ofphi
i (Hhi), and the automaton forH f

i is

Gf
i = Ghi,f

i ||Gi.

�

Proof: phi
i (Hhi) is a control system because of Lemma 3.1. With Corollary 3.1,Ghi,f

i is the
minimal recognizer ofphi

i (Hhi).

Let s∈ L(Ghi,f
i ||Gi). Thenphi(s) ∈ L(Ghi,f

i) ands∈ L(Gi). Thus,s∈ L(Gf
i) according to Definition

4.3. Now lets∈ L(Gf
i). Thens∈ L(Gi) andphi(s) ∈ L(Ghi,f

i). This means thats∈ L(Ghi,f
i ||Gi). �

It is sufficient to evaluate the projection of the high-levelautomatonGhi to the event sets(Σhi ∩

Σi) for i = 1, . . . ,n and to compose the high-level feasible control systemsGhi,f
i with the low-

level systemsGi to compute the automata representation(Gf
i ,G

hi,f
i). The algorithm in Figure 4.9

illustrates this procedure.

/* Compute the feasible projected decentralized control system: compute_fpdcs */

compute_fpdcs(G1, . . . ,Gn,Ghi, f hilo,f
1 , . . . , f hilo,f

n)

/* Project Ghi on the different alphabets */
for (1≤ i ≤ n)

Ghi,f
i = projection

(

Ghi,(Σhi ∩Σi)
)

Gf
i = Ghi,f

i ||Gi

f hilo,f
i = fhilo(Gf

i , f hilo
i)

end for
return (Ghi,f

1 , . . . ,Ghi,f
n ,Gf

1, . . . ,G
f
n, f hilo,f

1 , . . . , f hilo,f
n)

Figure 4.9: Computation of the feasible projected decentralized control system

82 CHAPTER 4 — HIERARCHICAL AND DECENTRALIZED CONTROL

The function fhilo,f
i determines the new mapping of high-level states to entry states. Fromf hilo

i ,
it gets the information about the entry states inGi. Every state in the synchronous composition
Gi||G

hi,f
i is associated to the corresponding high-level state inGhi,f

i by inspecting the state name
pairs(xi,x

hi,f
i) in Xf

i .

The natural projection of the high-level automatonGhi has to be carried outn times to com-
pute the feasible projected decentralized control system.The complexity of this computation is
O(n(nhi)7(ehi

i)2). The subsequent synchronous composition is done withO(nni n
hi,f
i).

Combining the above algorithms, determining the feasible projected decentralized control system
from a decentralized control system and a high-level alphabet is of complexity
O

(

max(nn7
i (e

hi
i)2,(nhi

i)n)
)

.

4.4.3 Marked String Acceptance and Locally Nonblocking Condition

Marked string acceptance as well as the locally nonblockingcondition have to be checked for all
feasible projected control systems(H f

i , phi,Hhi,f
i) by examining the corresponding automata repre-

sentations(Gf
i ,G

hi,f
i). For verifying marked string acceptance, the algorithm in Figure 3.10 has to

be carried outn times, while the locally nonblocking condition is checked by applying the algo-
rithm in Figure 3.12n times. Consequently, the complexity of both computations isO(n(nf

i)
2nhi,f

i).

4.4.4 Liveness and Marked String Controllability

Similar to the previous section, liveness and marked stringcontrollability have to be evaluated for
each feasible projected decentralized control system. Forchecking liveness, it has to be verified
if every state of the natural projections of the high-level closed-loop behavior to the decentralized
alphabets has successor events. This can be done by checkingif any entry state (for the respective
decentralized alphabet) has a path to a successor event. Thecomplexity isO(((nhi,f

i)nmhi)2n),
where(nhi,f

i)nmhi is a bound for the number of states of the high-level closed-loop automaton. The
complexity for verifying marked string controllability isjust multiplied byn, i.e. O(nn2

i nhi
i) in the

decentralized case.

4.4.5 Supervisor Computation

All conditions for the hierarchical and decentralized approach presented in this chapter can be
verified computationally with the above algorithms. The complete procedure for synthesizing a
hierarchical and decentralized supervisor for a decentralized control system with a given high-
level alphabet is presented in the following list.

SECTION 4.4 — AUTOMATA IMPLEMENTATION FOR THEDECENTRALIZED CASE 83

• Compute the feasible projected decentralized automata representations(Gf
i ,G

hi,f i). For the
systems under consideration, this computation can be done in polynomial timeO(nn7

i (e
hi
i)2)

according to Section 4.4.2.

• Verify marked string acceptance. The complexity isO(nnhi,f
i (nf

i)
2).

• Check the locally nonblocking condition. This is done with complexityO(nnhi,f
i (nf

i)
2).

• Synthesize the high-level supervisorShi for a high-level specification automatonDhi with
mhi states. The complexity isO((nhi,f

i)2n(mhi)2).

Nonblocking low-level control is guaranteed if either the decentralized high-level closed-loop sys-
tems are live or the feasible decentralized projected control systems are marked string controllable,
using the decentralized consistent implementation.

• Test for liveness. The complexity isO((nhi,f
i)2n(mhi)2n).

• Verify marked string controllability. The complexity isO(nnhi,f
i (nf)2).

Putting together the complexities of the different algorithms needed in this approach, it turns out
that the overall complexity for verification of the structural properties and synthesis of the high-
level supervisor isO(max(nn7

i (e
hi
i)2,(nhi,f

i)2n(mhi)2n)). Thus, the main contributions to the com-
putational effort are the natural projection of the decentralized components to their respective high-
level alphabets (O(nn7

i (e
hi
i)2)) and the composition of the decentralized high-level subsystems to

the overall high-level system in combination with the checkfor liveness (O((nhi,f
i)2n(mhi)2n)).

Considering the fact that the state size of the abstracted systems is supposed to be smaller than
the state size of the original low-level models, the computational gain is evident (fromO(nn

i) to
O((nhi

i)n), wherenhi
i << ni).

The fact, that the computational complexity of the approachis still exponential in the number
of states of the decentralized high-level components, is not surprising, if the result in [RL02] is
considered. It is stated that "the verification of large discrete event systems modeled as interacting
sets of finite automata will not lead to computationally tractable results unless we make more
assumptions about the models themselves".

These additional assumptions are exactly what is exploitedin our method. The structural properties
of marked string acceptanceandlocally nonblocking DESguarantee that systems can be projected
to models with a smaller number of states in the high level.

In addition to the reduced computational effort, it is also worth mentioning, that the implementation
of the decentralized supervisors is manageable. Small decentralized supervisors which can directly
be implemented for their respective component are designedinstead of synthesizing one low-level
supervisor implementation for the overall system. A detailed description of the procedure with an
extension to a multi-level hierarchy is given in Chapter 5.

84 CHAPTER 4 — HIERARCHICAL AND DECENTRALIZED CONTROL

Chapter 5

Manufacturing System Case Study

An example for a large-scale composed discrete event systemis the Fischertechnik Simulation
Model of the "Lehrstuhl für Regelungstechnik, Universität Erlangen-Nürnberg", that represents a
distributed manufacturing system (see Figure 5.1). The system comprises 28 components, and a
monolithic automaton model reaches an estimated number of 1024 states.1 Due to the size of the
manufacturing system, monolithic supervisor synthesis isnot advisable.

Nevertheless, the decentralized nature of the system suggests the applicability of the hierarchical
and decentralized approach in Chapter 4. To this end, the example system is divided into structural
components, and 4 hierarchical levels are used.

The chapter is organized as follows. At first, a thorough description of the the example system
(called the "manufacturing system"in the sequel) is given in Section 5.1. Section 5.3 focuses on
the supervisor synthesis for a part of the manufacturing system. For thedistribution system, which
embodies the entrance area of the system, the hierarchical abstraction and decentralized supervisor
design are worked out in detail. Finally, the complete system is considered, and the performance
of the method is evaluated for a representative supervisor computation in Section 5.4.

A bird’s eye view of the manufacturing system is shown in Figure 5.1. It consists of a stack feeder,
conveyor belts, pushers, rotary tables, production cells and a rail transport system. A schematic
overview is given in Figure 5.2. The purpose of the manufacturing system is to process workpieces
(symbolized by wooden blocks) which enter the system from a stack feeder (sf). From there, the
workpieces are distributed by the long conveyor belt (cb1).There are two pushers pu1 and pu2
attached to this conveyor belt, that transport workpieces to the actual production part of the system.
Also there is a reject depot (dep) at the end of the long conveyor belt.

1For implementation reasons, control systems will be represented by the corresponding finite automata throughout
the whole chapter.

86 CHAPTER 5 — MANUFACTURING SYSTEM CASE STUDY

5.1 Manufacturing System Overview

Figure 5.1: Fischertechnik simulation model

Figure 5.2: Schematic overview of the Fischertechnik simulation model

SECTION 5.2 — NOTATION 87

The production part is entered via two conveyor belts (cb2 and cb3) which serve as buffers for
workpieces waiting for processing in one of the production cells (mh1, mh2). The rotary tables rt2
and rt3 (with conveyor belts cb12 and cb13) move workpieces to the respective machine (mh1 and
mh2), where they are drilled (d1 and d2). From the machines, workpieces either maneuver back
by using the rotary tables rt2 or rt3 again or move forward viart1 or rt4 (with conveyor belts cb11
and cb14).

For leaving the manufacturing system, the conveyor belts cb7, cb8, cb9 and cb10 deliver work-
pieces to the rail transport systems rts1 and rts2, which canunload to the roll conveyors rc1 and
rc2. Each of the roll conveyors is able to store up to four workpieces. The rail transport system rts1
can serve the conveyor belts cb7, cb8 and cb9, while rts2 can deliver workpieces to the conveyor
belts cb8, cb9 and cb10.

The manufacturing system is equipped with different sensors which detect logical signals2. Also,
the motors driving the conveyor belts, rotary tables, machines, etc. only assume discrete values, i.e.
moving into one of two directions or stopping. In this setting, sensor signals can be imagined as
uncontrollable events (there is no direct influence on the occurrence of the signal), while actuator
signals are considered as controllable events (these signals can directly be set or reset). Using
these event definitions, the behavior of the manufacturing system can be described as sequences
of actuator and sensor signals, i.e. sequences of controllable and uncontrollable events. Regarding
the definition of a discrete event system in Chapter 2, the manufacturing system belongs to this
class of systems.

Furthermore, it is readily observed, that the manufacturing system is composed of different compo-
nents which interact3. It is possible to apply the hierarchical and decentralizedmethod developed
in Chapter 4 for supervisory control of the manufacturing system. At first, the design and syn-
thesis procedure is performed for the distribution system for facility of inspection. It comprises
the stack feeder sf, the long conveyor belt cb1, the two pushers pu1 and pu2, the deposit dep and
the conveyor belts cb2 and cb3. The same approach is then usedfor the rest of the system, and
performance details are discussed in Section 5.4.

5.2 Notation

The following notation is used for modeling system components on different hierarchical levels.

• plant automata are writtenG(i)
j , wherei denotes the level of the hierarchy where the automa-

ton model resides andj is the name of the component, according to the schematic overview
in Figure 5.2.

2A detailed description will be given in Section 5.3.
3For example consider one conveyor belt transporting a workpiece to another conveyor belt

88 CHAPTER 5 — MANUFACTURING SYSTEM CASE STUDY

• if Σ(i)
j is the alphabet ofG(i)

j andΣ(i+1)
j ⊆ Σ(i)

j is an abstraction alphabet, then the correspond-

ing natural projection isp(i,i+1)
j : (Σ(i)

j)∗ → (Σ(i+1)
j)∗.

• assume that one componentG(i)
j of the system is composed of smaller subcomponentsG(i)

jk
,

k = 1, . . . ,n and jk 6= j, i.e. G(i)
j = ||nk=1G(i)

jk
. Then, the alphabet ofG(i)

j is Σ(i)
j :=

⋃n
k=1Σ(i)

jk
.

• let G(i)
j = ||nk=1G(i)

jk
be as above and letΣ(i+1)

j ⊇
⋃n

k,l=1;k6=l (Σ
(i)
jk
∩ Σ(i)

j l
) be an abstraction

alphabet for the leveli + 1. Then the natural projection for the subsystems is defined as
p(i,i+1)

jk
: (Σ(i)

jk
)∗ → (Σ(i+1)

j ∩Σ(i)
jk

)∗.

• specification automata for an automaton modelG(i)
j are written asD(i)

j .

• the automaton realizing the supervised behaviorκ
Lm(D(i)

j)

(

Lm(G(i)
j)

)

is written asR(i)
j .

• event names indicate the component where the event occurs and the action which is related
to the event. For example, the eventsfwpar means that a workpiece arrives at the stack
feeder.

• for better orientation, a coordinate system is defined in Figure 5.2.

• in the automata graphs, dashed arrows indicate high-level transitions, and a tick on an arrow
denotes a controllable event.

5.3 Supervisor Synthesis for the Distribution System

The distribution system as shown in Figure 5.3 has several components. The stack feeder, the
depot and the two conveyor belts cb2 and cb3 are modeled as single components, whereas the long
conveyor belt cb1 with the pushers pu1 and pu2 is split into three parts for modeling convenience.
The first part (cb1apu2) describes cb1 between the stack feeder and the pusher pu2. The second
part (cb1bpu1) models cb1 from the pusher pu1 to the depot, and the third part (cb1connect) accounts
for the physical connection between cb1apu2 and cb1bpu1 viathe belt. In the following sections,
the hierarchical architecture for the distributionsystemwith 4 levels is constructed, starting from
the lowest (sensor and actuator) level. The automaton models of the system components were
derived in [Ers02, Per04].

5.3.1 Stack Feeder

The stack feeder consists of a stack which can hold maximallyfour workpieces and a belt with a
small block which can shove workpieces to the conveyor belt cb1. The belt’s motion and end of

SECTION 5.3 — SUPERVISORSYNTHESIS FOR THEDISTRIBUTION SYSTEM 89

depot cb1bpu1 cb1connect cb1apu2 sf

cb3 cb2

Figure 5.3: Components of the distributionsystem

motion is triggered by the eventssfmv andsfstp, respectively. The stack feeder is equipped with
a photoelectric barrier which detects if a workpiece is present. Arrival of a workpiece generates
the eventsfwpar and the eventsfwplv occurs if a workpiece leaves the stack feeder. The rest
position of the small block is detected by a magnetic sensor which triggers the eventssfr (rest
position) andsfnr (not in the rest position).

2 10 13 12

8 9

3 4 51 6

7 11

sf-cb1sf-cb1

sf-cb1

sfmv

sfmv
sfmv

sfmv

sfmv

sfstp

sfstp

sfstp

sfstp

sfstp

sfstp

sfnr

sfnr

sfnr

sfr

sfr

sfwplvsfwpar

sfwpar

sfwpar

t

t

G(0)
sf

Figure 5.4: Stack feederG(0)
sf

90 CHAPTER 5 — MANUFACTURING SYSTEM CASE STUDY

The stack feeder is a control system. Referring to Lemma 2.9, an automaton model of the uncon-
trolled behavior of the stack feeder is shown in Figure 5.4. The additional eventsf-cb1 indicates
that interaction with the neighboring component is possible in the respective state, i.e. a workpiece
can be transported to the conveyor belt cb1. The eventt represents the elapse of a nonzero time
period until the occurrence of the next event. In this model,t captures the physical property that
when the small block arrives at the rest position, the belt can be stopped before the rest position is
left.

For the controlled stack feeder, it is desired that it only moves if a workpiece is detected at the
sensor (sfwpar) and if cooperation with the long conveyor belt cb1 is possible (sf-cb1 is feasi-
ble). Also, the belt has to stop if the small block reaches therest position and only then. Figure
5.5 shows the corresponding specification automatonD(0)

sf . Observing thatLm(D(0)
sf) is Lm(G(0)

sf)-
closed, Corollary 2.2 guarantees that the maximally permissive behavior fulfilling the specification
can be determined. The resulting supervised behaviorκ

Lm(D(0)
sf)

(

Lm(G(0)
sf)

)

is implemented by the

finite automatonR(0)
sf in Figure 5.6 using Lemma 2.11.

1 8

3 4 62

5

7sf-cb1 sfmv

sfstp

sfstp
sfnrsfnr

sfnr

sfnr

sfr

sfr

sfr

sfwplv

sfwplv

sfwpar

sfwpar

D(0)
sf

Figure 5.5: Specification automatonD(0)
sf for the stack feeder

1 9

3 4 52

7

6

8

sf-cb1 sfmv

sfstp

sfstp

sfnr

sfr

sfr

sfwplv

sfwparsfwpar

R(0)
sf

Figure 5.6: Supervised automatonRsf for the stack feeder

The stack feeder is connected to the rest of the distributionsystem via the conveyor belt cb1. The
only shared event which has to be considered for hierarchical abstraction is the eventsf-cb1.

SECTION 5.3 — SUPERVISORSYNTHESIS FOR THEDISTRIBUTION SYSTEM 91

Thus,Σ(1)
sf = {cb1-sf} is chosen. The projectionp(0,1)

sf yields the abstracted automaton model

G(1)
sf depicted in Figure 5.7. Applying the algorithms presented in the Sections 3.4.2 and 3.4.6, it

can be verified that the projected system(R(0)
sf , p(0,1)

sf ,G(1)
sf) is locally nonblocking, marked string

accepting and marked string controllable. Hence, it is possible to useG(1)
sf as a component in a

composed system on level 1.

1

sf-cb1
G(1)

sf

Figure 5.7: Abstracted automatonG(1)
sf of the stack feeder on level 1

5.3.2 Conveyor Belt cb1

For modeling, the long conveyor is divided into three parts as shown in Figure 5.3.

5.3.2.1 Conveyor Belt cb1a and Pusher pu2

Level 0: The first part of cb1 combined with the pusher pu2 has three sensors and two actuators.
The conveyor belt transports workpieces while moving into the negative x-direction (cb1-x). The
eventsf-cb1, which can occur in state 1 and 2 represents the possible shared behavior with the
neighboring stack feeder. Arrival of a workpiece is detected by the capacitive sensor attached
to the pusher pu2 (pu2wpar for arrival andpu2wplv for departure of a workpiece). The pusher
pu2 pushes workpieces from cb1 to the conveyor belt cb2 (event sf-2). It has two push-buttons,
which indicate if the pusher is in the extended (pu2ar-y, pu2lv-y) or retracted position (pu2ar+y,
pu2lv+y). In general, the pusher can move forward (pu2mv-y), backward (pu2mv+y) or stop
(pu2stp).

Low-level models for the pusher pu2 (G(0)
pu2) and the conveyor belt cb1a (G(0)

cb1a) have 20 and 8
states, respectively. It is desired that the conveyor belt moves to the negative x-direction if a
workpiece is delivered from the stack feeder and until it reaches the pusher. From there, it is either
further transported on the conveyor belt or pushed away by the pusher. It is required that if a
workpiece is present, then the pusher either moves forward until it is completely extended or until
the workpiece leaves the sensor. After that it is retracted to its rest position. The corresponding
specification automataD(0)

pu2 andD(0)
cb1ahave 11 and 9 states. Locally supervised models of pu2 and

cb1a are shown in Figure 5.8.

92 CHAPTER 5 — MANUFACTURING SYSTEM CASE STUDY

1 2 3 4 6

8 7 5

1 2 3 4 5

8 6

1 4 1 2 1 1

1 6

1 5

7

9

9

1 0

1 3

sf-cb1

sf-cb1

cb1-x

cb1-x

cb1-x

cb1stp cb1stp

cb1stp

sf-2

sf-2

sf-3

cb1awpar

cb1awpar

cb1awplv

cb1awplv

cb1awplv

cb1awplv

cb1awplv

cb1awplv

cb1awplv

pu2mv-y pu2lv+y

pu2ar-y

pu2stp

pu2stp

pu2stppu2mv+y

pu2mv+y

pu2mv+y

pu2lv-y

pu2lv-ypu2ar+y

pu2rdy

R(0)
cb1a

R(0)
pu2

Figure 5.8: Low-level supervised models of pu2 (R(0)
pu2) and cb1a (R(0)

cb1a)

The automatonG(0)
cb1apu2:= R(0)

cb1a||R
(0)
pu2 has 43 states and describes the composed behavior of cb1a

and pu2 synchronized by the shared eventscb1awpar andcb1awplv. As a requirement on this
shared behavior, it is desired, that the conveyor belt does not move if the pusher is extending or
retracting and that the pusher stays in its rest position as long as the conveyor belt is moving. The
corresponding specification automatonD(0)

cb1apu2is depicted in Figure 5.9. The event setsΦ1 and
Φ2 are defined asΦ1 ={cb1awpar, cb1awplv, cb1stp, sf-3, cb1-x, sf-cb1} andΦ2 ={pu2stp,
pu2mv+y, pu2mv-y, pu2ar+y, pu2ar-y, pu2lv+y, pu2lv-y}.

1 2
sf-2

pu2rdy

Φ1 Φ2

D(0)
cb1apu2

Figure 5.9: Specification automatonD(0)
cb1apu2for cb1a and pu2

Evaluating the supervisor computationκ
Lm(D(0)

cb1apu2)

(

Lm(G(0)
cb1apu2)

)

yields the automatonR(0)
cb1apu2

SECTION 5.3 — SUPERVISORSYNTHESIS FOR THEDISTRIBUTION SYSTEM 93

for the supervised plant as shown in Figure 5.10.

5 4

3 6 71 10

82 9

18 16

17 15

1322 11

20 19 1421 12

sf-cb1

sf-cb1

cb1-x

cb1-x

cb1-x

cb1stp cb1stp
cb1stp

sf-2sf-3

cb1awpar

cb1awplv

cb1awplv
cb1awplv

cb1awplv

cb1awplv

pu2mv-y

pu2lv+y

pu2ar-y

pu2stp

pu2stp

pu2stp pu2mv+y

pu2mv+y

pu2mv+y

pu2lv-y

pu2lv-y

pu2ar+y

pu2rdy

R(0)
cb1apu2

Figure 5.10: Supervised behaviorR(0)
cb1apu2of cb1a and pu2

Level 1: The shared events with other components aresf-cb1 (shared with the stack feeder),
sf-2 (shared with cb2),sf-3 andsf-dep (connecting to cb1bpu1),cb1-x andcb1stp (shared
with cb1bpu1). Addingcb1awpar andpu2rdy to the high-level event set4, we arrive atΣ(1)

cb1apu2=

{cb1awpar, pu2rdy, sf-cb1, sf-2,sf-3,sf-dep,cb1-x,cb1stp}. The automatonG(1)
cb1apu2 in

Figure 5.11 represents the abstracted behavior ofR(0)
cb1apu2on level 1. Again, the projected control

system
(R(0)

cb1apu2, p(0,1)
cb1apu2,G

(1)
cb1apu2) is locally nonblocking, marked string accepting and markedstring

controllable.

4cb1awpar has to be reported to the high level, as the belt cb1 might be stopped in reaction tocb1awpar and
pu2rdy terminates the operation of the pusher.

94 CHAPTER 5 — MANUFACTURING SYSTEM CASE STUDY

2 7

3 4 51 8

6

replacements

sf-cb1

cb1-x

cb1-x

cb1-x

cb1stp

cb1stp
cb1stp sf-2

sf-3

cb1awpar

pu2rdyG(1)
cb1apu2

Figure 5.11: Level 1 automatonG(1)
cb1apu2of cb1apu2

5.3.2.2 Conveyor Belt cb1b and Pusher pu1

The design process for the combination of cb1b and pu1 is analogous to the synthesis in section
5.3.2.1. To sum up, this component is able to detect workpieces at the sensor of pusher pu1 and
push the workpieces to the conveyor belt cb3. It is importantto mention that the component
cb1bpu1 is physically connected to cb1apu2 via the long belt. Because of this reason, the events
cb1-x andcb1stp are shared events of these components. Also note that in thiscase, transport of
workpieces to the depot is not allowed by the specified behavior.

The resulting model on level 1 is depicted in Figure 5.12. It can easily be verified that the
PCS(R(0)

cb1bpu1, p(0,1)
cb1bpu1,G

(1)
cb1bpu1) is also locally nonblocking, marked string accepting and marked

string controllable.

2 3

1 5

4

cb1-x

cb1stp

cb1stp

cb1bwpar

cb1-3

pu1rdyG(1)
cb1bpu1

Figure 5.12: Level 1 automatonG(1)
cb1bpu1of cb1bpu1

5.3.2.3 Connection between cb1apu2 and cb1bpu1

Up to now, the two components cb1apu2 and cb1bpu1 have been modeled independently except
for the shared eventscb1-x andcb1stp. However, certain temporal conditions, which restrict the
synchronized behavior of the components, apply. It is valid, that a workpiece can only arrive at
the sensor of pusher pu1 (cb1bwpar) if it has passed the sensor of pusher pu2 (cb1awpar). In
addition to that, there cannot be more than 3 workpieces between the two sensors due to physical
limitations. These constraints are captured in the automatonG(1)

connectas shown in Figure 5.13.

SECTION 5.3 — SUPERVISORSYNTHESIS FOR THEDISTRIBUTION SYSTEM 95

2 3

1 5

6

4

7

sf-2sf-2sf-2
sf-3

sf-3

sf-3
cb1awpar

cb1awpar
cb1awpar

cb1bwpar
cb1bwpar

cb1bwpar

G(1)
connect

Figure 5.13: Level 1 automatonG(1)
connectconnecting cb1apu2 and cb1bpu1

G(1)
connectcan be seen as a buffer accepting up to 3 workpieces between the sensors of pu1 and

pu2. The eventsf-3 increments the number of workpieces, and the eventcb1bwpar decreases this
number.

5.3.2.4 Complete Conveyor Belt cb1

Composing the above automata, the model of the complete conveyor belt cb1 is obtained with
G(1)

cb1 = G(1)
cb1apu2||G

(1)
connect||G

(1)
cb1bpu1. The resulting automaton has 67 states.

There are three specifications for cb1 (see Figure 5.14). Thefirst two specifications address secu-
rity aspects, while the third specification determines and (arbitrary) desired manufacturing routine.

• D(1)
cb1,1: If the conveyor belt is empty, it is only allowed to start moving (cb1-x) if a workpiece

is delivered from the stack feeder (sf-cb1). On the other hand, if cb1 is not empty, a
workpiece can only be delivered from the stack feeder, if theconveyor belt is moving.

• D(1)
cb1,2: The conveyor belt has to stop (cb1stp) if a workpiece arrives at one of the pushers

(cb1awpar or cb1bwpar).

• D(1)
cb1,3: There must always be two workpieces pushed by pu1 and one workpiece pushed by

pu2.

96 CHAPTER 5 — MANUFACTURING SYSTEM CASE STUDY

1 5

3 4 62 7

9 8

3

1 2

3

1 2

sf-cb1

sf-cb1
sf-cb1

sf-cb1

sf-cb1

cb1-x

cb1-x

cb1-xcb1-x

cb1-x

cb1stp

sf-2sf-2

sf-2 sf-3sf-3

cb1awpar pu2rdy
cb1bwpar

cb1-3

cb1-3

cb1-3

cb1-3

pu1rdy

pu1rdy

D(1)
cb1,3D(1)

cb1,2

D(1)
cb1,1

Figure 5.14: Specifications for the conveyor belt cb1 on level 1

The overall specification is computed as the synchronous composition of the above specifications
D(1)

cb1= ||3i=1D(1)
cb1,i. It has 78 states. Evaluating the supervisor computation, the controlled behavior

of cb1 is represented by the automatonR(1)
cb1 which recognizes the languageκ

Lm(G(1)
cb1)

(

Lm(D(1)
cb1)

)

and has 39 states. For hierarchical abstraction, the sharedeventssf-cb1, cb1-3 andsf-2 as well
as the eventscb1awpar andcb1bwpar are contained in the high-level alphabetΣ(2)

cb1 ={sf-cb1,

cb1-3, sf-2, cb1awpar, cb1bwpar}. The automatonG(2)
cb1, representing the abstracted behavior is

shown in Figure 5.15.

1 2 1 0

1 1

9 1 41 6 4

6

2 5 71 1 3

81 5 3

sf-cb1

sf-cb1

sf-cb1

sf-cb1

sf-cb1
sf-2

cb1awpar

cb1awpar

cb1awpar cb1awpar

cb1bwpar

cb1bwpar

cb1bwpar

cb1bwpar
cb1-3

cb1-3

cb1-3

cb1-3

cb1-3

G(2)
cb1

Figure 5.15: Automaton modelG(2)
cb1 of the conveyor belt cb1 on level 2

SECTION 5.3 — SUPERVISORSYNTHESIS FOR THEDISTRIBUTION SYSTEM 97

5.3.3 Conveyor Belts cb2 and cb3

The conveyor belts cb2 and cb3 are used in the same mode of operation. Both conveyor belts
receive workpieces from the respective pusher and transport the workpieces to the remaining com-
ponents of the manufacturing system. Because of this reason,only cb2 is explained in detail.

The conveyor belt can move in the negative y direction (cb2-y) and the sensor which is attached
to it detects arrival of workpieces (cb2wpar). The eventswp2-13, sf-2 andcb2-13 are shared
events with neighboring components (see Figure 5.2). They can occur as specified in Figure 5.16.

1 2 3 4sf-2

cb2-y

cb2-y cb2stp

cb2stp

cb2wpar

cb2wplv

cb2-13

wp2-13

G(0)
cb2

Figure 5.16: Automaton modelG(0)
cb2 of the conveyor belt cb2

The following requirements are specified for this conveyor belt.

• D(0)
cb2,1: cb2 is only allowed to move (cb2-y) if the eventssf-2 or cb2-13 occurred.

• D(0)
cb2,2: cb2 must stop (cb2stp) when a workpiece arrives at its sensor (cb2wpar).

• D(0)
cb2,3: The eventwp2-13 happens if a workpiece left (cb2wplv) and the conveyor belt

stopped.

• D(0)
cb2,4: The conveyor belt has to stop if a workpiece arrives or leaves.

Composing the four specifications asD(0)
cb2 = ||4i=1D(0)

cb2,i, an overall specification automaton with 7
states is derived as shown in Figure 5.17.

1

6 5 3

2 4
sf-2 cb2-y

cb2stp
cb2stp

cb2stp

cb2wpar

cb2wplv

cb2-13

wp2-13

D(0)
cb2

Figure 5.17: Specification automatonD(0)
cb2

98 CHAPTER 5 — MANUFACTURING SYSTEM CASE STUDY

The maximally permissive supervisor for this specificationimplements the supremal controllable
sublanguageκ

Lm(D(0)
cb2)

(

Lm(G(0)
cb2)

)

. It is recognized by the automatonR(0)
cb2 in Figure 5.18.

1 8

5 6 92 3

7 4

sf-2 cb2-y

cb2-y

cb2stp

cb2stpcb2wpar

cb2wplv

cb2-13

wp2-13R(0)
cb2

Figure 5.18: Supervised behavior of cb2 represented byR(0)
cb2

The shared events of cb2 with the other components of the distribution system areΣ(1)
cb2 ={sf-2,

cb2-13, wp2-13}. Abstracting with the projectionp(0,1)
cb2 : (Σ(0)

cb2)
∗ → (Σ(1)

cb2)
∗, the automaton repre-

sentationG(1)
cb2 on level 1 can be computed as shown in Figure 5.19. It is readily observed that the

PCS(R(0)
cb2, p(0,1)

cb2 ,G(1)
cb2) is locally nonblocking, marked string accepting and markedstring control-

lable.

3

1 2 1 2

3

sf-2

cb2-13
wp2-13wp2-13 wp3-12

wp3-12D(2)
distG(1)

cb2

Figure 5.19: Level 2 automatonG(1)
cb2 for cb2 and specificationD(2)

dist for the distribution system

5.3.4 Overall Distribution System

Having applied local control to the components of the distribution system, the overall system is
constructed on level 2 of the hierarchy. To this end, let the level 2 models of the stack feeder and the
conveyor belts cb2 and cb3 be equal to the level 1 models, i.e.G(2)

dist = G(1)
sf , G(2)

cb2= G(1)
cb2andG(2)

cb3=

G(1)
cb3. Then, the distribution system isG(2)

dist = G(2)
sf ||G

(2)
cb1||G

(2)
cb2||G

(2)
cb3. The automata representation

has 144 states. We now specify a desired behavior requiring that always two workpieces leave the
conveyor belt cb3 before one workpiece can leave cb2 (see Figure 5.19).

The supervisor automatonR(2)
dist on level 2 has 69 states. The shared events with the rest of the

manufacturing system arecb3-12, wp3-12, cb2-13 andwp2-13. Thus, the high-level event set
Σ(3)

dist ={cb3-12, wp3-12, cb2-13, wp2-13} is chosen. Abstracting the distribution system to the

third level results in the automatonG(3)
dist as depicted in Figure 5.20. The projected control system

SECTION 5.3 — SUPERVISORSYNTHESIS FOR THEDISTRIBUTION SYSTEM 99

(R(2)
dist, p(2,3)

dist ,G(3)
dist) is locally nonblocking, marked string accepting and markedstring controllable.

Thus the level-3 model of the distribution system can be usedas a component in the overall model
of the manufacturing system.

1

6 5 3

2 4cb3-12

cb3-12

wp3-12

wp3-12cb2-13

wp2-13

G(3)
dist

Figure 5.20: AutomatonG(3)
dist for the abstracted distribution system on level 3

The complete hierarchy is shown in Figure 5.21. It is interesting to take a closer look at the
high-level supervisor automata (highlighted by the shadedboxes) which have to be implemented
in the low level (for exampleR(2)

dist). All of them are live. Hence, because of Lemma 3.10, the
corresponding low-level supervisors do not have to be computed extra. The high-level supervisors
can directly be used for implementing the low-level control.

100 CHAPTER 5 — MANUFACTURING SYSTEM CASE STUDY

G(0)
cb1apu2

R(0)
cb1apu2

p(0,1)
cb1apu2

G(0)
cb1bpu1

R(0)
cb1bpu1

p(0,1)
cb1bpu1

G(1)
cb1apu2 G(1)

cb1bpu1G(1)
cb1connect

||

||

G(1)
cb1 R(1)

cb1

p(1,2)
cb1

G(2)
cb1

G(0)
sf

R(0)
sf

p(0,1)
sf

G(1)
sf

G(2)
sf

G(2)
dist R(2)

dist

p(2,3)
dist

G(3)
dist

R(0)
cb2

G(0)
cb2

p(0,1)
cb2

G(1)
cb2

G(2)
cb2

R(0)
cb3

G(0)
cb3

p(0,1)
cb3

G(1)
cb3

G(2)
cb3

Figure 5.21: Hierarchical architecture for the distribution system

SECTION 5.3 — SUPERVISORSYNTHESIS FOR THEDISTRIBUTION SYSTEM 101

5.3.5 Performance Evaluation

The level 3 model of the distribution system has been constructed starting from low-level models
of the different components sf, cb1apu2, cb1bpu1, cb1connect, cb2 and cb3. An overview of the
different automata with their respective state counts is given in Table 5.1.

Level 0

G(0)
sf D(0)

sf R(0)
sf G(0)

cb1apu2 D(0)
cb1apu2 R(0)

cb1apu2 G(0)
cb1bpu1 D(0)

cb1bpu1 R(0)
cb1bpu1

13 8 9 43 2 22 27 2 20

G(0)
cb2 D(0)

cb2 R(0)
cb2 G(0)

cb3 D(0)
cb3 R(0)

cb3
4 7 9 4 7 9

Level 1

G(1)
sf G(1)

cb1apu2 G(1)
cb1bpu1 G(1)

cb1connect
G(1)

cb2 G(1)
cb3 G(1)

cb1 D(1)
cb1 R(1)

cb1

1 8 6 7 3 3 67 78 39
Level 2

G(2)
sf G(2)

cb1 G(2)
cb2 G(2)

cb3 G(2)
dist D(2)

dist R(2)
dist

1 16 3 3 144 9 138
Level 3

G(3)
dist
6

Table 5.1: State quantities of the automata forming the distribution system

The monolithic approach is compared with the hierarchical and decentralized method for classi-
fying the computational effort of synthesis and implementation. The composite plant automaton
G(0)

dist = G(0)
sf ||G

(0)
cb1a||G

(0)
cb1b||G

(0)
cb1connect

||G(0)
pu1||G

(0)
pu2||G

(0)
cb2||G

(0)
cb3has 360 000 states and the monolithic

specification is represented by an automatonD(0)
dist with 3 ·106 states. Applying standard supervi-

sory control, the closed-loop automatonR(0)
dist has 400 000 states.

It is evident that the large number of states is caused by the fact that the state sizes of the compo-
nents are multiplied when the overall automaton is computed. Different from that, the decentral-
ized approach avoids computing the complete low-level model as it makes use of the decentralized
nature of the system.

On the low level, there are 5 decentralized supervisors witha sum of 71 states, on level 1 there
is one supervisor with 39 states and on the second level, there is also one supervisor with 69
states. Together, the hierarchical and decentralized supervisors have 179 states. The considerable

102 CHAPTER 5 — MANUFACTURING SYSTEM CASE STUDY

discrepancy in the state sizes of the different supervisor implementations originates from the fact
that the state sizes of the components have to be multiplied for the monolithic approach while they
are just added for the hierarchical and decentralized method. It is also important to note, that not
only the number of states of the decentralized supervisors is smaller, but also the complexity for
computing the supervisors is lower than for the monolithic approach.

Additionally, PLC code has been generated from the automatarepresentations of the hierarchical
and decentralized supervisors (see Figure 5.22 as an example) with a tool, that was developed in
a student project at our institute ([Fig05]). The automata representation is converted into PLC
functions, and practical issues such asconcurrencyand thesequence of commandsare addressed.
The PLC running the code generated from the hierarchical anddecentralized supervisors of the
distribution system operates the Fischertechnik simulation model correctly.

L "state"
JL END
JU A001
JU A002

...
JU A009
END BEU

// automata realization
a001: L 1

T "state".sf[0]
A001: A "event":sfwpar

R "event":sfwpar
JC a002
JU END

a002: L 2
T "state".sf[0]

A002: S "event".sf-cb1
JU a002

a003: L 3
T "state".sf[0]

A003: S "event".sfmv
JU a004

a004: L 4
T "state".sf[0]

a004: A "event".sfnr
R "event".sfnr
JC a005
JU END

a005: L 5
T "state".sf[0]

A005: A "event".sfwplv
R "event".sfwplv
JC a006
JU END

a006: L 6
T "state".sf[0]

A006: A "event".sfwpar
R "event".sfwpar
JC a008
A "event".sfr
R "event".sfr
JC a007
JU END

a007: L 7
T "state".sf[0]

A007: S "event".sfstp
JU a001

a008: L 8
T "state".sf[0]

A008: A "event".sfr
R "event".sfr
JC a009
JU END

a009: L 9
T "state".sf[0]

A009: S "event".sfstp
JU a002

Figure 5.22: PLC code for the level 0 supervisorR(0)
sf of the stack feeder

5.4 Hierarchical and Decentralized Control for the Manufac-
turing System

After the detailed description of the hierarchical and decentralized supervisor synthesis for the
distribution system, a controller for the overall Fischertechnik model is designed. To this end, the
manufacturing system is divided into the 6 structural entities shown in Figure 5.2. Thedistribution
systemis adopted from Section 5.3. The production cellspc1andpc2are composed of cb4, mh1,
d1, rt1, cb11, cb7 and cb6, mh2, d2, rt4, cb14, cb10, respectively. The components rt2, cb12,
cb8, cb5, rt3, cb13 and cb9 form a system component which allows of exchanging workpieces
between the different parts of the manufacturing system. Itis called the interchange systemics.
Also, there are two rail transport systems (rts1 and rts2) with conveyor belts (cb15 and cb16),

SECTION 5.4 — CONTROLLER DESIGN FOR THEMANUFACTURING SYSTEM 103

each combined with a roll conveyor (rc1 and rc2). As the main purpose of these components is
to remove workpieces from the manufacturing system, they are denotedexit1(rts1, cb15, rc1) and
exit2(rts2, cb16, rc2).

First, an overview of the functionality and supervisor synthesis for these components is worked out.
All locally controlled components are then composed to formthe overall manufacturing system and
finally, a supervisor for a high-level progress specification is synthesized.

5.4.1 Production Cell pc1

The production cell pc1 consists of the conveyor belt cb4, the machine with drill mh1d1, the
rotary table rt1 with the conveyor belt cb11 and the conveyorbelt cb7. Low-level models for these
components are derived analogously to Section 5.3.

cb4: Applying a similar specification as for cb2 in Section 5.3.3,the low-level closed-loop au-
tomatonR(0)

cb4 has 18 states and the projection on level 1 isG(1)
cb4 as depicted in Figure 5.23.

mh1d1: The machine head mh1 can move up and down, and the drill that isattached to it can
start its operation any time. The rest position of mh1 is the "upper" (+z) position, while workpieces
can be drilled when it is in the "lower" (-z) position. A supervisor, guaranteeing that the drill only
works in the down position and that the machine head only leaves its rest position if a workpiece
is to be processed, results in a closed-loop automatonR(0)

mh1d1 with 12 states. The level 1 model

G(1)
mh1d1has 2 states (see Figure 5.23).

1 2 6 1

4 5 23

1 2

4 3

cb12-4cb12-4

wp12-4wp12-4
cb11-4

wp11-4 cb4-12

cb4-11

cb4-11

wp4-11

wp4-11

wp4-12

mh1start mh1end

G(2)
cb4mh1d1G(1)

mh1d1G(1)
cb4

Figure 5.23: Conveyor belt cb4 with machine mh1d1 on level 1 and 2

cb4mh1d1: On level 1, the models of cb4 and mh1d1 are composed toG(1)
cb4mh1d1= G(1)

cb4||G
(1)
mh1d1

(12 states). For this component, it is specified that the conveyor belt cb4 is not allowed to move
if a workpiece is currently processed by the machine and thatthe machine is not allowed to move
as long as the conveyor belt is transporting workpieces. In addition to that, workpieces shall only

104 CHAPTER 5 — MANUFACTURING SYSTEM CASE STUDY

move from right to left. The maximal permissive supervisor automatonR(1)
cb4mh1d1implementing

this specification has 6 states. The projectionp(1,2)
cb4mh1d1on the shared events with the neighboring

components yields the automatonG(2)
cb4mh1d1with 4 states as shown in Figure 5.23.

rt1: The rotary table rt1 is equipped with 2 sensors, which indicate if rt1 is in the x- or in the
y-position5. The rotary table rt1 is able to turn clockwise from the x- to the y- position (event
rt1xy) and counterclockwise (rt1yx). A local controller guaranteeing that the rotary table only
stops at the sensors and that it always turns in the correct direction (minimal angle for reaching the
next sensor) is implemented with the supervisor automatonR(0)

rt1 . The projected level 1 automaton

G(1)
rt1 is presented in Figure 5.24.

cb11: The functionality of the conveyor belt cb11 is equivalent tocb4 (see Figure 5.24).

1 2 6

4 53

1 2

4 3

cb11-4

wp11-4

cb4-11

wp4-11

rt1xy

rt1y

rt1yx

rt1x
cb7-11

wp7-11 cb11-7

wp11-7

G(1)
rt1 G(1)

cb11

Figure 5.24: Rotary table rt1 with conveyor belt cb11

rt1cb11: The automatonG(1)
rt1cb11= G(1)

rt1 ||G
(1)
cb11 representing the behavior of the composition of

rt1 and cb11 has 14 states. It is desired that the rotary tabledoes not turn if the conveyor belt moves
and vice versa. Also, it is required that workpieces are always transported from the machine to the
next conveyor belt cb7. The closed-loop automatonR(1)

rt1cb11on level 1 has 8 states and its projection

G(2)
rt1cb11 is depicted in Figure 5.25.

cb7: The conveyor belt cb7 is just required to transport workpieces coming from the rotary table
rt1 to the rail transport system rts1. The level 2 abstraction G(2)

cb7 of the locally controlled system
has 4 states (see Figure 5.25).

pc1: With the locally controlled and abstracted componentsG(2)
cb4mh1d1, G(2)

rt1cb11 andG(2)
cb7, the

level 2 model of the production cell pc1 is evaluated toG(2)
pc1 = G(2)

cb4mh1d1||G
(2)
rt1cb11||G

(2)
cb7. This

5Figure 5.2 shows rt1 in the y-position and rt4 in the x-position.

SECTION 5.4 — CONTROLLER DESIGN FOR THEMANUFACTURING SYSTEM 105

automaton has 24 states. Applying the specification demanding that there be at most 2 workpieces
allowed in the production cell yields the supervisor automaton R(2)

pc1 with 20 states. The projection

on the shared eventsΣ(3)
pc1 ={cb12-4, wp12-4, cb7-15} results in the level 3 automatonG(3)

pc1 with
5 states as presented in Figure 5.25.

1 2

4 3

1 2

4 3

1 2

3

4

5

cb12-4

cb12-4

wp12-4wp12-4

cb4-11

wp4-11

cb11-7

cb11-7

wp11-7 wp11-7

cb7-15

cb7-15

cb7-15

cb7-15

wp7-15

G(3)
pc1G(2)

rt1cb11 G(2)
cb7

Figure 5.25: Level 2 models of rt1cb11 and cb7 and level 3 model of the production cellpc1

The automatonG(3)
pc1 in the above figure is the model of the complete component pc1 on level 3.

Note that all projected control systems involved in the hierarchy of pc1 are locally nonblocking
and marked string accepting. In addition to that, all low-level supervisors are consistent imple-
mentations of live high-level supervisors. Thus, it is guaranteed that the overall production cell is
nonblocking according to Theorem 3.1. The complete hierarchical architecture of the production
cell pc1 is shown in Figure 5.26, and the sizes of the different automata are listed in Table 5.2.

Level 0

G(0)
cb4 D(0)

cb4 R(0)
cb4 G(0)

mh1d1 D(0)
mh1d1 R(0)

mh1d1 G(0)
cb11 D(0)

cb11 R(0)
cb11

18 18 18 20 12 12 18 18 18

G(0)
rt1 D(0)

rt1 R(0)
rt1 G(0)

cb7 D(0)
cb7 R(0)

cb7
10 12 12 18 10 10

Level 1

G(1)
cb4 G(1)

mh1d1 G(1)
cb11 G(1)

rt1 G(1)
cb7 G(1)

cb4mh1d1 D(1)
cb4mh1d1 R(1)

cb4mh1d1 G(1)
rt1cb11

6 2 6 4 4 12 4 6 16

D(1)
rt1cb11 R(1)

rt1cb11
8 8

Level 2 Level 3

G(2)
cb4mh1d1 G(2)

rt1cb11 G(2)
cb7 G(2)

pc1 D(2)
pc1 R(2)

pc1 G(3)
pc1

4 4 4 24 5 20 3

Table 5.2: State quantities of the automata forming the production cell pc1

106 CHAPTER 5 — MANUFACTURING SYSTEM CASE STUDY

G(0)
rt1

R(0)
rt1

p(0,1)
rt1

G(0)
cb11

R(0)
cb11

p(0,1)
cb11

G(1)
rt1 G(1)

cb11

G(1)
cb4mh1d1

||

||

||

G(1)
rt1cb11 R(1)

rt1cb11

p(1,2)
rt1cb11

G(2)
rt1cb11

G(0)
cb10

R(0)
cb10

p(0,1)
cb10

G(1)
cb10

G(2)
cb10

G(2)
pc1 R(2)

pc1

p(2,3)
pc1

G(3)
pc1

R(0)
mh1d1

G(0)
mh1d1

p(0,1)
mh1d1

G(1)
mh1d1

R(1)
cb4mh1d1

R(0)
cb4

G(0)
cb4

p(0,1)
cb4

G(1)
cb4

p(1,2)
cb4mh1d1

G(2)
cb4mh1d1

Figure 5.26: Hierarchical architecture for the production cell pc1

SECTION 5.4 — CONTROLLER DESIGN FOR THEMANUFACTURING SYSTEM 107

5.4.2 exit1

The component exit1 consists of the subsystems rts1, cb15 and rc1. The rail transport system rts1
can move between the roll conveyor rc1 and the conveyor beltscb7, cb8 and cb9, and workpieces
are either loaded on or unloaded from the conveyor belt cb15.

rts1: The behavior of the rail transport system shall be restricted to either moving to rc1 or cb9
or coming back to the rest position at cb7. The supervisorR(0)

rts1 guarantees the specified behavior.

The abstracted automatonG(1)
rts1 on level 1 has 10 states.

cb15: Similar to cb6, it is required that cb15 only accept workpieces from cb7 and deliver to
either rc1 or cb9 (automatonR(0)

cb15). The projected automatonG(1)
cb15 on level 1 has 5 states.

rc1: The roll conveyor rc1 has space for 4 workpieces. It only detects the arrival and departure
of workpieces. The level 1 modelG(1)

rc1 is depicted in Figure 5.27.

exit1: Composing the exit systemG(1)
exit1 = G(1)

rts1||G
(1)
cb15||G

(1)
rc1 leads to a level 1 model with 58

states. The supervised systemR(1)
exit1 must fulfill the following requirements:

• cb15 must not move while rts1 is moving and vice versa.

• rts1 must wait at cb7 until a workpiece arrives

• if rts1 moves to rc1 or cb9, it must deliver a workpiece

The supervisor automaton has 28 states. Figure 5.27 presents the level 2 automatonG(2)
exit1 after the

projectionp(1,2)
exit1 to the level 2 event setΣ(2)

exit1 = {cb7-15, cb15-rc1, cb15-9, wp15-9}.

All projected control systems involved in the hierarchy of exit1 are locally nonblocking and marked
string accepting. In addition to that, all low-level supervisors are consistent implementations of live
high-level supervisors. Thus, it is guaranteed that the overall exit system is nonblocking according
to Theorem 3.1. The complete hierarchical architecture of exit1 is shown in Figure 5.28 and the
sizes of the different automata are listed in Table 5.3.

108 CHAPTER 5 — MANUFACTURING SYSTEM CASE STUDY

1

2 3

1 4

3

2

5 5
cb7-15

cb15-rc1

wp15-rc1

wp15-rc1
wp15-rc1wp15-rc1

cb15-9

wp15-9
rc1wplv

rc1wplv
rc1wplv

rc1wplv

rts1_7-9
rts1_7-rc1

G(1)
rc1 G(2)

exit1

Figure 5.27: Roll conveyor rc1 on level 1 and exit system exit1 on level 2

G(0)
cb15

R(0)
cb15

p(0,1)
cb15

G(0)
rts1

R(0)
rts1

p(0,1)
rts1

G(1)
cb15 G(1)

rts1G(1)
rc1

||

G(1)
exit1 R(1)

exit1

p(1,2)
exit1

G(2)
exit1

G(0)
cb16

R(0)
cb16

p(0,1)
cb16

G(0)
rts2

R(0)
rts2

p(0,1)
rts2

G(1)
cb16

G(1)
rts2 G(1)

rc2

||

G(1)
exit2 R(1)

exit2

p(1,2)
exit2

G(2)
exit2

Figure 5.28: Hierarchical architecture for the exit systems exit1 and exit2

SECTION 5.4 — CONTROLLER DESIGN FOR THEMANUFACTURING SYSTEM 109

Level 0

G(0)
rts1 D(0)

rts1 R(0)
rts1 G(0)

cb15 D(0)
cb15 R(0)

cb15
28 5 32 30 14 14

Level 1

G(1)
exit1 D(1)

exit1 R(1)
exit1 G(1)

rts1 G(1)
cb15 G(1)

rc1

30 9 14 5 10 3
Level 2

G(2)
exit1
5

Table 5.3: State numbers of the automata forming the exit system exit1

5.4.3 exit2

The component exit2 consists of the subsystems rts2, cb16 and rc2. The rail transport system rts2
can move between the roll conveyor rc2 and the conveyor belt cb8 and workpieces are either loaded
on or unloaded from the conveyor belt cb16.

rts2: The rail transport system rts2 is only allowed to move from its rest position at the conveyor
belt cb10 to the roll conveyor rc2. The supervisorR(0)

rts2 guarantees the specified behavior. The

abstracted automatonG(1)
rts2 on level 1 has 4 states.

cb16: The conveyor belt cb16, is required to deliver workpieces from cb10 to rc2. (automaton
R(0)

cb16). The projected automatonG(1)
cb16 on level 1 has 4 states.

rc2: The roll conveyor rc2 has the same behavior as rc1.

exit2: Computing the overall exit systemG(1)
exit2 = G(1)

rts2||G
(1)
cb16||G

(1)
rc2, leads to a level 1 model with

40 states.6 The supervised systemR(1)
exit2 must fulfill the following requirements:

• cb16 must not move if rts2 is moving and vice versa.

• rts2 must wait at cb10 until a workpiece arrives

6exit1 and exit2 are of symmetric structure. The difference betweenG(1)
exit1 andG(1)

exit2 results from the restriction
that exit2 is not allowed to unload workpieces to cb8.

110 CHAPTER 5 — MANUFACTURING SYSTEM CASE STUDY

• if rts1 moves to rc2, it must deliver a workpiece

The supervisor automatonR(2)
exit2 has 30 states. Figure 5.29 presents the level 2 automatonG(2)

exit2.
As this component works like a sink (accepting workpieces),it has just one state.

All projected control systems involved in the hierarchy of exit2 are locally nonblocking and marked
string accepting. In addition to that, all low-level supervisors are consistent implementations of live
high-level supervisors. Thus, it is guaranteed that the overall exit system is nonblocking according
to Theorem 3.1. The complete hierarchical architecture of exit2 is shown in Figure 5.28, and the
sizes of the different automata are listed in Table 5.4.

1

cb10-16G(2)
exit2

Figure 5.29: Exit system exit2 on level 2

Level 0

G(0)
rts2 D(0)

rts2 R(0)
rts2 G(0)

cb16 D(0)
cb16 R(0)

cb16
28 2 12 30 10 10

Level 1

G(1)
rts2 G(1)

cb16 G(1)
rc2 G(1)

exit2 D(1)
exit2 R(1)

exit2
4 2 5 40 6 30

Level 2

G(2)
exit2
1

Table 5.4: State numbers of the automata forming the exit system exit2

5.4.4 Production Cell pc2

The production cell pc2 is composed of the conveyor belt cb6,the machine with drill mh2d2,
the rotary table rt4 with the conveyor belt cb14 ,the conveyor belt cb10 and the exit system as
described in Section 5.4.3. The exit system exit2 is treatedas part of the production cell pc2, as
it only interacts with this system component. Interaction with other parts of the manufacturing
system is not specified. The supervisor synthesis for pc2 is similar to the approach in Section
5.4.1.

SECTION 5.4 — CONTROLLER DESIGN FOR THEMANUFACTURING SYSTEM 111

cb6: The conveyor belt cb6 has the same functionality as cb4.

mh2d2: The same supervisor as for the machine mh1d1 is synthesized for the machine mh2d2,
and the projection of the closed-loop behavior to level 1 is represented by the automatonG(1)

mh2d2

with 2 states analogously toG(1)
mh1d1.

cb6mh2d2: For the composed systemG(1)
cb6mh2d2= G(1)

cb6||G
(1)
mh2d2, it is specified that the conveyor

belt cb6 is not allowed to move if a workpiece is processed by the machine and that the machine
is not allowed to move as long as the conveyor belt is transporting workpieces. In addition to
that, workpieces are only allowed to enter cb6 from the conveyor belt cb13 (i.e. from -x). The
supervisor automatonR(1)

cb6mh2d2 implementing this specification has 7 states and the projection

p(1,2)
cb6mh2d2on the events shared with the neighboring components yieldsthe automatonG(2)

cb6mh2d2
with 5 states as shown in Figure 5.30.

rt4cb14 and cb10: The componentsG(2)
rt4cb14 and G(2)

cb10 are constructed like the components

G(2)
rt1cb11andG(2)

cb7 of pc1, respectively. They are depicted in Figure 5.30.

1 2

4 3

1 2

4 3

1 2

4 3

5

cb13-6

wp13-6

cb6-13

wp6-13

cb6-14

cb6-14
wp6-14

wp6-14

cb14-10

cb14-10

wp14-10 wp14-10

cb10-16

wp10-16

G(2)
cb10G(2)

rt4cb14G(2)
cb6mh2d2

Figure 5.30: Level 2 models of cb6mh2d2, rt4cb14 and cb10

exit2: For the exit system, the level 2 modelG(2)
exit2 in Figure 5.29 has already been elaborated.

pc2: The level 2 model of the production cell pc2 isG(2)
pc2 = G(2)

cb6mh2d2||G
(2)
rt4cb14||G

(2)
cb10||G

(2)
exit2.

This automaton has 31 states. Applying a specification, demanding that there are at most 2 work-
pieces in the production cell yields the supervisor automaton R(2)

pc2 with 25 states. The projection

on the shared eventsΣ(3)
pc2 = {cb13-6, wp13-6, cb6-13, wp6-13} results in the level 3 automaton

G(3)
pc2 with 4 states as presented in Figure 5.31.

112 CHAPTER 5 — MANUFACTURING SYSTEM CASE STUDY

1 2

4 3

cb13-6

cb13-6

wp13-6

cb6-13

wp6-13

G(3)
pc2

Figure 5.31: Level 3 model of the production cell pc2

Just as the production cell pc1, also pc2 is represented as a level 3 model. Note that all projected
control systems involved in the hierarchy of pc2 are locallynonblocking and marked string accept-
ing. In addition to that, all low-level supervisors are consistent implementations of live high-level
supervisors. Thus, it is guaranteed that the overall production cell is nonblocking according to
Theorem 3.1. The complete hierarchical architecture of theproduction cell pc2 is shown in Figure
5.32, and the sizes of the different automata are listed in Table 5.5.

Level 0

G(0)
cb6 D(0)

cb6 R(0)
cb6 G(0)

mh2d2 D(0)
mh2d2 R(0)

mh2d2 G(0)
cb14 D(0)

cb14 R(0)
cb14

18 18 18 20 12 12 18 18 18

G(0)
rt2 D(0)

rt2 R(0)
rt2 G(0)

cb10 D(0)
cb10 R(0)

cb10
10 12 12 18 10 10

Level 1

G(1)
cb6 G(1)

mh2d2 G(1)
cb14 G(1)

rt2 G(1)
cb10 G(1)

cb6mh2d2 D(1)
cb6mh2d2 R(1)

cb6mh2d2 G(1)
rt2cb14

6 2 6 4 4 12 4 7 16

D(1)
rt2cb14 R(1)

rt2cb14
4 8

Level 2 Level 3

G(2)
cb6mh2d2 G(2)

rt2cb14 G(2)
cb10 G(2)

pc2 D(2)
pc2 R(2)

pc2 G(3)
pc2

5 4 4 31 3 25 9

Table 5.5: State numbers of the automata forming the production cell pc2

SECTION 5.4 — CONTROLLER DESIGN FOR THEMANUFACTURING SYSTEM 113

G(0)
rt4

R(0)
rt4

p(0,1)
rt4

G(0)
cb14

R(0)
cb14

p(0,1)
cb14

G(1)
rt4 G(1)

cb14

G(1)
cb6mh2d2

||

||

||

G(1)
rt4cb14 R(1)

rt4cb14

p(1,2)
rt4cb14

G(2)
rt4cb14

G(0)
cb10

R(0)
cb10

p(0,1)
cb10

G(1)
cb10

G(2)
cb10

G(2)
pc2 R(2)

pc2

p(2,3)
pc2

G(3)
pc2

R(0)
cb6

G(0)
cb6

p(0,1)
cb6

G(1)
cb6

R(1)
cb6mh2d2

R(0)
mh2d2

G(0)
mh2d2

p(0,1)
mh2d2

G(1)
mh2d2

p(1,2)
cb6mh2d2

G(2)
cb6mh2d2 G(2)

exit2

Figure 5.32: Hierarchical architecture for the production cell pc2

114 CHAPTER 5 — MANUFACTURING SYSTEM CASE STUDY

5.4.5 Interchange System ics

The interchange system consists of the rotary tables rt2 andrt3 with the conveyor belts cb12 and
cb13, respectively, the conveyor belt cb5 and the conveyor belt cb9. It is the most complex compo-
nent of the manufacturing system, as it allows transportation of workpieces from the distribution
system to all other components of the manufacturing system as well as exchange of workpieces
between the different components.7

cb12: The conveyor belt cb12 is allowed to receive workpieces fromcb3 or cb5, and it can deliver
workpieces only to cb4. The level 1 automatonG(1)

cb12 has 5 states.

rt2: The rotary table rt2 has the same functionality as rt1. It canrotate clockwise (from x to y)
and counterclockwise (from y to x). On level 1, the automatonG(1)

rt2 has 4 states.

rt2cb12: For the compositionG(1)
rt2cb12= G(1)

rt2 ||G
(1)
cb12of the rotary table rt2 with the conveyor belt

cb12, the following specifications are required.

• rt2 is only allowed to move if cb2 does not move and vice versa.

• cb3-12 must only happen if the rotary table is oriented in the y direction.

• cb5-12 andcb12-4 must only occur if the rotary table points in the x direction.

• workpieces are accepted from cb3 and cb5 and are delivered tocb4.

After synthesizing a supervisor for this specification and projecting to level 2, the automaton
G(2)

rt2cb12has 6 states. It is shown in Figure 5.33.

cb5: The conveyor belt cb5 gets workpieces from cb13 and deliversthem to cb12. (seeG(2)
cb5 in

Figure 5.33).

7Note that the conveyor belt cb8 is not used in this example as is not needed for the specified operation.

SECTION 5.4 — CONTROLLER DESIGN FOR THEMANUFACTURING SYSTEM 115

1

2 4 5

3 6 1 2

4 3

cb13-5

wp13-5

cb5-12

cb5-12

wp5-12wp5-12
rt2xy

cb3-12 wp3-12

cb12-4

wp12-4G(2)
rt2cb12 G(2)

cb5

Figure 5.33: Level 2 automataG(2)
rt2cb12andG(2)

cb5 of rt2cb12 and cb5

cb13: The conveyor belt cb13 can receive workpieces from cb2, cb6 or cb9 and deliver work-
pieces to cb6 or cb5. The level 1 modelG(1)

cb13 has 7 states.

rt3: The rotary table rt3 behaves analogously to rt2.

rt3cb13: The automatonG(1)
rt3cb13= G(1)

rt3cb13||G
(1)
rt3cb13yields 32 states. The specifications for this

component are

• rt3 can only move if cb13 does not move.

• workpieces can be received from cb9 and or cb2 if the rotary table is in the y position.

• workpieces can be delivered to cb5 or cb6 or received from cb6only if rt3 is in the x position.

• workpieces which arrive from cb6 have to be transported to cb5

• workpieces coming from cb2 or cb9 must be delivered to cb6.

The level 2 automaton after implementing this specificationis G(2)
rt3cb13with 9 states.

cb9: The conveyor belt cb9 receives workpieces from cb15 and delivers them to cb13.

Figure 5.34 shows the automataG(2)
rt3cb13andG(2)

cb9.

116 CHAPTER 5 — MANUFACTURING SYSTEM CASE STUDY

3

1 21 2

6 7 53 8

4 9

4
cb13-5

wp13-5 cb9-13

cb9-13

wp9-13

wp9-13

cb2-13

wp2-13

rt3xy

cb13-6

wp13-6

cb6-13

wp6-13

cb15-9

wp15-9

G(2)
rt3cb13 G(2)

cb9

Figure 5.34: Level 2 automata of rt3cb13 and cb9

is: The overall interchange systemG(2)
ics = G(2)

rt2cb12||G
(2)
rt3cb13||G

(2)
cb5||G

(2)
cb9 has 93 states. It is de-

sired that

• workpieces which come from cb2 go to cb6, come back to cb13 andare delivered to cb5.

• workpieces which come from cb9 go to cb6 and do not come back.

Applying the specification and projecting to level 3, the automatonG(3)
ics has 50 states.

As all decentralized projected control systems in the hierarchy of the interchange system are locally
nonblocking, marked string accepting and marked string controllable, it is possible to useG(3)

ics as
a decentralized component of the overall manufacturing system.

Level 0

G(0)
cb12 D(0)

cb12 R(0)
cb12 G(0)

rt2 D(0)
rt2 R(0)

rt2 G(0)
cb13 D(0)

cb13 R(0)
cb13

34 14 14 10 12 12 34 23 23

G(0)
rt3 D(0)

rt3 R(0)
rt3 G(0)

cb5 D(0)
cb5 R(0)

cb5 G(0)
cb9 D(0)

cb9 R(0)
cb9

10 12 12 18 10 10 26 10 10
Level 1

G(1)
cb12 G(1)

rt2 G(1)
cb13 G(1)

rt3 G(1)
cb5 G(1)

cb9 G(1)
rt2cb12 D(1)

rt2cb12 R(1)
rt2cb12

5 4 7 4 4 4 20 5 9

G(1)
rt3cb13 D(1)

rt3cb13 R(1)
rt3cb13

32 5 12
Level 2 Level 3

G(2)
rt2cb12 G(2)

rt3cb13 G(2)
ics D(2)

ics R(2)
ics G(3)

ics
6 9 93 5 81 50

Table 5.6: State numbers of the automata of the interchange system ics

SECTION 5.4 — CONTROLLER DESIGN FOR THEMANUFACTURING SYSTEM 117

G(0)
rt2

R(0)
rt2

p(0,1)
rt2

G(0)
cb12

R(0)
cb12

p(0,1)
cb12

G(1)
rt2 G(1)

cb12

G(1)
rt3cb13

||

||

||

G(1)
rt2cb12 R(1)

rt2cb12

p(1,2)
rt2cb12

G(2)
rt2cb12

G(0)
cb5

R(0)
cb5

p(0,1)
cb5

G(1)
cb5

G(2)
cb5

G(2)
ics R(2)

ics

p(2,3)
ics

G(3)
ics

R(0)
cb13

G(0)
cb13

p(0,1)
cb13

G(1)
cb13

R(1)
rt3cb13

R(0)
rt3

G(0)
rt3

p(0,1)
rt3

G(1)
rt3

p(1,2)
rt3cb13

G(2)
rt3cb13

G(0)
cb9

R(0)
cb9

p(0,1)
cb9

G(1)
cb9

G(2)
cb9

Figure 5.35: Hierarchical architecture for the interchange system is

118 CHAPTER 5 — MANUFACTURING SYSTEM CASE STUDY

5.4.6 Overall Manufacturing System

After synthesizing supervisors for all decentralized components of the manufacturing system ms,
supervisory control is applied to the overall system on level 3. The resulting automaton
G(3)

ms = G(3)
dist||G

(3)
ics||G

(3)
pc1||G

(3)
pc2||G

(3)
exit1 has 863 states. The following functionality is specified for

the global plant:

• workpieces coming from cb3 have to go to cb9 via the rail transport system rts1.

• workpieces coming from cb5 have to go to the roll conveyor rc1.

The specification determines the order in which workpieces have to be distributed by exit1 after
their arrival from different directions at rt2cb12. The automaton realization of the specification
D(3)

ms has 7 states and is depicted in Figure 5.36.

1 4

2 5 73

6
cb5-12

cb5-12

cb5-12

rts1_7-rc1

rts1_7-rc1

rts1_7-9

rts1_7-9

rts1_7-9
rts1_7-9

cb3-12

cb3-12

cb3-12

D(3)
ms

Figure 5.36: Level 3 specification automatonD(3)
ms for the manufacturing system

The supremal controllable sublanguageκ
Lm(D(3)

ms)

(

Lm(G(3)
ms)

)

is recognized by the canonical recog-

nizerR(3)
ms with 4700 states.

G(3)
ms D(3)

ms R(3)
ms

863 7 4700

Table 5.7: State numbers for the manufacturing system on level 3

The supervisorR(3)
ms handles the coordination of tasks for the overall system, such as the cooper-

ation of the decentralized system components. The overall plant is a composition of nonblocking
components, which were derived by successive application of the hierarchical and decentralized
control method presented in Chapter 4.

Globally, the closed-loop functionality of the manufacturing system is as follows.

SECTION 5.5 — SUMMARY 119

• the distribution system provides workpieces via the conveyor belts cb2 and cb3. There are
always 2 workpieces coming from cb3 before one workpiece is delivered by cb2.

• workpieces arriving from cb2 are processed by the machine mh2d2, sent to machine mh1d1
via cb5 and then unloaded on the roll conveyor rc1.

• workpieces coming from cb3 are first processed by machine mh1d1, then transported to
mh2d2 via rts1 and cb9 and finally unloaded on the roll conveyor rc2 via rt2s.

The path of the two different types of workpieces is illustrated in Figure 5.37.

Figure 5.37: Flow of workpieces specified for the manufacturing system

Note that the paths cross at the rotary tables rt2 and rt3. This potential interaction of workpieces
is the reason why blocking is possible in the manufacturing system. Yet, because of Theorem 4.2,
the hierarchical and decentralized supervisor synthesis guarantees that situations where blocking
can occur are avoided.

5.5 Summary

For the manufacturing system, supervisor synthesis on 3 levels has been carried out. The system
is composed of 28 components on the low level, and an estimated monolithic low-level model

120 CHAPTER 5 — MANUFACTURING SYSTEM CASE STUDY

reaches 1024 states, while the state count of the decentralized models onlevel 0 adds up to 517.
A monolithic supervisor for the manufacturing system wouldhave an estimated number of 1030

states. Both computation and implementation of the supervisors are infeasible for this scale.

Synthesis in the hierarchical and decentralized frameworkresults in 39 decentralized supervisors
on 3 levels. Altogether, they can be implemented in parallelwith a total number of 5388 states.
Correct operation of the manufacturing system could be determined after generating PLC-code
from the hierarchical and decentralized supervisors ([Fig05]).

Chapter 6

Conclusions

The supervisory control of large scale composed discrete event sytems (DES) involves computa-
tions on states spaces which grow exponentially with the number of system components. In this
dissertation, a method for exploiting the decentralized structure of composed systems in combina-
tion with a hierarchical abstraction is presented.

The mathematical concept offormal languages, which is used for describing the dynamical behav-
ior of discrete event systems, is outlined in Chapter 2. For the sake of clarity, the basic ideas of the
Ramadge/Wonham (RW) supervisoy control theory are elaborated in a pure language framework.
The link to the equivalent automata formulation is also established.

In Chapter 3, our centralized hierarchical approach is developed. It involves abstracting a dis-
crete event system to a smaller high-level model, performing supervisory control for the high-level
system, and computing a low-level implementation of the high-level supervisor. Thehierarchical
closed loop systemcaptures this hierarchical architecture. Thenatural projectionis used for the
system abstraction, and high-level supervisors are translated to the low level via theconsistent
implementation. On all levels of the hierarchy, the RW framework is employed. Our hierarchi-
cal approach can be applied if the system islocally nonblockingandmarked string accepting. If
these structural conditions are fulfilled, then eitherlivenessof the high-level closed loop behavior
or marked string controllabilityof the low-level system guaranteehierarchically consistentand
nonblockingcontrol.

The chapter also provides algorithms for the verification ofthe structural conditions. They are
based on an automata representation of the low-level discrete event system. It is important to note,
that the overall low-level model of the system has to be considered for computing the high-level
model.

Addressing this issue, Chapter 4 extends our monolithic hierarchical approach todecentralized
discrete event systems. Each of the subsystems is considered as a hierarchical closed loop system,

122 CHAPTER 6 — CONCLUSIONS

and the hierarchical abstraction captures the shared behavior of the subsystems. Analogously to
the consistent implementation for the centralized case, adecentralized consistent implementation
realizes the control action on the low level. If the same conditions as in Chapter 3 are fulfilled for
all subsystems, then hierarchically consistent and nonblocking control is guaranteed. The crucial
advantage of the decentralized approach is that the overalllow-level system need not be computed.
It is possible to first abstract the low-level subsystems andthen compose the high-level model,
which reduces the computational effort tremendously. In addition to that, decentralized low-level
supervisors for the different subsystems are implemented instead of one low level supervisor for
the overall system, and they are coordinated by the high-level supervisor.

The computational benefit of our method is illustrated by a large scale example in Chapter 5.
The manufacturing system used in the example comprises 28 components, and it has an estimated
number of 1024 states. We synthesize 39 decentralized supervisors by using our hierarchical and
decentralized method with 4 levels of abstraction and control. They can be implemented individ-
ually with an average number of 140 states. In comparison, for a monolithic implementation, we
would expect a supervisor of order 1030 states.

There are two alternative supervisory control approaches which can handle large scale discrete
event systems. The method presented in [Led02] is based on aclient server architecture. It is
applied to the "Atelier Inter-établissement de Productique" (AIP) example of order 1021 states. In
[Ma04], a top-down view on large discrete event systems is employed. A supervisor for a version
of the AIP example with 1024 states could be computed ([MW03]) by usingstate tree structures
for structured system modeling. Our laboratory case study (Chapter 5) is of a similar scale, and
our results compare well with [Led02, Ma04].

Appendix A

Proofs

The appendix provides proofs of several lemmas and theoremsthat were omitted in the previous
chapters.

A.1 Projection of a Regular Language

Lemma 2.3 (Projection of a Regular Language)
Let L ⊆ Σ∗ be a regular language and letp0 : Σ∗ → Σ∗

0 with Σ0 ⊆ Σ be the natural projection. Then
p0(L) is regular.

Proof: (Outline) Section 3.4.1 provides an algorithm which computes a deterministic finite
automaton recognizing the projection of a regular language. Thus, the projection of a regular
language is also regular. �

A.2 Computation of the Projection

A.2.1 Space Complexity

Theorem 3.3 (Space complexity of the natural projection)
Let (H, phi,Hhi) be a marked string accepting and locally nonblocking projected system with the
automata representation(G,Ghi). Then,Ghi has an equal or smaller number of states asG, i.e.
|Xhi| ≤ |X|.1

The result is derived from a theorem in [Won97]. The following terms are used in this theorem.

1Note that bothG andGhi are canonical recognizers.

124 APPENDIX A. PROOFS

Definition A.1 (Causal Reporter Map [ZW90])
Let L ⊆ Σ∗ and letΣhi be another event alphabet. A mapθ : L → (Σhi)∗ is a causal reporter map, if

θ(ε) = ε,

θ(sσ) =

{

eitherθ(s)
or θ(s)σhi, for someσhi ∈ Σhi.

�

Definition A.2 (K-Observer)
Let θ : Σ∗ → (Σhi)∗ be a causal reporter map, and letL,K be languages withK ⊆ L ⊆ Σ∗. θ is a
K-observer forL, iff it holds that for arbitrarys∈ L andt ∈ (Σhi)∗

θ(s)t ∈ θ(K) ⇒∃u∈ Σ∗ s.t. su∈ K andθ(su) = θ(s)t. (A.1)

�

In the next lemma, we show that the projection to the high-level event set constitutes an observer
for marked string accepting and locally nonblocking projected control systems.

Lemma A.1
Let P = (H, phi,Hhi) be a marked string accepting and locally nonblocking projected control sys-
tem with a nonblocking control systemH. Thenphi is aL2-observer forL1. �

Proof: First note thatphi is a causal reporter map and thatL2 ⊆ L1. Equation A.1 has to be
verified. Assume thats∈ L1, shi := phi(s) andt ∈ (Σhi)∗ s.t. shit ∈ Lhi

2 = phi(L2). t is represented
as t = σ0σ1 · · ·σm with σ0 = ε and σi ∈ Σhi for i = 1, . . . ,m. It can be shown that there is a
u′ = u0σ0u1 · · ·umσm ∈ Σ∗ with ui ∈ (Σ−Σhi, i = 1, . . . ,m s.t. su′ ∈ L1, by induction. The base
case is true assu0σ0 = s∈ L1. Now assume thatsu0σ0u1 · · ·uiσi ∈ L1 for i < m. As P is locally
nonblocking, there exists aui+1 ∈ (Σ−Σhi)∗ s.t.su0σ0 · · ·σiui+1σi+1 ∈ L1 (Definition 3.9). As this
is true for alli < m, it holds that there is au′ = u0σ0u1 · · ·umσm∈ Σ∗ s.t.su′ ∈ L1, phi(su′) = phi(s)t,
and because of the construction ofu′, su′ ∈ Len,shit .

Now it has to be shown that there is a local stringu′′ ∈ (Σ−Σhi)∗ s.t. su′u′′ ∈ L2. There are two
cases. First consider the case, whereΣhi(shi) = /0. As H is nonblocking, there must be suchu′′.
Secondly, letΣhi(shi) 6= /0 and chooseσ ∈ Σhi(shi). Then, there is a ˜u∈ (Σ−Σhi)∗ s.t. su′ũσ ∈ L1,
becauseP is locally nonblocking. Considering thatP is also marked string accepting, there exists
a u′′ ≤ ũ s.t. su′u′′ ∈ L2. Hence, in all cases there is a stringu = u′u′′ s.t. su∈ L2 and phi(su) =

phi(s)phi(u) = phi(s)t. �

SECTION A.2 — COMPUTATION OF THEPROJECTION 125

The result from [Won97] is recalled.

Lemma A.2 ([Won97])
Let G be a minimal, trim2, finite generator withΣ as its event alphabet. LetΣhi ⊆ Σ and phi be
the corresponding natural projection. Suppose thatphi is anLm(G)-observer forL(G). Then the
number of states of the canonical recognizer ofphi(Lm(G)) is less or equal to the number of states
of G. �

We now prove Theorem 3.3 by relating Lemmas A.1 and A.2.

Proof: An automata representationG of the control systemH in Lemma A.1 is finite and trim
because of Lemma 2.9. AsLm(G) = L2 andL(G) = L1, it holds thatphi is anLm(G)-observer of
L(G), and thus Lemma A.2 can be applied. �

A.2.2 Time Complexity

Theorem 3.4 (Time complexity of the natural projection)
Let (H, phi,Hhi) be a marked string accepting and locally nonblocking projected system with the
automata representation(G,Ghi). The time complexity of computingGhi is at worst polynomial in
the state size ofG and the number of high-level eventsΣhi.

The corresponding result from [Won97] is given in the following lemma.

Lemma A.3 ([Won97])
Let G be a trim, finite generator withΣ as its event alphabet. LetΣhi ⊆ Σ andphi be the correspond-
ing natural projection. Suppose thatphi is anLm(G)-observer forL(G). Then the time complexity
of computing a generator forphi(Lm(G)) is at worst polynomial (in terms of the size ofG and the
size ofΣhi). �

We relate Lemmas A.1 and A.3 for showing Theorem 3.4.

Proof: An automata representationG of the control systemH in Lemma A.1 is finite and trim
because of Lemma 2.9. AsLm(G) = L2 andL(G) = L1, it holds thatphi is anLm(G)-observer of
L(G), and thus Lemma A.3 can be applied. �

2A generatorG is trim if Lm(G) = L(G).

126 APPENDIX A. PROOFS

A.3 Computation of the High-Level Plant

Proposition 4.1 (High Level Plant [SRM04, SMP05])
Let (||ni=1Hi, phi, ||ni=1Hhi

i) be a projected decentralized control system. Then the high level control
system isHhi = phi(||ni=1Hi) = ||ni=1pdec

i (Hi).

Lemma A.4 is used for proving Proposition 4.1.

Lemma A.4
Let L1 ⊆ Σ∗

1, . . . ,Ln ⊆ Σ∗
n be languages over the alphabetsΣ1, . . . ,Σn. Assume thatΣ0 ⊆ (Σ1∪·· ·∪

Σn) and
n
⋃

i, j,i 6= j
(Σi ∩Σ j) ⊆ Σ0 with the natural projectionsp0 : (Σ1∪ ·· ·∪Σn)

∗ → Σ∗
0 andp′i : Σ∗

i →

(Σi ∩Σ0)
∗, i = 1, . . . ,n. Then

p0(L1|| · · · ||Ln) = p′1(L1)|| · · · ||p
′
n(Ln).

�

We use a result from [Won04, dQ00] for proving Lemma A.4.

Lemma A.5
Let Σa andΣb be alphabets and letLa ⊆ Σ∗

a andLb ⊆ Σ∗
b. AssumeΣ0 ⊆ Σa∪Σb andΣa∩Σb ⊆ Σ0

with the natural projectionsp0 : (Σa∪Σb)
∗ → Σ∗

0, p′a : Σ∗
a → (Σ0∩Σa)

∗ andp′b : Σ∗
b → (Σ0∩Σb)

∗.
Thenp0(La||Lb) = p′a(La)||p′b(Lb). �

Proof: Several natural projections on different alphabets are needed in this proof. For conve-
nience they are listed below.

p0 : (Σa∪Σb)
∗ → Σ∗

0
p′a : Σ∗

a → (Σa∩Σ0)
∗ p′b : Σ∗

b → (Σb∩Σ0)
∗

pa : (Σa∪Σb)
∗ → Σ∗

a pb : (Σa∪Σb)
∗ → Σ∗

b
p0,a : Σ∗

0 → (Σa∩Σ0)
∗ p0,b : Σ∗

0 → (Σb∩Σ0)
∗

First, p0(La||Lb) ⊆ p′a(La)||p′b(Lb) is shown. Assumet ∈ p0(La||Lb). Then there exists as∈
La||Lb, s.t. p0(s) = t and alsopa(s) ∈ La and pb(s) ∈ Lb. Consequently,p′a(pa(s)) ∈ pa(La) and
p′b(pb(s)) ∈ pb(Lb). Observing thatp0,a(t) = p0,a(p0(s)) = p′a(pa(s)) ∈ p′a(La) and p0,b(t) =

p0,b(p0(s)) = p′b(pb(s)) ∈ p′b(Lb), it holds thatt ∈ (p0,a)
−1

(

p′a(pa(s))
)

∩ (p0,b)
−1

(

p′b(pb(s))
)

⊆ (p0,a)
−1

(

p′a(La)
)

∩ (p0,b)
−1

(

p′b(Lb)
)

= p′a(La)||p′b(Lb).

Now, p′a(La)||p′b(Lb) ⊆ p0(La||Lb) is proven. Lett ∈ p′a(La)||p′b(Lb). Thenp0,a(t) ∈ p′a(La) and
p0,b(t)∈ p′b(Lb). Thus, there exists asa∈ La and asb∈ Lb s.t. p′a(sa) = p0,a(t) andp′b(sb) = p0,b(t).
Using the fact thatΣa∩Σb ⊆ Σ0, there is also a strings∈ La||Lb s.t. pa(s) = sa and pb(s) = sb.
It holds thats∈ (pa)

−1
(

(p′a)
−1

(

p0,a(t)
))

||(pb)
−1

(

(p′b)
−1

(

p0,b(t)
))

. Hence,p0(s) = t and with
s∈ La||Lb it follows thatt ∈ p0(La||Lb). �

SECTION A.4 — FEASIBLE PROJECTEDDECENTRALIZED CONTROL SYSTEMS 127

Now Lemma A.4 is shown by induction.

Proof: Note that the same notation as in the proof of Lemma A.5 is usedfor the natural projec-
tions. In addition to that, the following notation is introduced.

Σ′
k :=

⋃k
i=1Σi, k = 1, . . . ,n

Σ0,k := Σ0∩Σ′
k, k = 1, . . . ,n p0,k : (Σ′

k)
∗ → Σ∗

0,k

It has to be shown thatp0,2(L1||L2) = p′1(L1)||p′2(L2) for the base case. Observing thatΣ1∩Σ2 ⊆

Σ0,2, Lemma A.5 provides the desired result forΣa = Σ1 andΣb = Σ2. For the induction step,
assume thatp0,l−1(L1|| · · · ||Ll−1) = p′1(L1)|| · · · p′l−1(Ll−1). We show that alsop0,l (L1|| · · · ||Ll−1||

Ll) = p′1(L1)|| · · · p′l−1(Ll−1)||p′l (Ll). GroupingL1, . . . ,Ll , we defineΣa := Σ′
l−1, Σb := Σl , La :=

L1|| · · ·Ll−1 andLb := Ll . Also note thatΣ′
l−1∩Σl ⊆ Σ0,l . Using this terminology, Lemma A.5 can

directly be applied. It holds thatp0,l
(

(L1|| · · · ||Ll−1)||Ll
)

= p0,l−1(L1|| · · · ||Ll−1)||pl (Ll) and with
the induction assumptionp0,l (L1|| · · · ||Ll−1||Ll) = p′1(L1)|| · · · p′l−1(Ll−1)||p′l (Ll). As 2≤ l ≤ n
was arbitrary, Lemma A.4 follows. �

The projected decentralized control system is defined such that the high-level alphabet is a superset
of the shared events of the decentralized subsystems. Observing this, it is clear that for the lan-
guagesLi,1 andLi,2 of the decentralized subsystems, Lemma A.4 can be applied. This concludes
the proof of Proposition 4.1.

Proof: Proposition 4.1 follows directly by applying Lemma A.4 toL1,1, . . ., Ln,1 andL1,2, . . .,
Ln,2. �

A.4 Feasible Projected Decentralized Control Systems

Lemma 4.1
Let Hi , H f

i , Hhi
i andHhi,f

i , i = 1, . . . ,n be defined as in Definition 4.3. Then

||ni=1Hhi
i = ||ni=1Hhi,f

i and ||ni=1Hi = ||ni=1H f
i .

We will use the following lemma in the proof of Lemma 4.1. It states that the synchronous com-
position of projections of a language includes the originallanguage.

Lemma A.6
Let L ∈ Σ∗ be a language and define the natural projectionspi : Σ∗ → Σ∗

i , i = 1, . . . ,n, whereΣi ⊆ Σ
and

⋃n
i=1Σi = Σ. Then it holds that

L ⊆ ||ni=1pi(L).

�

128 APPENDIX A. PROOFS

Proof: Let s ∈ L. Then s ∈ p1(s)|| · · · ||pn(s) = p1(s)||(Σ − Σ1)
∗ ∩ ·· · ∩ pn(s)||(Σ − Σn)

∗ ⊆

||ni=1pi(L). �

With this result, Lemma 4.1 can be shown.

Proof: At first, ||ni=1Hhi
i ⊆ ||ni=1Hhi,f

i , i.e. ||ni=1Lhi
i,1 ⊆ ||ni=1Lhi,f

i,1 and||ni=1Lhi
i,2 ⊆ ||ni=1Lhi,f

i,2 is proven.

The result follows, oberving that||ni=1Lhi
i,1 = Lhi

1 ⊆ ||ni=1phi
i (Lhi

1) = ||ni=1Lhi,f
i,1 because of Lemma A.6.

The same argument holds for the languagesLhi
i,2.

For the reverse direction, it can be written that

||ni=1Lhi,f
i,1 = ||ni=1phi

i (Lhi)

= ||ni=1phi
i

(

||nk=1Lhi
k,1

)

⊆ ||ni=1

(

phi
i (Lhi

1,1)|| · · · ||p
hi
i (Lhi

n,1)
)

=
(

||ni=1(phi
i (Lhi

1,1))
)

|| · · · ||
(

||ni=1(phi
i (Lhi

n,1))
)

= Lhi
1,1|| · · · ||L

hi
n,1

= ||ni=1Lhi
i,1

Thus||ni=1Hhi,f
i ⊆ ||ni=1Hhi

i and||ni=1Hhi
i ⊆ ||ni=1Hhi,f

i and hence||ni=1Hhi
i = ||ni=1Hhi,f

i .

Now ||ni=1Li,1 = ||ni=1Lf
i,1 shall be proven. Considering Definition 4.3,Lf

i,1 ⊆ Li,1 for all i = 1, . . . ,n.
Thus||ni=1Lf

i,1 ⊆ ||ni=1Li,1. For showing the reverse direction, assumes∈ ||ni=1Li,1. Thenphi(s)∈ Lhi
1

and thusphi
i (phi(s)) ∈ Lhi,f

i,1 for all i = 1, . . . ,n. As pi(s) ∈ Li,1 andpdec
i (pi(s)) = phi

i (phi(s)) ∈ Lhi,f
i,1 ,

it holds thatpi(s) ∈ Lf
i,1. It is readily observed that the same argument holds for the languages

||ni=1Li,2 and||ni=1Lf
i,2. Hence,||ni=1Hi = ||ni=1H f

i . �

A.5 Mutual Controllability

Lemma 4.2
Let (‖n

i=1H f
i , phi,‖n

i=1Hhi,f
i) be a feasible projected decentralized control system and let Shi be a

high-level supervisor for the overall high-level systemHhi. If the high-level subsystemsHhi,f
i ,

i = 1, . . . ,n are mutually controllable, i.e.∀i, j = 1, . . . ,n, i 6= j

Lhi,f
j,1 (Σi,uc∩Σ j,uc)∩ (p j,i)

−1(pi, j(L
hi,f
i)

)

⊆ Lhi,f
j ,

thenphi
i (Lhi,c

1) is controllable w.r.t.Lhi,f
i,1 for all i = 1, . . . ,n.

We establish the following useful properties of mutually controllable languages.

SECTION A.5 — MUTUAL CONTROLLABILITY 129

Lemma A.7
Let L1,L2, . . . ,Ln be mutually controllable fori, j = 1, . . . ,n, i 6= j. Let si ∈ Li s.t. siσ ∈ Li with
σ ∈

⋃n
j=1, j 6=i(Σi,uc∩Σi,uc). Then∀sj ∈ L j s.t. p j,i(sj) = pi, j(si), it holds thatsjσ ∈ L j . �

Proof: Let j s.t. σ ∈ Σ j . Because of mutual controllability,L jσ∩ (p j,i)
−1(pi, j(Li)) ⊆ L j . With

p j,i(sj)= pi, j(si), alsop j,i(sj)σ = pi, j(siσ)= pi, j(si)σ. Then, it holds thatsjσ∈ (p j,i)
−1(pi, j(siσ))

⊆ (p j,i)
−1(pi, j(Li)) assiσ ∈ Li. Thussjσ ∈ L j . �

Lemma A.8
Let L1,L2, . . . ,Ln be mutually controllable fori, j = 1, . . . ,n, i 6= j and letL := ||ni=1Li. Assume
si ∈ Li andσ ∈

⋃n
j=1, j 6=i(Σi,uc∩Σ j,uc) s.t. siσ ∈ Li. Then∀s∈ L s.t. pi(s) = si, it holds thatsσ ∈ L.

�

Proof: Because of Lemma A.7,∀ j s.t. σ ∈ Σ j it is true thatp j(s)σ ∈ L j . For all j with σ 6∈ Σ j ,
p j(s)σ ∈ L j ||(Σ−Σ j)

∗. Thuss∈ L = ||nk=1Lk =
(

L1||(Σ−Σ1)
∗
)

∩·· ·∩
(

Ln||(Σ−Σn)
∗
)

. �

We prove Lemma 4.2, using the properties stated in Lemma A.7 and Lemma A.8.

Proof: It has to be shown that the languagephi
i (Lhi,c

1) is controllable w.r.t.Lhi,f
i,1 .

Assuming the contrary, it has to be the case that∃σ∈ Σhi
i,uc andshi

i ∈ Lhi,f
i,1 ∩ phi

i (Lhi,c
1), s.t.shi

i σ∈ Lhi,f
i,1

andshi
i σ 6∈ phi

i (Lhi,c
1). Because of Lemma A.8,∀shi ∈ Lhi

1 with phi
i (shi) = shi

i , it holds thatshiσ ∈ Lhi
1

and∀shi ∈ Lhi,c
1 s.t. phi

i (shi) = shi
i , it holds thatshiσ 6∈ Lhi,c

1 . But thenLhi,c
1 σ∩Lhi

1 6⊆ Lhi,c
1 , which

contradicts the assumption thatLhi,c
1 is controllable w.r.t.Lhi

1 . Thusphi
i (Lhi,c

1) is controllable w.r.t.
Lhi,f

i,1 . �

Appendix B

Table of Events

The following table shows the list of events which are neededfor modeling the manufacturing
system in Chapter 5.

sfmv belt of stack feeder moves sfstp belt of stack feeder stops

sfwpar workpiece arrives at stack feeder sfwplv workpiece leaves the stack feeder

sfr stack feeder at rest position sfnr stack feeder not at rest position

sf-cb1 workpiece from stack feeder to cb1t elapse of time

cb1-x cb1 moves in -x-direction pu2wpar workpiece arrives at pu2

pu2wplv workpiece leaves pu2 sf-2 transport workpiece to pu2

pu2ar-y pu2 arrives at -y-direction pu2lv-y pu2 leaves -y-direction

pu2ar+y pu2 arrives at +y-direction pu2lv+y pu2 leaves +y-direction

pu2mv+y pu2 moves in +y-direction pu2mv-y pu2 moves in -y-direction

pu2stp pu2 stops cb1awpar workpiece on cb1 arrives at pu2

cb1awplv workpiece on cb1 leaves pu2 sf-3 transport workpiece to pu1

sf-dep workpiece from cb1 to depot cb1stp cb1 stops

pu2rdy operation of pu2 is ready cb1bwpar workpiece on cb1 arrives at pu1

cb1-3 workpiece from cb1 to pu1 pu1rdy operation of pu1 is ready

cb2-y cb2 moves in -y-direction cb2stp cb2 stops

cb2wpar workpiece arrives at cb2 cb2wplv workpiece leaves cb2

cb2-13 workpiece from cb2 to cb13 wp2-13 workpiece arrives at cb13 from cb2

cb3-12 workpiece from cb3 to cb12 wp3-12 workpiece arrives at cb12 from cb3

cb12-4 workpiece from cb12 to cb4 wp12-4 workpiece arrives at cb4 from cb12

cb11-4 workpiece from cb11 to cb4 wp11-4 workpiece arrives at cb4 from cb11

cb4-12 workpiece from cb4 to cb12 wp4-12 workpiece arrives at cb12 from cb4

cb4-11 workpiece from cb4 to cb11 wp4-11 workpiece arrives at cb11 from cb4

mh1start machine mh1 starts operation mh1end machine mh1 terminates operation

131

rt1xy rt1 from x- to y-position rt1y rt1 at y-position

rt1yx rt1 from y- to x-position rt1x rt1 at x-position

cb7-11 workpiece from cb7 to cb11 wp7-11 workpiece arrives at cb11 from cb7

cb11-7 workpiece from cb11 to cb7 wp11-7 workpiece arrives at cb7 from cb11

cb7-15 workpiece from cb7 to cb15 wp7-15 workpiece arrives at cb15 from cb7

cb15-rc1 workpiece from cb15 to rc1 wp15-rc1 workpiece arrives at rc1 from cb15

cb15-9 workpiece from cb15 to cb9 wp15-9 workpiece arrives at cb9 from cb15

rc1wplv workpiece leaves rc1 rts1_7-8 workpiece from cb7 to cb9 via rts1

rts1_7-rc1 workpiece from cb7 to rc1 via rts1 cb10-16 workpiece from cb10 to cb16

cb13-6 workpiece from cb13 to cb6 wp13-6 workpiece arrives at cb6 from cb13

cb6-13 workpiece from cb6 to cb13 wp6-13 workpiece arrives at cb13 from cb6

cb6-14 workpiece from cb6 to cb14 wp6-14 workpiece arrives at cb14 from cb6

cb14-10 workpiece from cb14 to cb10 wp14-10 workpiece arrives at cb10 from cb14

rt2xy rt2 from x- to y-position wp10-16 workpiece arrives at cb16 from cb10

cb13-5 workpiece from cb13 to cb5 wp13-5 workpiece arrives at cb5 from cb13

cb5-12 workpiece from cb5 to cb12 wp5-12 workpiece arrives at cb12 from cb5

cb9-13 workpiece from cb9 to cb13 wp9-13 workpiece arrives at cb13 from cb9

rt3xy rt3 from x- to y-position

132 APPENDIX B. TABLE OF EVENTS

References

[Bar99] G. BARRETT. Modeling, Analysis and Control of Centralized and Decentralized
Logical Discrete Event Systems.PhD thesis, The University of Michigan, 1999.

[BGK+90] R.D. BRANDT, V. GARG, R. KUMAR , F. LIN , S.I. MARCUS, AND W.M. WON-
HAM . Formulas for Calculating Supremal Controllable and Normal Sublanguages.
System and Control Letters, 15:111–117, 1990.

[BH93] Y. BRAVE AND M. HEYMANN . Control of Discrete Event Systems Modeled as Hi-
erarchical State Machines.IEEE Transactions on Automatic Control, 38(12):1803–
1819, 1993.

[CDFV88] R. CIESLAK , C. DESCLAUX, A. FAWAZ , AND P. VARAIYA . Supervisory Control of
Discrete Event Processes with Partial Observation.IEEE Transactions on Automatic
Control, 33(3):249–260, 1988.

[CL99] C.G CASSANDRAS AND S. LAFORTUNE. Introduction to Discrete Event Systems.
Kluwer, 1999.

[CTdC01a] J.E.R. CURY, C.R.C. TORRICO, AND A.E.C. DA CUNHA. A New Approach for
Supervisory Control of Discrete Event Systems.European Control Conference, 2001.

[CTdC01b] J.E.R. CURY, C.R.C. TORRICO, AND A.E.C. DA CUNHA. Supervisory Control of
Discrete Event Systems with Flexible Marking.European Control Conference, 2001.

[dCC02] A.E.C.DA CUNHA AND J.E.R. CURY. Hierarchically Consistent Controlled Dis-
crete Event Systems.IFAC World Congress, 2002.

[dCCK02] A.E.C.DA CUNHA , J.E.R. CURY, AND B.H. KROGH. An Assume Guarantee Rea-
soning for Hierarchical Coordination of Discrete Event Systems. Workshop on Dis-
crete Event Systems, 2002.

[dQ00] M.H. DE QUERIOZ. Controle Supervisório Modular de Sistemas de Grande Porte.
Master thesis, Universidade Federal de Santa Catarina, 2000.

134 REFERENCES

[dQC00] M.H. DE QUERIOZ AND J.E.R. CURY. Modular Control of Composed Systems.
American Control Conference, 2000.

[Ers02] G. ERSOY. Anwendung und Erweiterung dezentraler Konzepte in der Supervisory
Control Theory für ereignisdiskrete Systeme.Diplomarbeit, Lehrstuhl für Regelung-
stechnik, Universität Erlangen-Nürnberg, 2002.

[Fig05] S. FIGGEN. Design, Implementation and Validation of Supervisory Control for an
Automated Manufacturing System.Diplomarbeit, Lehrstuhl für Regelungstechnik,
Universität Erlangen-Nürnberg, 2005.

[GM04] B. GAUDIN AND H. MARCHAND. Modular Supervisory Control of a Class of Con-
current Discrete Event Systems.Workshop on Discrete Event Systems, 2004.

[GM05a] B. GAUDIN AND H. MARCHAND. Efficient Computation of Supervisors for
loosely synchronous Discrete Event Systems: A State-Based Approach.IFAC World
Congress, 2005.

[GM05b] B. GAUDIN AND H. MARCHAND. Safety Control of Hierarchical Synchronous Dis-
crete Event Systems: A State-Based Approach.Meditteranean Conference on Control
and Automation, 2005.

[Goh98] P. GOHARI. A Linguistic Framework for Controlled Hierarchical DES.Master The-
sis, Department of Electrical and Computer Engineering, University of Toronto, 1998.

[Goh03] P. GOHARI. Fair Supervisory Control of Discrete Event Systems.PhD thesis, De-
partment of Electrical and Computer Engineering, University of Toronto, 2003.

[HC02] P. HUBBARD AND P.E. CAINES. Dynamical Consistency in Hierarchical Supervisory
Control. IEEE Transactions on Automatic Control, 47(1):37–52, 2002.

[Hop71] J. HOPCROFT. An nlogn-Algorithm for Minimizing the States in a Finite Automaton.
In Z. Kohavi, editor, The theory of machines and computations, Academic Press, pages
189–196, 1971.

[HU79] J.E. HOPCROFT ANDJ.D. ULLMAN . Introduction to Automata Theory, Languages
and Computation.Addison-Wesley, Reading, 1979.

[JCK01] S. JIANG , V. CHANDRA , AND R. KUMAR. Decentralized Control of Discrete Event
Systems with Multiple Local Specializations.American Control Conference, 2001.

[JK02] S. JIANG AND R. KUMAR. Decentralized Control of Discrete-Event Systems with
Specializations to Local Control and Concurrent Systems.IEEE Transactions on
Systems, Man and Cybernetics, 30(5):653–660, 2002.

135

[KS97] R. KUMAR AND M.A. SHAYMAN . Centralized and Decentralized Supervisory Con-
trol of Nondeterministic Systems under Partial Observation. SIAM Journal on Control
and Optimization, 35(2):363–383, 1997.

[KvS03] J. KOMENDA AND J. H. VAN SCHUPPEN. Decentralized Control with Coalgebra.
European Control Conference, 2003.

[KvS04] J. KOMENDA AND J. H. VAN SCHUPPEN. Supremal Normal Sublanguages of Large
Distributed Discrete-Event Systems.Workshop on Discrete Event Systems, 2004.

[Led02] R.J. LEDUC. Hierarchical Interface Based Supervisory Control.PhD thesis, Depart-
ment of Electrical and Computer Engineering, University of Toronto, 2002.

[LLW01] R.J. LEDUC, M. LAWFORD, AND W.M. WONHAM. Hierarchical Interface-based
Supervisory Control: AIP Example.Allerton Conference on Communication, Control
and Computation, pages 396–305, 2001.

[LW90] F. L IN AND W.M. WONHAM. Decentralized Control and Coordination of Discrete-
Event Systems with Partial Observation.IEEE Transactions on Automatic Control,
35(12):1330–1337, 1990.

[LW97] S-H. LEE AND K.C. WONG. Decentralised Control of Concurrent Discrete-Event
Systems with Non-prefix Closed Local Specifications.IEEE Conference on Decision
and Control, pages 2958–2963, December 1997.

[LW02] S-H. LEE AND K.C. WONG. Structural Decentralised Control of Concurrent DES.
European Journal of Control, 35:1125–1134, October 2002.

[LWL01] R.J. LEDUC, W.M. WONHAM , AND M. L AWFORD. Hierarchical Interface-based
Supervisory Control: Parallel Case.Allerton Conference on Communication, Control
and Computation, pages 386–395, 2001.

[Ma99] C. MA. A Computational Approach to Top-down Hierarchical Supervisory Control
of Discrete Event Systems.Master thesis, Department of Electrical and Computer
Engineering, University of Toronto, 1999.

[Ma04] C. MA. Nonblocking Supervisory Control of State Tree Structures.Ph.D. Disser-
tation, Department of Electrical and Computer Engineering,University of Toronto,
2004.

[MG02] H. MARCHAND AND B. GAUDIN . Supervisory Control Problems of Hierarchical
Finite State Machines.IEEE Conference on Decision and Control, pages 1199–1204,
2002.

136 REFERENCES

[MRD03] T. MOOR, J. RAISCH, AND J.M. DAVOREN. Admissibility Criteria for a Hierarchical
Design of Hybrid Control Systems. InConference on Analysis and Design of Hybrid
Systems, pages 389–394, 2003.

[MS05] T. MOOR AND K. SCHMIDT. Hierarchical Control from a Behavioral Perspective. In
International Conference on Methods and Models in Automation and Robotics, 2005.

[MW03] C. MA AND W.M. WONHAM. Control of State Tree Structures.Mediterranean
Conference on Control and Automation, 2003.

[Ner58] A. NERODE. Linear Automaton Transformations.Proceedings AMS, 9:541–544,
1958.

[Per04] S. PERK. Hierarchical Design of Discrete Event Controllers: An Automated Manu-
facturing System Case Study.Diplomarbeit, Lehrstuhl für Regelungstechnik, Univer-
sität Erlangen-Nürnberg, 2004.

[Pu00] K.Q. PU. Modeling and Control of Discrete Event Systems with Hierarchical Ab-
straction.Master Thesis, Department of Electrical and Computer Engineering, Uni-
versity of Toronto, 2000.

[QC00] M.H.DE QUERIOZ AND J.E.R. CURY. Modular Supervisory Control of Large Scale
Discrete Event Systems.Workshop on Discrete Event Systems, 2000.

[RK91] S.I. MARCUS R. KUMAR , V. GARG. On Controllability and Normality of Discrete
Event Dynamical Systems.System and Control Letters, 17:157–168, 1991.

[RL02] K. ROHLOFF AND S. LAFORTUNE. On the Computational Complexity of the Verifi-
cation of Modular Discrete-Event Systems.IEEE Conference on Decision and Con-
trol, 2002.

[Rut99] J.J.M.M RUTTEN. Coalgebra, Concurrency, and Control.Technical Report SEN-
R9921, Centrum voor Wiskunde en Informatica, 1999.

[RW87a] P.J. RAMADGE AND W.M. WONHAM. Modular Feedback Logic for Discrete Event
Systems.SIAM Journal of Control and Optimization, 25:1202–1218, 1987.

[RW87b] P.J. RAMADGE AND W.M. WONHAM. Supervisory Control of a Class of Discrete
Event Processes.SIAM Journal of Control and Optimization, 25:206–230, 1987.

[RW89] P.J. RAMADGE AND W.M. WONHAM. The Control of Discrete Event Systems.Pro-
ceedings IEEE, Special Issue Discrete Event Dynamic Systems, 77:81–98, 1989.

137

[RW95] K. RUDIE AND J.C. WILLEMS. The Computational Complexity of Decentral-
ized Discrete-Event Control Problems.IEEE Transactions on Automatic Control,
40(7):1313–1318, 1995.

[SMP05] K. SCHMIDT, T. MOOR, AND S. PERK. A Hierarchical Architecture for Nonblock-
ing Control of Discrete Event Systems.Mediterranean Conference on Control and
Automation, 2005.

[SPM05] K. SCHMIDT, S. PERK, AND T. MOOR. Nonblocking Hierarchical Control of De-
centralized Systems.IFAC World Congress, 2005.

[SRM04] K. SCHMIDT, J. REGER, AND T. MOOR. Hierarchical Control of Structural Decen-
tralized DES.Workshop on Discrete Event Systems, 2004.

[TC02] C.C. TORRICO AND J.E.R. CURY. Hierarchical Supervisory Control of Discrete
Event Systems Based on State Aggregation.IFAC World Congress, 2002.

[Wan95] B. WANG. Top-down Design for RW Supervisory Control Theory.Master thesis,
Department of Electrical and Computer Engineering, University of Toronto, 1995.

[WH91] Y. W ILLNER AND M. HEYMANN . Supervisory Control of Concurrent Discrete-Event
Systems.International Journal of Control, 54(5):1143–1169, 1991.

[Won97] K. WONG. On the Complexity of Projections of Discrete-Event Systems. Techni-
cal Report 9705, Systems Control Group, Department of Electrical and Computer
Engineering, University of Toronto, 1997.

[Won04] W.M WONHAM. Notes on Control of Discrete Event Systems.Department of Elec-
trical Engineering, University of Toronto, 2004.

[WR87] W.M. WONHAM AND P.J. RAMADGE. On the Supremal Controllable Sublanguage
of a Given Language.SIAM Journal of Control and Optimization, 25:637–659, 1987.

[WR88] W.M. WONHAM AND P.J. RAMADGE. Modular Supervisory Control of Discrete
Event Systems.Mathematics of Control, Signals and Systems, 1(1):13–30, 1988.

[WW96] K.C. WONG AND W.M. WONHAM. Hierarchical Control of Discrete-Event Systems.
Discrete Event Dynamic Systems: Theory and Applications, 1996.

[YL00] T. Y OO AND S. LAFORTUNE. A Generalized Framework for Decentralized Supervi-
sory Control of Discrete Event Systems.Workshop on Discrete Event Systems, 2000.

[YL02] T. Y OO AND S. LAFORTUNE. A Generalized Architecture for Decentralized Super-
visory Control of Discrete Event Systems.Discrete Event Dynamic Systems: Theory
and Applications, 2002.

138 REFERENCES

[Yoo02] TAE-SIC YOO. Monitoring and Control of Centralized and Decentralized Partially-
Observed Discrete-Event Systems.PhD thesis, The University of Michigan, 2002.

[ZC94] R.M. ZILLER AND E.R. CURY. On the SupremalLm-closed and the SupremalLm-
closed andL−controllable Sublanguages of a Given Language.11th International
Conference on Analysis and Optimization of Systems - Discrete Event Systems, 1994.

[Zho92] H. ZHONG. Hierarchical Control of Discrete Event Systems.PhD Thesis, Department
of Electrical and Computer Engineering, University of Toronto, 1992.

[ZW90] H. ZHONG AND W.M. WONHAM. On the Consistency of Hierarchical Supervision
in Discrete-Event Systems.IEEE Transactions on Automatic Control, 35:1125–1134,
October 1990.

[ZW01] Z.H. ZHANG AND W.M. WONHAM. STCT: An Efficient Algorithm for Supervi-
sory Control Design.Symposium on Supervisory Control of Discrete Event Systems
(SCODES2001), Paris, 2001.

Lebenslauf

Zur Person:

Klaus Schmidt
geboren am 13. 08. 1976 in Fürth
verheiratet

Schulbildung:

1983–1987 Grundschule in Feilitzsch
1987–1996 Schillergymnasium in Hof
Juni 1996 Abschluss mit Abitur

Wehrdienst:

1996–1997 Grundwehrdienst beim Nachschubbataillon 4 in Weiden

Studium:

1997–2002 Studium der Elektrotechnik an der Friedrich-Alexander-Universität
Erlangen-Nürnberg

1999 Tutor am Lehrstuhl für allgemeine und theoretische Elektrotechnik
Juli 2000 Aufnahme in die Studienstiftung des Deutschen Volkes
Nov. 2000 Hilfswissenschaftler am Lehrstuhl für Werkstoffe der Elektrotechnik
Aug. 2001 Praktikum bei Infineon Technologies in München
März 2002 Studienabschluss Dipl.-Ing.
Juli 2002 Preis des VDE für die beste Diplomarbeit in der Elektrotechnik

Hochschultätigkeit:

seit 2002 Wissenschaftlicher Assistent am Lehrstuhl für Regelungstechnik
der Universität Erlangen-Nürnberg

2002-2003 Mitglied in der Studienkommission Elektrotechnik
2003-2004 einjähriger Gastaufenthalt an der Carnegie Mellon University

in Pittsburgh

140 REFERENCES

