Hierarchical Control of Decentralized Discrete Event Systems

Theory and Application

Der Technischen Fakultat der

Universitat Erlangen-Nurnberg

zur Erlangung des Grades

DOKTOR-INGENIEUR

vorgelegt von

Klaus Schmidt

Erlangen 2005

Als Dissertation genehmigt von
der Technischen Fakultat der
Universitat Erlangen-Nurnberg

Tag der Einreichung: 23. 05. 2005
Tag der Promotion: 11. 07. 2005

Dekan: Prof. Dr. rer. nat. A. Winnacker
Berichterstatter: Prof. Dr.-Ing. T. Moor

Prof. Bruce Krogh

Acknowledgement

At first | would like to thank my thesis advisor Prof. Dr.-Infhomas Moor for his interest in
my work and for his helpful and constructive comments anadsd&urther on | want to highlight
the hospitality of Prof. Bruce Krogh who gave me the oppotiuto participate in his research
activites on various topics at the Carnegie Mellon UnivegrsitPittsburgh.

| am grateful to Prof. Dr.-Ing. Gunter Roppenecker, the c¢hair of my Ph.D. committee, for
supporting my work at the Lehrstuhl fur Regelungstechnik Bommcencouraging my studies and
research abroad. Also | want to thank Prof. Dr.-Ing. ChristBfaum for his participation in the
Ph.D. committee as the external faculty member.

It was very important for my scientific career to work with nglleague Dr. Ing. Johann Reger who
introduced me to the area of discrete event systems. Alangamme lines | would like to thank my
former student and colleague Dipl.-Ing. Sebastian Perki®icollaboration, and my colleagues

Dipl.-Ing. Felix Antritter, Dr.-Ing. Joachim DeutscheraBipl.-Ing. Gerald Drenckhahn for their
friendship.

In particular | would like to express my gratitude to my fayriibr their constant love, availability
and support, and | would like to thank my parents-in-law fa@it encouragment and trust. Finally
my love and gratefulness goes to my wife for sharing my acadeterests as well as my life and
for her love and care during the final time of my thesis work.

Erlangen, July 2005 Klaus Schmidt

Table of Contents

1 Introduction 1
2 Basics of RW Supervisory Control Theory 9
2.1 Languages e e e e e e 10
2.1.1 General Definitions 10

2.1.2 RegularLanguages e 4

2.2 Automata e 5
2.3 Supervisory Control in a Language based Framework 20
2.3.1 BasicDefinitions o 0

2.3.2 Controllability and Nonblocking Control 23

2.4 Automata Representation in Supervisory Control 27

3 Nonblocking Hierarchical Control 31
3.1 BasicDefinitions 33
3.2 Hierarchical Consistency e 36
3.3 NonblockingControl 42
3.3.1 Condition on the High-level ClosedLoop 43

3.3.2 Structural Condition 46

3.4 Hierarchical Control For Finite Automata 48
3.4.1 Natural Projection e 48

3.4.2 Algorithmic Verification of Marked String Acceptance. 53

3.4.3 Algorithmic Verification of the Locally Nonblocking @dition 56

1

2

1

VI TABLE OF CONTENTS
3.4.4 Algorithmic Verificationof Liveness 59
3.4.5 Algorithmic Verification of Marked String Controlldity 59
3.4.6 Evaluation of the Hierarchical Approach. 63
4 Hierarchical and Decentralized Control 65
4.1 Hierarchical and Decentralized Control Architecture 66
4.2 Hierarchical Consistency e 74
4.3 NonblockingControl 75
4.3.1 Condition on the High-Level Closed Loop Subsystems 75
4.3.2 Structural Condition 77
4.4 Automata Implementation for the DecentralizedCase 79
441 Notation 79
4.4.2 Feasible Projected Decentralized Control Systems 79
4.4.3 Marked String Acceptance and Locally Nonblocking Goowd 82
4.4.4 Liveness and Marked String Controllability 82
4.45 Supervisor Computation 82
5 Manufacturing System Case Study 85
5.1 Manufacturing System Overview e 86
52 Notation 87
5.3 Supervisor Synthesis for the Distribution System 88
53.1 StackFeeder 88
5.3.2 ConveyorBeltcbl 91
5.3.3 ConveyorBeltscb2andch3 7 9
5.3.4 Overall Distribution System, . 98
5.3.5 Performance Evaluation 101
5.4 Controller Design for the Manufacturing System102
5.4.1 ProductionCellpcl 031

542 exitl. 107

VIl

543 exit2.
5.4.4 ProductionCellpc2
5.4.5 Interchange Systemics 0
5.4.6 Overall Manufacturing System
9.5 Summary ... e

6 Conclusions

Appendix

A Proofs
A.1 Projectionofa RegularLanguage
A.2 Computation of the Projection
A.2.1 Space Complexity
A.2.2 TimeComplexity
A.3 Computation of the High-LevelPlant.
A.4 Feasible Projected Decentralized Control Systems

A.5 Mutual Controllability

B Table of Events

VIII TABLE OF CONTENTS

Zusammenfassung

Gegenstand dieser Arbeit ist der hierarchische und dedterfiteuerungsentwurf fur ereignisdis-

krete Systeme (DES). Ereignisdiskrete Systeme besitzemeliskreten Zustandsraum und auch
die Zeitwerte sind als diskrete Zeitpunkte aufzufassers @aamische Verhalten von DES ist

dabei ereignisgetrieben, das heil3t diskrete Zustandae#mgten werden durch das Auftreten asyn-
chroner Ereignisse verursacht.

Mitte der 80er Jahre wurde von P.J. Ramadge und W.M. Wonhaen&tguerungstheorie (RW-
Steuerungstheorie) fur ereignisdiskrete Systeme enéltidkreignisdiskrete Systeme werden durch
formale Sprachen Uber dem Alphabet der Systemereignissmldbrisiert, wobei die Sprache
selbst die Systemtrajektorien beschreibt. Durch Verhimdgegenannter “steuerbarer” Ereignisse
kann das Systemverhalten eingeschrankt werden, um eirezifisggrten Verhalten zu gentigen.

Da ereignisdiskrete Systeme sehr viele Zustdnde haberekdrst die RW-Steuerungstheorie flr
grof3e zusammengesetzte Systeme nicht direkt anwendligruAd dessen werden in der Lite-
ratur verschiedene Ansatze — modulare, dezentrale undrbiesche Ansatze — untersucht, um
durch die Ausnutzung der Systemstruktur die theoretiséirgabnisse der RW-Steuerungstheorie
umzusetzen.

Unser Ansatz verbindet dabei dezentrale und hierarchisen@hren, um die RW-Steuerungs-
theorie flr grol3e ereignisdiskrete Systeme zu erweiteswikl ausgenutzt, dass grol3e DES aus
vielen Systemkomponenten zusammengesetzt sind, weltdr@agieren. Die einzelnen Kompo-
nenten werden lokal gesteuert und dann auf das fur die kitenerelevante Verhalten abstrahiert.
Die abstrahierten dezentralen Systemmodelle werden eamembheren Level der Hierarchie zu-
sammengesetzt und dort gesteuert. Diese mit geringeremeRagfivand ermittelte Steuerung
wird dann in dezentrale Steuerungen im unteren Level derakibie Ubersetzt. Unser Verfahren
stellt dabei strukturelle Bedingungen an die Komponenteatet® sowie ihre Abstraktionen. Sind
diese Bedingungen erfiillt, so garantiert unsere Method®aiuleisch konsistentes sowie blockie-
rungsfreies Verhalten des gesteuerten Systems, d.h. irebevel entworfene Steuerungen kon-
nen im unteren Level implementiert werden und das gese@®dstem bleibt nicht in einem un-
erwinschten Systemzustand hdngen. Aul3erdem laf3t sichAmsatz fur eine beliebige Anzahl
von hierarchischen Ebenen anwenden.

X ZUSAMMENFASSUNG

Die Funktionsfahigkeit unseres Verfahrens wird anhanésimmfassend ausgearbeiteten Labor-
beispiels mit einer Zustandsanzahl in der GroRenordnundl @ illustriert. Dabei wird ein Fi-
schertechnik Laborexperiménginer Fertigungsanlage modelliert und eine Spezifikatiordfis
Gesamtmodell in einer 4-Level Hierarchie implementiert.

1Die Fischertechnikanlage befindet sich am Lehrstuhl fiirdRewystechnik der Universitét Erlangen-Nurnberg.

Chapter 1

Introduction

Various technical systems and processes, such as manuig@ystems, telecommunication net-

works, traffic systems, logistics, to name just a few, can éscdbed as discrete event systems
(DES). These systems exhibit the common characteristiarfe#hat they are discrete in both state
space and in time. The dynamic behavior of a DES is eventmrivat is changes of the discrete

system state are triggered by the occurrence of asynchsavaunts.

In the mid 80s, a framework for the control of DES was estaklisby P.J. Ramadge and W.M.
Wonham. In [RW87b], the concept of a feedback controller ipleged to achieve that the system
behaves as specified by the system designer. This feedbatblter is denoted supervisor, as it
observes the events occurring in the system and disablessesecording to its control strategy,
whereby the strategy depends on past event sequences.etiad loop is shown in Figure 1.1.

control action

Plant Supervisor

events

Figure 1.1: Feedback loop with a DES plant and a supervisor

In the Ramadge/Wonham (RW) framework, DES are formally matlakerecognizers of formal

languages where the alphabet of the language consists efsiem events. The language itself
describes the set of trajectories of the system. Some ofvéet® (controllable events) can be
directly influenced (disabled) by the supervisor, wherdéase is no immediate effect on other
events (uncontrollable events). The task of the supervsstw disable controllable events such
that a specified system behavior is obtained. In the RW framevspecifications are given as
formal languages and there are algorithms, which compugersisors that are provably correct.
On the one hand, a supervisor has to be able to fulfill the Bpaton by applying its control

2 CHAPTER1 — INTRODUCTION

action to the DES. On the other hand, it has to be nonblockirag,is, it must not lead the system
to configurations where no more operation is possible.

In industrial practice, DES are controlled by Programmalalgic Controllers (PLC). A PLC re-

ceives output signals from the DES plant and computes thgecéige input signals in a cyclic
fashion. Informally, the program running on the PLC is nothbut a realization of a supervisor.
In each program cycle, the output signals of the DES (evemesyead and a list of instruction is
executed, determining the input signals (enabled evehtBe@lant for the next cycle.

The main challenge in computing a supervisor in the RW fraarkws the combinatorial explosion
of the state space for large-scale systems. This is due fat¢héhat a composite system is based
on the cartesian product of its subsystems. For large-sgatems, both supervisor computation
and PLC implementation become impractical, which is ilatgd with the following example.

Limitations of monolithic supervisory control

An example for a discrete event system is the small produa#&l with two machines (M1 and
M2) and one automated guided vehicle (AGV) (see [Won04]).e @iscrete event models are
represented as automata, where nodes (circles) and amolesite states and state-transitions,
respectively. The two machines can load paiMd (andMl) and unload againMLu andM2u).
Initially both machines are empty (in state 1). The AGV caoegt one part from either machine
(MLlu andM2u) and also load the second machin@l() or remove parts from the production cell
(out). Automata for the system components and sample PLC coddIaare shown in Figure
1.21

M l M 2 AGV [[FrrrrkRRkkkkkkk KRR

MU AN "mlunload"//if the machine does not unlogd
A "mil" /land the event "m1l" happens
S "mlload" //the machine is loading

[[FrFxR TR AT AT I KKK

out
ML Mu Ml Mu Mu VRl

AN "mlload" //if the machine does not load
A "mlu” /land the event "m1u" happens
S "mlunload"//the machine is unloading

Figure 1.2: Components of the small production cell

As can be seen from Figure 1.2, the AGV receives parts fronhmadl and M2 (via the shared
eventsMlu, M| andMu). Thus, its action is synchronized with the other composaritthe
system, i.e. the eventdul , M| andMu have to occur at the same time. Formally, the system
interaction is represented by the synchronous producteottimponents M1, M2 and AGV, as
depicted in Figure 1.3.

1The PLC code checks which events occur in the system and tresponding action is written to the system input
(S "m1lload" and S "mlunload"). The "A" and "AN" commands stéor "AND" and "AND NOT", respectively.

Figure 1.3: Synchronized components of the small production cell

Each state in the synchronous product represents the staies the respective component is in.
For example, in state (1,1,2), M1 is in state 1, M2 is in stadé@d AGV is in state 2.

The system in Figure 1.3 is blocking. If the state (2,2,2a(&d in Figure 1.3) is reached, no
further event can occur, that is, the system is stuck. im@hjt in the blocking state M2 contains a
part and is waiting for the AGV to unload. At the same time M% hiteady been unloaded, such
that AGV is full and cannot receive the part from M2. Formalhere are no transitions possible
in the blocking state (2,2,2) and hence it is a "bad" statetfersupervisor computation, if it is
specified that the supervised system must not contain amkibp. In this case, the supervisor
must prevent that the states (1,2,2) and (2,2,2) are reAch&ssuming that the event M1u is
controllable, it has to disable this event, if the synchzediproduction cell is in state (2,2,1). This
shows that a DES supervisor can prevent blocking with itgrobaction. In the RW framework,
such supervisor is computed by efficient algorithms.

The RW framework reaches its computational limit, if sys$emith many components are con-
sidered. As can be seen for the small example, the numbeatissbf a synchronized system
grows with the product of the number of states of its comptselthough it is possible to handle
systems with millions of states, already relatively smadimafacturing systems exceed this order
of magnitude by far, which makes the application of the mivhiclapproach infeasible (for exam-
ple, a composite system with 10 components with 10 stateswaald have 1% states). Thus,
the benefit of computing supervisors which guarantee theifsge behavior is paid at the price of
dealing with large state spaces.

Yet, experienced programmers manage to write PLC code, larditplicitly implement DES
supervisors for large-scale systems. With their expert@dge about the system, they apply a
"divide and conquer" strategy, paying attention to one systemponent at a time.

We want to formalize the idea of exploiting the system stritefor supervisor synthesis. To this
end, we combine decentralized and hierarchical supegvmtrol approaches.

2From (1,2,2) only the "bad state" (2,2,2) can be reached.

4 CHAPTER1 — INTRODUCTION

Modular and Decentralized Control

The decentralized control architecture is illustratediguie 1.4.

Superviso

Figure 1.4: Decentralized control of discrete event systems

A first approach to reducing the complexity of supervisortbgais ismodular controlas elabo-
rated in [RW87a, WR88, RW89]. Monolithic supervisors for diffet specifications are designed
and implemented together. Although controllability carvbafied easily, checking if the modular
supervisors are nonconflicting, that is, if their joint actis nonblocking, is computationally ex-
pensive (see also [RLO2]). An improvement of this technicugiven in [dQCO00, QCO00, dQ00],
where the plant is considered as a composite system. Catuitiif and nonconflicting behavior
only need to be checked for system components with speciéadvior. [GMO04] elaborates the
modular computation of controllable sublanguages of aipaton language using abstractions
of the composite plant, to avoid the composition of the systemponents.

In contrast to the modular approaatecentralized controhpproaches focus on the computation
of distributed interacting supervisors as investigatefCinFVv88, LW90, BGK"90]. The decen-
tralized supervisors only have partial observations ofplaaet events, and to guarantee that spec-
ifications can be fulfilled, a property, called co-obserihiis needed. There are several ways
how to fuse the control actions of the supervisors, suatpagunctiveor disjunctivearchitectures
[Bar99, YLOO, Yoo02, YL0O2]. Recent work also includes comnuarion between the supervi-
sors. The decentralized approach is formulated in a cdyedgeetting in [KvS03]. Extensions
of the method to nondeterministic systems and to concusystems with modular specifications
are given in [KS97] and [JK02, JCKO01], respectively. Unfoitely, for composite systems, the
decentralized method still needs the computation of theath&y/stem model. Thus, its computa-
tional effort equals the monolithic approach. Complexityules are provided in [RW95, YLO2].

A different view on the decentralized control of concurr@dmposite) discrete event systems is
taken in [WH91, LW97, LWO02, KvS04]. Purely structural condittoof the subsystems of the
discrete event plant are used, instead of the conditionherspecification with respect to the
system. The overall system does not have to be computedhasddfter verifying the required
system properties, supervisor synthesis can be perforrtegwmaller computational effort than
for the monolithic approach. Because of this reason, the adadentifying structural system
properties is adopted in our work.

Hierarchical Control
The basic idea of hierarchical control is presented in FEdub.

The hierarchical control approach employs system modelsdifferent degrees of detail. On the
one hand, hierarchical system models can be constructetiibatp”, that is, the low-level model
is abstracted to higher levels by aggregation of infornmatisee [ZW90, Zho92, WW96, Pu00,
dCCKO02, HC02, MGO02, Led02, MRD03, SRM04, SPM05, SMP05, MSO05]. l@nather hand,
hierarchies can also be built "top-down™ as in [BH93, Wan95h@3) Ma04, GM05b, GMO05a].
Then, a high-level model (for example an automaton) of tls¢esy is generated first, and the struc-
tural components of the high-level model are filled with mdetailed information (for example
states of the high-level automaton represent a whole saat#sson the lower level). All these
approaches have in common that supervisors are designée digh level and then translated to
the low level for implementation.

control action

|

|

| Plant events Supervisor
|

|

control action ‘

i
| |
| Plant events | Supervisor
|

|

Figure 1.5: Hierarchical Control of discrete event systems

The development of bottom-up hierarchical control techagwas initiated by the work in [ZW90,
Zho92]. Output control consistendg used as a structural condition to construct the hightleve
model in the RW framework. The low-level system model is aggted, and the high-level con-
trollability properties are determined based on local lewel behavior. One drawback of the
approach is the fact that marking is not considered and twiddvel supervisors can be blocking.
This problem is solved in [WW96] in an algebraic setting byadicingcontrol structures Con-

trol structures denote a generalization of the RW framevi@rkepresenting controllability prop-
erties on the high levelCausal mapsire employed for hierarchical abstraction, anddhserver
property helps guaranteeing nonblocking system behavibe results in [Pu00] adopt the idea
of control structures and observers to present a theoryrgkziag the RW framework, combined
with the corresponding algorithms. In addition to that, efgcalized systems without any shared
events are investigate€onsisteneandreliable abstractions are required for decentralized super-
visor synthesis. The idea of control structures is furtheberated in [dCC02]. On the low level
of the hierarchy, the RW framework is used. On the high lete,concept of control structures,

6 CHAPTER1 — INTRODUCTION

equipped with a flexible marking function (see also [CTdC01ajCdlb]), is employed. Based on
anassume guarantee reasonjrigis method is extended to decentralized systems withares
events in [dCCKO02]. The work in [MRDO03, MSO05] presents a hignaral design method for
systems with an input/output structure in the behaviomaiiework, where it is possible to use a
high-level specification as the system abstraction.

The approaches in [TC02, HC02] perform an aggregation (man}iof the state space to get an
abstraction of the low-level system. Elaborating on theneativity of the high-level states, non-
blocking supervisors are designed.

A method which explicitly uses structural information oetHiscrete event plant is presented in
[LWLO1, LLWO1, Led02]. It is based on the definition of inter&s; which indicate how the hier-
archical levels can interact. Both the serial (monolithiol she parallel (decentralized) cases are
investigated and the computation of nonblocking supersisoelaborated for large-scale systems.
In this approach, the use of structural information is ipdissable for handling large systems.

Opposed to the bottom-up methods, the top-down approactidsioe hierarchy starting from the
high-level system model. Unifying the work in [BH93, Wan95t®8, Ma99], the technique in
[Ma04] constructs a hierarchy based on state tree striee(8ES). Incorporating (AND) and (OR)
superstates, the hierarchical model also accounts foedsegle composite systems. The method
in [GMO5b, GM05a] employs a fixed-point computation to cotgpmonblocking controllers for
hierarchical state machines.

Contribution and Outline of the Thesis

In our work, a bottom-up approach is elaborated for hieriaedttontrol. We use a particular causal
map, thenatural projection for system abstraction. Different from [ZW90, Zho92, WW960Bu
dCCKO02, HC02, MGO02], the high-level event set is a subset of daelével event set, and the
low-level model is projected on the high-level events. Tdhstraction method makes it possible
to carry over the controllability properties of events frone low level to the high level. Thus,
the RW framework can also be employed for the high-level rhodiea consequence, the method
gualifies for a multi-level hierarchy.

The consistent implementatias defined for the low-level realization of high-level sugsors. It
guaranteehierarchical consistencgf the hierarchical architecture by default, that is the-lewel
closed-loop system behaves as expected in the high leveledder, the consistent implementa-
tion does not involve an extensive evaluation of contrdlityoresults for local behavior like in
[Zho92, Pu00, dCCKO02, HCO02]. For being able to apply this superyumplementation for non-
blocking low-level control, structural conditions are vggd. The abstraction, which is the natural
projection, has to be an observer. In addition to that, weditcemarked string acceptanass a
relation between the marking on the high level and the lowlle@ur hierarchical architecture is
nonblocking and hierarchically consistent for system#whe above properties.

Our approach is further extended to decentralized systemsaking use of the structure of com-
posite systems. In this setting, we require that all evethishvare shared by different subsystems
have to be carried over to the high level. This makes it pés$iist to abstract the decentralized
system components and then to compose them to a high-levgdasite system with a low com-
putational effort. As the synchronized behavior of the gstms is captured in the high-level,
the problem of conflicting behavior, which is a main issue wdolar approaches, does not occur.
Defining a decentralized version of the consistent impldaten and requiring the same system
properties as above, our hierarchical and decentralizéti-lenel architecture is nonblocking and
hierarchically consistent.

The thesis is organized as follows. In Chapter 2, the basatioot used throughout the thesis is
presented. Different from [ZW90, Zho92, WW96, Pu00, dCCK02, HB0GZ02, Led02, SRM04,
SPMO05, SMPO05], which are based on a finite automata fornauatiur theoretical results are elab-
orated in a language framework as defined in Section 2.3. Gheaent automata representation
is also given at the end of the chapter. For later use in thartuieical and decentralized frame-
work, our purely hierarchical method is presented in Chapt@the main theorem of this chapter
establishes nonblocking hierarchical control if the systelocally nonblocking and marked string
accepting. In Chapter 4, we extend the hierarchical ardoited¢o decentralized systems, and we
prove that it is nonblocking and hierarchically consistelnt addition to the theoretical results,
algorithms for both the verification of system propertied anpervisor synthesis are developed
along with the respective complexity results. The applidstof the approach to large-scale com-
posite systems is demonstrated with a laboratory case stu@lyapter 5, and the performance of
the method is evaluated.

CHAPTER1 — INTRODUCTION

Chapter 2

Basics of RW Supervisory Control Theory

Discrete event systems are systems which are discretehrtibté and state space. Also changes
in the system state occur asynchronously and driven by gvatiter than by a clock. Examples
for discrete event systems are manufacturing systems onketywdigital circuits, communication
protocols, etc.

A natural framework for describing such systemsfarenal language$HU79], where sequences
of events form so-calledtringsand there are distinguished strings — words — which reptesen
the event sequences accepted by the discrete event syRiegular languagesre of particular
importance as these languages are recognized by finite ataomhich can model systems with a
finite number of discrete states.

Starting from this, a framework for the control of discreter’t systems has been elaborated in
[RW87a]. It is called supervisor control theory and its magralgis to synthesize controllers —
supervisors — which restrict the possible behavior of ttetesy to some desired behavior without
causing blocking, i.e. without the closed loop getting ktuc

Itis possible to represent discrete event systems as arggfidér languages or model them as finite
automata. For sake of clarity, this work provides a cleaasgon of both concepts. Theoretical
considerations are stated in the regular language frankewks both approaches are equivalent,
the formulation of the theoretical results is also givenhia automata framework. The automata
representation is then used for the algorithmic implentertaf the theoretical result.

The chapter is organized as follows. Section 2.1 recallswéianguage definitions and states
various results on regular languages which will be relewattiis thesis. Automata are introduced
in Section 2.2, and the relation between finite automata agdlar languages is established. In
Section 2.3, a language-based framework for the controlsuirete event systems is developed.
The computability of the results is outlined by working out automata representation of the
language-based theoretical results presented before.

10 CHAPTER 2 — BASICS OFRW SUPERVISORYCONTROL THEORY

2.1 Languages

Formal languages are used in different areas of computensej such as compiler generation,
pattern recognition, search algorithms, parser developnetc. In this thesis, formal languages
represent the behavior of discrete event systems. Sectloh @ives a short review of the basic
notions. Mainly, it refers to the comprehensive introdoictio automata and formal languages in
[HU79]. A thorough description of the control theoretic édds given in [Won04, CL99]. We also

construct examples for illustrating the theoretical cqtse

2.1.1 General Definitions

Let> ={01,02,...,0m}, me N be afinite set of distinct symbol&.is denoted aalphabetand ar-
bitrary concatenations= 0j, 0j, . .. 0j, of symbolso;,,0i,,...,0i, € Zwithiy,....ix € {1,...,m},
are calledstrings wherek > 1 is the length of the string. The set of all strings with elements
from X is written asZ™ and the empty sequence (sequence with no symbods\beree ¢ Z. €

is also called thempty string Together withz ™, * := " U {€} is theKleene closuref Z.

Using the terms from above, the concept d¢hiaguageover an alphab€el can be introduced.

Definition 2.1 (Language [HU79])
Let > be an alphabet. A languagieoverZ is a set. C >*. O

Note that both the empty langua@and the Kleene closug" are included in this definition. Also
observe that there is a distinction betwdefthe language with no strings) asdthe string with
no symbols).

As languages are sets, the common set operations such as imérsection and difference are
applicable. Further important operations are¢bacatenationthe prefix-closureand theKleene-
closure([HU79]). Letsandt be two strings witts,t € Z*. The concatenation gfandt is written
st, and it holds thast € *. The stringsis called gprefix andt is called asuffixof st. A language
which includes all prefixes of its strings is callpdefix-closed For an arbitrary languade, the
prefix-closureoperation yields a language which contains all prefixesrafigd inL. The set of
active symbol&(s) describes the set of symbols which can extend the stind. such that the
resulting string is still in_, i.e. 3(s) := {0 € Z|so € L}1.

The operations defined above for strings are generalizethgubges as shown in Definition 2.2.

Definition 2.2 (Language Operations [HU79])
LetL,K C Z*. The following operations on languages are defined:

1L ater this set will be referred to as thetive event set

SECTION 2.1 — LANGUAGES 11

(i) the concatenatiohK of L andK: LK := {se€ ¥*|s=uvwith u € L andv € K}.
(i) the prefix-closurd. of L: L := {s€ £*|Ju € =* s.t.sue L}.

(iii) the Kleene-closure of: L* := {e} ULULLULLL---.
0J

The following example illustrates the concept of formaldaages and the operations defined
above.

Example 2.1

Let> = {a,b,c} be an alphabes=ab andt = a are strings oveE andst = aba is the concatena-
tion of sandt. The Kleene-closure & can be represented 28= {¢,a,b,c,aa,ab,ac,ba,bb,bc,
ca,ch,cc,aaa,...}. An example for a language over the alphabés L = {ab,aba,abc,abca}
with the words (stringsab, aba, aca andabca. L is not a prefix-closed language as the prefix
of ab is not contained i.. The prefix-closure of is L = {€,a,ab,aba,abc,abca}. The concept
of a language is illustrated in Figure 2.1. Strings are regméed as lines, and ticks symbolize the
symbols which are concatenated to form a string. Stringslavays read from left to right. The
line enclosing a set of strings represents the correspgranguage. O

Figure 2.1: lllustration of a formal language and the prefix closurk.

Thenatural projectionfrom Z* to Zj for two alphabet& and>p with 2o C Z is defined as follows.

Definition 2.3 (Natural Projection [Won04])
Let>o C 2. The natural projectiomg : X* — Zj is defined recursively.

Po(e) = E
e = {2 e
Po(s0) = Po(s)po(0)

forse >* ando € %. O

12 CHAPTER 2 — BASICS OFRW SUPERVISORYCONTROL THEORY

This means that the natural projection erases symbols irirg stith elements from the larger
symbol set if they do not belong to the smaller symbol > Note that the projection operation
is an increasing monotonic function on sét¥here is also an inverse map corresponding to the
natural projection.

Definition 2.4 (Inverse Projection [Won04])
Let 5o C 3. The inverse projectiofipg) 1 : = — 2% is

(Po) *(t) := {s€ Z*|po(s) =t}

fort € 2. O

The natural projectiopg and the inverse projectidipg) ~* can be generalized to languades =*
andLg € X, respectively, by applying them to all strings of the givanduage:

po(L) = {teXj|IseLs.t po(s)=t},
(po) Y(Lo) := {s€Z*|3t € Lo s.t. po(s) =t}.

Note thatl C (po)~*(po(L)) and it is often the case thatc (pg) ~*(po(L)). The computation of
the natural projection and its inverse is shown in the neatge.

Example 2.2

Let L = {ab,aba,abc,abca} be the language from the previous example. The alphal®ts
{a,b,c}, and the alphabefy = {a,b} is chosen as output alphabet for the natural projection
Po : 2* — Z§. Considering all strings i, the corresponding projected strings qugab) =
Po(a) po(b) = ab, po(aba) = po(ab)po(a) = aba, po(abc) = po(ab)po(c) = ab and pp(abca) =
po(abc)pp(a) = aba. Thus, the projected languageps(L) = {ab,aba}. The projection is il-
lustrated in Figure 2.2. The convention of Example 2.1 igdusecept for symbols from the set
2. These symbols are represented by crosses. The dashedhtiezde strings irL which are
projected to the respective stringpg(L).

For describing the inverse projectioipo) *(po(L)) shall be evaluated. As an example,
(po)~(ab) = {c*ac*bc*} and by analogous computation$pg) *(po(L)) = {c*ac*bc*,
c*ac*bc*ac*}. This result indicates that the inverse projection of agutgd language indeed
includes the original language. O

°The partial order on the input and output sets is the setsimiyi.e. ifLy C L, C =*, thenpo(L1) € po(L2) C 5.

SECTION 2.1 — LANGUAGES 13

Figure 2.2: Projection of languages.

In the next Lemma a useful property of the natural project®given. The projection of the
prefix-closure of a language equals the prefix-closure optbgected language.

Lemma 2.1 (Prefix-Closure of the Natural Projection [dQO00])
Let L C 2* be a language and gl : ¥* — X be the natural projection withg C ~. Then

po(L) = po(L). O

An important operation for languages is thynchronous produawhich can be introduced using
the inverse projection.

Definition 2.5 (Synchronous Product [Won04, CL99])
GivenZ = %, U2, and the natural projections : =* — 37, p2: £* — %5, the synchronous product
of two language$; C 3] andL, C %5 is:

La||L2 := pyt(La) N py (L)

OJ

The intersection of the Ianguagp;l(Ll) and pz‘l(Lz) in Definition 2.5 ensures that the projection
p1(s) is an element o1 and the projectiom,(s) is an element ok for any stringsin Lg||L>.

The concept of the synchronous product is explained in theesguent example.

Example 2.3

Let Ly = {ab,aba,abc,abca} andL, = {ad} with alphabets; = {a,b,c} andZ,; = {a,d}, re-
spectively. Then the overall alphabet3s= >; UZ; = {a,b,c,d}. Using the natural projec-
tions defined in Definition 2.5 results {p1) ~*(L1) = {d*ad*bd*,d*ad*bd*ad*,d*ad*bd*c d*,
d*ad*bd*cd*ad*}, and(pz)~%(L2) = {{b,c}*a{b,c}*d{b,c}*}. Thus, the synchronous product
of the two languages is;||Lz = (p1)~(L1) N (p2)"(L2) = {abd,adb,abcd,abdc,adbc}. O

14 CHAPTER 2 — BASICS OFRW SUPERVISORYCONTROL THEORY

2.1.2 Regular Languages

The theory of formal languages distinguishes four clas$ésnguages which are also known as
the Chomsky Hierarchy [HU79]. In our work, the classrefjular languagess considered in
detail. Regular languages can be representegdpylar expressions

Definition 2.6 (Regular Expression and Regular Language [HU79CL99])
Let be an alphabet. The regular expressions avend theregular languageshey describe are
defined recursively.

(i) Ois aregular expression.
(i) eis aregular expression, and it denotes the langgage
(ii) forany o € Z, o is a regular expression, representing the langyage

(iv) If r ands are regular expressions, characterizing the languBRgesl S, respectively, then
the operationgr +s), rs andr* are regular expressions denoting the langu&yeS, RSand
R*.

(v) there are no regular expressions other that those cmbstt by applying rules (i) to (iv) a
finite number of times.

The regular language represented by a regular expressiba get of strings which is expressed
by the regular expression. O

In the previous section, different operations on languagge introduced. The operations which
conserve regularity are enumerated in the following lemma.

Lemma 2.2 (Operations on Regular Languages [HU79])
Let X be an alphabet anld andS be regular languages ovEr ThenRUS RNS R* andZ* — R
are regular languages. O

A proof of this lemma is given in [HU79].

Regular languages play a crucial role in describing the heha¥dynamical systems in this work.
Before relating the concept of regular languages to an autorepresentation in the next section,
the following lemma states a well-known result on the prioggcof regular languages [Won97].

Lemma 2.3 (Projection of a Regular Language)
LetL C Z* be aregular language, and [&t: >* — Z; with 2o C X be the natural projection. Then
po(L) is regular. O]

SECTION 2.2 — AUTOMATA 15

An outline of the proof of this result is provided in Appendix

In the following example, the regular languages presemteda previous examples will be gener-
ated by regular expressiofs.

Example 2.4

The languagd. = {ab,aba,abc,abca} from Example 2.1 is a regular language which can be
expressed by the regular expressioa ab(e +a+c +ca). As L is regular, its projection on
the symbol sefa,b} according to Example 2.2 must also be regular. The regujaression for
Po(L) = {ab,aba} islp = ab(e+a). O

2.2 Automata

In the previous section, regular languages were introdbgagsing regular expressions. Another
very important tool for representing regular languagediaite automata. In the sequel, the gen-
eral notion of an automaton is introduced, and the relatiemvben finite automata and regular
languages is established.

Definition 2.7 (Automaton [HU79])

An automatonis a 5-tupleG := (X,Z,8,Xo,Xm). X is the set of states ariis the finite set of
symbols which is also referred to as thphabet The transition functiod: X x = — 2X is a
partial function, i.e. it is only defined for a subset2in any statex € X. The initial state set

of the automaton Xy C X, andX;,, C X is the set of marked states, that is a set of distinguished
state$. The automaton is denotdidite stateif the number of states is finite. If the initial state set
consists of one state, i.&%y = Xp and if the transition function is unique, i.8.: X x £ — X, then

the automaton is calledeterministic O

The following example illustrates the concept of a finitdeseutomaton.

Example 2.5

Let G = (Z, X, d, X0, Xm) be a deterministic finite state automaton. A graphical regmeation ofc

is shown in Figure 2.3. Nodes in the graph represent statdgea&utomaton and arrows between
the states denote transitions between states accordihg taansition function. The alphabetGf
isX={a,b,c}, the state set iX = {1,2,3,4,5}, the initial state isqo = 1 and the marked state set
is Xm = {3,4,5}. The transition functio states thad(1,a) = 2 andd(2,b) = 3 for example. [

3Note that there are many ways of representing the same regygdeession.
“For example, a marked state can represent the terminatitask in a discrete event system model.

16 CHAPTER 2 — BASICS OFRW SUPERVISORYCONTROL THEORY

Figure 2.3: Automaton graph o

For convenienced(x,0)! expresses thal is defined foro at statex, and theset of active symbols
is defined ag\(x) := {0 € Z|d(x,0)! } for statesx € X. The transition functio® can be extended
to a partial function on?2 x =*. Recursively le®(X,€) := X and defined(X,so) := {X € X|X ¢
O(x",0) for X" € 8(x,s)}. For deterministic automata, this definition simplifies fmeatial function
on X x Z* with 8(x,€) = x andd(x,s0) = &(d(x,s),0), whenever both' = d(x,s) andd(x,0)!.
This means that for deterministic automata, a stendnich is defined in a statec X always leads
to a unique successor state= d(x,s) € X.

The definition of languages of an automaton is based on tkeetdnl paths which can be followed
in an automaton.

Definition 2.8 (Generated and Marked Language [Won04])
Let G = (X, Z, 3, %, Xm) be an automaton. THanguage generately G is

L(G) := {s€ Z*|0(Xo,s) is defined for somep € Xo}.
Thelanguage marketty G is
Lm(G) := {s€ Z*|d(xo,S) € Xm for somexp € Xo}.
OJ
That is, the generated language includes all sequencesrifaty which can be followed in the
automaton starting from an initial state. The marked lagguzontains all sequences of symbols

which lead from an initial state to a marked state. In paldicut is readily observed th&i,(G) C
L(G). An automatorG generateshe languagé (G) andrecognizeshe languagé,(G).

Example 2.6
The marked language of the automa®im Figure 2.3 isLn(G) = {ab,aba,abc,abca}, and the
prefix-closed language ISG) = {¢,a,ab,aba,abc,abca}. O

Having defined the language marked by an automaton, it iseistieg to ask which type of lan-
guages can be spoken by a finite automaton. To this end\éhede equivalencen languages
which defines an equivalence relation on strings is recalled

SECTION 2.2 — AUTOMATA 17

Definition 2.9 (Nerode Equivalence [Ner58])
The Nerode equivalence relation &h with respect td- C =* (or modL) is defined as follows.
Forsit € ¥,

s= tors=tmodL iff YueZX*:suelifftuelL.

OJ

This means that two stringst € Z* are in the same equivalence class of the Nerode equivalence
iff they can be continued to a word Inin exactly the same way. The cardinalityiodexof the
Nerode equivalence relation is denotéld|. In case that|L|| < o, there is a finite number of
equivalence classes. In this case, the Myhill-Nerode Tdra@hows that it is possible to represent

L by afinite automatorwhich recognizes.

Theorem 2.1 (Myhill-Nerode Theorem [Ner58])
The following statements are equivalent

(i) The setL € ¥* is recognized by a finite automaton

(i) Listhe union of some equivalence classes of a right-invaei@uivalence relation with finite
index

(i) Letthe equivalence relatios be defined as in Definition 2.9. Thex_ is of finite index.
O

Thus, item (i) and item (iii) show that if the Nerode equivade relation for a languadeyields

a finite set of equivalence classes, thheoan be represented by a finite automaton. In the proof
of Theorem 2.1, [HU79] provides a procedure for constrigc8nch automaton. It is interesting
to note that if the languagk is recognized by a finite automaton, then there exists a nainim
automatof recognizingL [HU79].

Theorem 2.2 (Minimal Automaton [HU79])
The minimal automaton recognizimgis unique except for an isomorphism. O

There are algorithms for computing the minimal automatemfgiven languagk (see also [HU79,
Hop71]), and the resulting automaton is referred to as#m®nical recognizeof the languagé.

In the canonical recognizer, each state represents anadgjube class of the Nerode equivalence
onX* w.rtL.

In addition to relating finite automata to Nerode equivagdasses of languages with finite index,
a very useful property of deterministic finite automata &est in the following theorem.

5In this context "minimal” means "minimum state".

18 CHAPTER 2 — BASICS OFRW SUPERVISORYCONTROL THEORY

Theorem 2.3 (Finite Automata and Regular Languages [HU79])
If the languagéd. € Z* is recognized by a finite automaton, thiers regular. Also ifL is a regular
language, then there exists a finite automaton which rezeghi O

The second statement does not say whether the resultinghaiato is deterministic or nonde-
terministic. Yet, the following result states that theralways a deterministic automaton which
recognizes the language that is marked by a nondeternsiaistomaton.

Lemma 2.4 (Deterministic Automaton for a Nondeterministic Automaton [HU79])
Let L be a language which is recognized by a nondeterministie@fautomator,y. Then there
exists a deterministic finite automat@ga which recognizes, i.e. Lim(Gq) = Lim(Gnd)- O

With Lemma 2.4 a useful corollary can be established.

Corollary 2.1 (Regular Languages and Deterministic Finite Aitomata)
If L € Z* is aregular language, then there exists a deterministte finitomators with Ly, (G) = L.
O

Proof: Corollary 2.1 follows with the second statement in Theoregad Lemma 2.4. [

Consequently, a regular language can be represented byrengheséic finite automaton. Analo-
gously to Definition 2.5 for languages, there syamchronous compositi@peration for automaté.
It computes an automaton representing the common behaieo@iven automata’

Definition 2.10 (Synchronous Composition)
The synchronous product of two deterministic auton@ia= (X1, %1,01,%X0.1,Xm1) and Gy =
(X2,Z2,02,%0,2, Xm2) iS

G1|[Gz 1= (X1 x X2, 21U Z2, 812, (X0,1,%0,2), Xm.1 X Xm2)

with
(51(X1, O'), 62(X2, O')) if oe /\1(X1) ﬂ/\z(Xz)
(61(X1,0'),X2) if o c /\1(X1) — 29
(X1,62(X2,0')) if Oc /\2(X2> —21
undefined else

8y2((%1, %), 0) =

O

6This operation is also referred to as {iarallel composition
"Here, the synchronous product is defined for deterministioraata as a more general definition for nondeter-
ministic automata is not required in this thesis.

SECTION 2.2 — AUTOMATA 19

This means that ahared symbob € 2; N2, can occur at a state of the composed automaton
G1/|G2 only if it is in the set of active symbols of both of the respeetstates ofG; and Gp
(synchronization), while the rest of the symbols can occhemever they are generated Gy or

Go. A state of the resulting automaton is marked only if botlpeesive states 061 andG; are
marked. Also note that not all states in the canonical prsdkicx X andXm 1 < Xm 2 need to be
reachable from the initial state.

Definition 2.10 is closely related to Definition 2.5. It is alliMenown fact from the literature
(Jwon04, CL99]) that the language generated by the synclumeomposition of two automata
L(G1||G2) equals the synchronous product of the generated langl&Ges |L(Gp2).

Lemma 2.5
Let Gy = (X1,21,01,X0,1, Xm1) andG, = (X2, 22,82, X0,2, Xm2) be deterministic automata. Then it
holds that

L(G1)[|L(G2) = L(G1[|G2) and Lm(G1)|[Lm(G2) = Lm(G1||G2).

The synchronous composition of automata is explained istibsequent example.

Figure 2.4: Synchronous composition &; andG;

Example 2.7
The synchronous composition of the autom@taand Gy, recognizing the languagés = {ab,

aba,abc,abca} andL; = {ad} in Example 2.3 is computed. Note thah(G,) C L(Gy) in this

case, i.e. the generated language contains more stringsthbaprefix-closure of the marked
language 0iG,. The corresponding automata graphs are depicted in Figdre The alphabet
of G1||G; is Zy2 = {a,b,c,d}. Not all states inXle = X3 X Xo are reachable from the ini-

tial state. Only reachable states are shown in the autongrgh of G1||G,. Also note that

20 CHAPTER 2 — BASICS OFRW SUPERVISORYCONTROL THEORY

states inG;||G; are only marked if the corresponding statesGn and G, are both marked.
For example, observe that in statg 2), the state 3 is marked i®; but 2 is not marked in
G2 and thus(3,2) is not marked inG||G2. Further on, the language recognized ®y|G; is
Lm(G1||Gz) = {abd,adb,adbc,abdc,abcd}. This is equal to the languadg||L, computed in
Example 2.3, which complies with Lemma 2.5. OJ

This section introduced the notion of automata and reldtiedthe concept of formal languages. It
holds that any regular language can be recognized by a fulitareaton and that operations such
as the synchronous composition of languages can be compuytesialuating the synchronous
composition of the corresponding automata.

2.3 Supervisory Control in a Language based Framework

In the previous sections, general definitions of regulagleages and finite automata were given.
Now, these notions are used to describe discrete eveninsy{i2ES), and in addition to that a
framework for the control of these systems is establishedthis end, we present the approach
introduced in [RW87b] in a language framework. The equividliemmulation using finite automata
is given in the next section.

2.3.1 Basic Definitions

In our work, we formally describe discrete systemsastrol systemsSimilar to [Rut99], they
consist of a pair of languages which fulfill certain requissts.

Definition 2.11 (Control System)
Let Z be a set of symbols, also denotexknts and letL1,L, C Z* be two languages. The tuple
H = (L1,L2) is called a control system (CS) if

() Ly andL; are regular,
(i) Lgis prefix-closed,
(i) L2 C Ly,

(iv) ¥ =3,0U%¢, whereZis called the set afincontrollable eventandZ is the set otontrol-
lable events
O

SECTION 2.3 — SUPERVISORYCONTROL IN A LANGUAGE BASED FRAMEWORK 21

The set2 contains the events which can occur in a DES. The behavidneotontrol system is
represented by the sequences of events which can happérs legard, the languade describes
the desirable strings of the system (for example stringslvindicate the termination of a task).
We refer to these strings asarked strings L; includes all strings which can be generated by
the system (in particular prefixes of stringslig). In addition to that, the event set is partitioned
into controllable E¢) and uncontrollableX,;) events. Controllable events can be prevented from
occurring (e.g. actuator signals in a manufacturing systand uncontrollable evenks,c cannot

be disabled (e.g. sensor signals).

Considering the languagés andL,, we define a subset relation for control systems. This subset
relation is useful for stating properties of control syssem

Definition 2.12 (Subset Relation for Control Systems)
LetH; = (L11,L12) andHz = (L2,1,L22) be control systems over the set of symhbldd; C H,
iff Lig CLogandlyo Cloo.]

This means a control system is a subset of another contrtdmyi$ its languages are subsets of
the respective languages of the other control system.

Example 2.8 explains the notions defined above.

Example 2.8

LetH = (Ly,Lp) with Ly = {€,a,ab,aba,abc,abca} andL, = {ab,aba,abc,abca}. Also define
the uncontrollable event s&t,: = {a,b}, and the controllable event st = {c}. It is readily
observed thak = >,cU 2, andZ,cNZ. = 0. As shown in Example 2.4,; andL, are regular.
It also holds thatl.; is prefix-closed and., C L;. Thus,H is a control system. A graphical
representation of the two languages is given in Figure 2th yi= L andL; = L. The illustration
of control systems is facilitated (see Figure 2.5). If presi¥ < s of a strings are contained in
the languagé 1, then only the string is shown. Also, strings in the languabg are not depicted
explicitly, but they are marked with circles around ticksar Example, the prefiab of the string
aba is not drawn as a separate string, and the correspondinddtoded withb, is marked with a
circle, asab is an element ok.. O

Figure 2.5: Control systenH

22 CHAPTER 2 — BASICS OFRW SUPERVISORYCONTROL THEORY

The system behavior can be influenced by disabling or ergabbmtrollable events according to
Definition 2.11. Formalizing the idea of imposing contrdliags on a control system, the partition
of the event set into controllable and uncontrollable evestused to introduce the concept of
control patterns

Definition 2.13 (Control Pattern and Set of Control Patterns[Won04])

Let ¥ = Z.UZ,c be an event set with the controllable evehtsand the uncontrollable eventg..
A control patternis a sety with Z,c C y C 2. The set of all control patterns is:= {y|Z;c CyC
s}c22 8 O

Analogous to [RW87b], we define the concept of a supervisoafDES, where the events in a
control pattern are regarded as enabled evénts.

Definition 2.14 (Supervisor [RW87b])
LetH = (L1,L2) be a control system. Bupervisor Sor H is a map

S:Ly—T,

whereS(s) represents the set of enabled events after the occurreracstiofigs € L;. O

control patterns

yerl

stringss € L

Figure 2.6: Feedback loop with the control systétfnand the supervisd

The supervisof together with the control systei are used in a feedback loop as depicted in
Figure 2.6. That is, a supervisor observes the events aegurrthe systenH, and it can disable
controllable events after any strirsg= L1, depending on the control patteyre I returned after
the current strings € Ly. It is important to note that the supervisor is not allowedlisable
uncontrollable events according to the definition of thetmrmpatterns. A supervisory controller
reduces the behavior of a systétnto a smaller behavio8/H.1° The languages o8/H are
constructed iteratively.

822 is the power set OF.
9Note that uncontrollable events are always enabled.
10S/H can be read asS'controllingH".

SECTION 2.3 — SUPERVISORYCONTROL IN A LANGUAGE BASED FRAMEWORK 23

Definition 2.15 (Closed Loop Languages [RW87h])
Let H be an control system, I&be a supervisor and writ§/H = (LS,LS).1! The closed loop
languagd. § is defined as

eely,
soelLfiff scel,selLiandocS(s),

and the closed loop languabgis
LS :=LSNLo.

OJ

The next example describes the operation of a supervistinéazontrol system in Example 2.8.

Example 2.9
We define a supervis@for the control systerkl in Example 2.8 for stringse€ L1 as

{a,b} ifs=ab
{a,b,c} otherwise

S(s) = {

This meansSdisables the event after the occurrence of the stria@). The resulting closed-loop
behavior isS/H = (L{,L5) with L = {¢,a,ab,aba}, andL$ = {ab,aba}. O

Figure 2.7: Supervisor and closed loop language

2.3.2 Controllability and Nonblocking Control

In the previous section, control systems and supervisors iméroduced and it was pointed out,
that control actions can be applied, yielding a reducedesysiehavior. However, the question
how it is possible to control the system such that the closed bystem assumes some specified
behavior remained unanswered. In the supervisory contrtlext, desired system properties are
formulated as regular languages. From thggecificationsa supervisor which implements the
specified behavior can be computed as shown in the sequetstdntrollability is introduced.

The superscript "c"means "controlled".

24 CHAPTER 2 — BASICS OFRW SUPERVISORYCONTROL THEORY

Definition 2.16 (Controllability [RW87b])
LetL =L C =* be a prefix-closed language, and ¥gt C = be the set of uncontrollable events.
The languag& C L is said to becontrollablew.r.t. L, and the set of uncontrollable eveiig if

EZ,cNL CE.

OJ

We write E is controllable w.r.t.L if the set of uncontrollable events is obvious from the crnte
The above condition states that if a striag E is extended with an uncontrollable event
Suc such thatso is also inL, thenso must also be element @&, i.e. it must not be prevented.
Considering this, it can be shown that.if= L; for a control systent = (L1, L>), then there exists
a supervisoSsuch thal$ = E if E is controllable w.r.tL;.

Lemma 2.6 (Controllability [RW87b])
Let H = (L1,L2) be a control system and |I&t C L; be a specification language. There exists a
supervisoiS: L1 — I such that§ = E for S/H = (L, LS) iff E is controllable w.r.tL;. O

A proof for Lemma 2.6 is provided in [CL99]. Precisely, Ef is controllable with respect tby,
then a supervisoB exists which restricts the control systéin= (L1,L>) such thal§ = E.

In addition to controllability,nonblocking behaviors a further desirable property of a control
system. We say that the control systéim= (L1,L2) is nonblocking if the prefix-closure df;
equald..

Definition 2.17 (Nonblocking Control System)
LetH = (L1,L>) be a control systenH is nonblocking if

Ly =Li.

OJ

This means that every strirggenerated by the systerm€ L1) can be extended to a string lin
(Ju € £* s.t.su€ Lp). Thus, a supervised syste®iH = (L§,LS) is nonblocking ifLS = LS.

Up to now, it has only been considered tkais a subset of the languagie and a controllability
result has been shown for this case. Yet, by controllihgt might happen that the closed loop
systemS/H = (L§,LS) is blocking, i.e. controlling the system might lead to blimgkbehavior.
The following theorem states conditions for the case thagegification language is controllable
with respect to the control systelrhand at the same time the closed loop system is nonblocking.
Itis required thak C L.

SECTION 2.3 — SUPERVISORYCONTROL IN A LANGUAGE BASED FRAMEWORK 25

Theorem 2.4 (Nonblocking Controllability Theorem [RW87b])
LetH = (L1,L2) be a control system and I& C L, be a specification language. There exists a
supervisoiS: L1 — I such thal§ = E andL§ = E iff

(i) Eis controllable w.r.L1,

(i) E=ENLy. 12
O

A proof is given in [Won04]. Condition (ii) is denoted the-closure ancE is calledL,-closed if
it fulfills the condition. For convenience, the setlofclosed languages is writtéh ,. The above
theorem only applies if the languagealready complies with the propertiég and(i). Now, the
question is, what can be done if the above properties areutiited.

In case that a specification langudges not controllable w.r.t a languade it is interesting to
investigate controllable sublanguage$ofAt first the set of controllable sublanguages of a given
languagéd. is defined.

Definition 2.18 (Set of Controllable Sublanguages [WR87])
LetL =L C =* be a prefix-closed language ahg: C = be the set of uncontrollable events. The
setC(L) of controllable languages w.rit. andZ is

C(L) ={K CL|KE,cNLCK}.

O

The setC(L) is closed under arbitrary union. Hence, for every speciicalanguageE, there
exists a uniqusupremal controllable sublanguagéE w.r.t L.

Definition 2.19 (Supremal Controllable Sublanguage [WR87)]
Let L C * be a prefix-closed language and EetC L be a specification language. The supremal
controllable sublanguage &fwith respect td_ is

KL(E):=U{KeC(L) | KCE}
[

KL(E) is the union of all controllable sublanguaged ahat do not violate the specificatidh It
holds thak, (E) is controllable w.r.tL1 if H = (L1, L2) is a control system arid is a specification
for H. Thus there exists a supervisdsuch thal§{ = ki, (E). Asky, (E) constitutes the union of
all controllable sublanguages Bfw.r.t. L1, Sis called anaximally permissiveupervisor.

Assuming that specifications are chosen to bkp-closed, it is important to investigate if the
supremal controllable sublanguagig (E) is alsoL»-closed.

2An intuitive explanation of this requirement @&is given in section 2.4.

26 CHAPTER 2 — BASICS OFRW SUPERVISORYCONTROL THEORY

Lemma 2.7 (Lo-closure of Supremal Controllable Sublanguages [ZC94, CL99]
LetE € J1,. Thenk,(E) € F,. OJ

Lemma 2.7 states that the propertylotclosure is preserved under the computation of the supre-
mal controllable sublanguage. A proof is given in [ZC94, CL99]

The systems under investigation are control systems withiogoroperties according to Definition
2.11. A very important property is the regularity of the laages of the control system. The
following interesting result, which is provided by [WR87] ®athat regularity is preserved if both
the system behavior and the specification are describedjojyardanguages.

Lemma 2.8 (Supremal Controllable Sublanguage for Regular Laguages [RW87h])
Let L C 2* be a prefix-closed language and EetC L be a specification language, where bbth
andE are regular. Ther (E) is regular. O

We use this result to show that the closed I&@)pl is again a control system, H is a control
system, the specification languaBeis regular and the supervis& implements the supremal
controllable sublanguage &w.r.tL;.

Corollary 2.2

LetH = (L1,L) be an control system and [Ete F,. Then a supervisddsuch that§ =k, (E)
andL§ = ki, (E) is maximally permissive and nonblocking (see also [CL99]E Is regular, then
S/H constitutes a control system. O

Proof: ~Maximal permissiveness holds as the supremal controlalidé&anguage,(E) is com-
puted. Nonblocking behavior follows from Theorem 2.4, hesex |, (E) is controllable and also
L,-closed with Lemma 2.7S/H is a control system because

(i) LSisregular because of Lemma 2.8. THijs= L, is also regular.
(i) LS =Ly is prefix-closed.
(i) LSCLx=LS.

(iv) ¥ =5,UZ because of the definition &f.

SECTION 2.4 — AUTOMATA REPRESENTATION INSUPERVISORYCONTROL 27

The implementation of a nonblocking supervisor for a giveecsfication is illustrated in the sub-
sequent example.

Example 2.10

Let H be the control system in Example 2.8 (recall that= {€,a,ab,aba,abc,abca} andL; =
{ab,aba,abc,abca}). The desired system behavior is given as a regular langbagdab, aba,
abc}.

At first the Lo-closure is verified. ENL, = {¢,a,ab,aba,abc} N {ab,aba,abc,abca} =
{ab,aba,abc} =E.

For checking controllability, the stringpca is investigated. It holds thabca ¢ EZ,¢, andabca ¢

L., thatisabca € EZycNLy butabca € E. This mean&>,cNL; € E, and thusE is not controllable
w.rt. Ly andZ .. Because of this reason, the supremal controllable subdmy@yis determined.
Controllability fails because the specification requirest the event has to be disabled after the
string abc. This is not possible, as is uncontrollable. Thus, the occurrenceatic must be
prevented by disabling after the stringab. This is done by the supervisor shown in Example
2.9. The closed loop behavi&/H is also given in this example and it is readily observed that i
constitutes a nonblocking control system. O

To sum up, discrete event systems are represented by ceytems in this thesis. Specifications
for these systems are given as languages and it is possibtartpute a supervisor which imple-
ments the supremal controllable sublanguage of a spe®ficaturthermore, an important special
case is taken into account. If the specification is a regalaguage, then the closed loop system is
again a control system, i.e. it fulfills all requirementsarciing to Definition 2.11.

2.4 Automata Representation in Supervisory Control

Up to now, discrete event systems have been modeled as ceydgtems, as this type of model is
convenient for theoretical considerations. It is more emi@nt to represent discrete event systems
as finite automata in regard to applications of the superyisontrol theory. We establish the link
between control systems and finite automata, and relategeeasory control methods elaborated
in the previous section to an automata formalism.

The control system in Definition 2.11 can be represented asta iutomaton.

Lemma 2.9 (Automaton from Control System)

Let H = (L1,L2) be a control system. Then there exists a minimal deterrmrfisite automaton
G = (Z,X,,Xp,Xm) which generatek; and which recognizés,, i.e.L(G) = L1, Lm(G) =L, and
X] = [|Lal. O

28 CHAPTER 2 — BASICS OFRW SUPERVISORYCONTROL THEORY

Proof: As L; andL, are regular, there exigbgen = (2, Xgen Ogen, X0,gen, Xm,gen) and Grec =
(Z, Xrec, 6[‘ec7 X07rec, Xm’rec) SUCh thaLm(Ggen) — E(Ggen) — L]_ arldLm(Grec) - L2 because Of COI’0|-

lary 2.1. Gy is extended to a new automat@ec = (Z, Xrec, Orec, Xo.rec; Xmrec) With a new state
X4 & Xm, and the new transition function is defined for X ando € ¥ as

Orec(X,0) if Orec(X,0)!
Xd otherwise

5rec(x, 0):= {

Grec is constructed such tha{Grec) = Z* andLm(Grec) = L2. Now we computes := Gger|Grec.
AS Lim(Grec) = L2 € Lm(Ggen) = Ly, it holds thatLm(G) = Ly NLy = Lp. With L(Ggen) = L3 C
L(Grec) = =* itis true that_(G) = L1 NZ* = L1. Applying a state minimization algorithm ([HU79])
to G, the resulting automato® has a minimal number of states and alg&) = L(G) = L; and

Lm(G) = Lm(G) = L2. Because of Theorem 2.2, this automaton is unique arié generates 1,
it holds that X | = ||L4]|. O

This means that for any control system, a minimal automatmerating and marking the lan-
guagesL; and Ly, respectively, can be found. In return, given a finite autmmas, Hg =
(L(G),Lm(G)) is written for the corresponding control system.

Lemma 2.10 (Control System from Automaton)

Let G = (2, X, 8, X0, Xm) be a finite automaton with a partitidh= >.UZ, ¢ of the alphabek into
uncontrollable event&,c and controllable events.. ThenHg := (L(G),Lm(G)) is a control
system. 0

Proof: It has to be shown that all conditions in Definition 2.11 anélfad.

() L(G) andLy(G) are regular because of Theorem 2.3.
(i) L(G) is prefix-closed because of Definition 2.8
(i) Lm(G) € L(G) because of Definition 2.8.

(iv) = =3UZcis given.

ThusHg is a control system. O

The equivalence of control systems and finite automatauistitited by the next example.

Example 2.11

Consider the control systebh= (L1, L) from Example 2.8 with the languages= { €, a, ab, aba,
abc, abca} and L, ={ab, aba, abc, abca}. The automator in Example 2.5 is the corresponding
automata representation. O

SECTION 2.4 — AUTOMATA REPRESENTATION INSUPERVISORYCONTROL 29

Considering that a control system can be represented as @ dimibmaton, it is clear that the
supervisor computation and implementation can also b&eskin the finite automata framework.
This is useful, as the definitions in section 2.3.1 involvegioly infinite sets (languages), whereas
automata provide a finite representations of regular lagesia

A regular language specificatidh C L can always be represented by a finite automaton because
of Theorem 2.3. There is also a finite automata implememtdiof a supervisofS, as shown in
the next lemma3

Lemma 2.11 (Automata Representation of a Supervisor [Won04]
LetH = (L1,L2) be a control system. Also I&: L; — I be a supervisor such tha§ = E and
LS = E for a regular specification language The automatofR recognizingE and generating,

implements the supervis& i.e. Lim(R)NL =E andL(R)NL; =E. O

The event sets of the automaton realizat®of H andR are bothX. This observation together
with Lemma 2.11 and Lemma 2.5 can be used to find out how theaapeautomatorRk has to
be interconnected witl to yield the desired behavior.

Corollary 2.3 (Supervisor Implementation [Won04])
Let G be an automata implementation of a control syskénand letE andR be defined as above.
Interconnectings andR with the synchronous composition yields

() L(GIR) =E,

(i) Lm(GIIR) =E.
O

Proof: For the synchronous composition &f and R, observe that; = 2, =% and p; =
p2 =: p:X* — Z* is the natural projection. With Lemma 2.5, Definition 2.5 dreinma 2.11, it
holds that (G||R) = L(G)[|L(R) = (p) *(L(G))N(p) *(L(R)) = L(G)NL(R) =E andLm(G) =
Lm(G)|ILm(R) = (P) " *(Lm(G)) N (P) H(Lm(R)) = Lm(G) NLm(R) = E. N

This means that considering the feedback loop in FiguretBesupervisof (represented biR)
follows the event sequences generateland allows all events which can occur in the respective
state ofR. This can be written aS(s) = A(Sr(Xr0,S)) U Zuc. 4

Example 2.12
As an example, the supervisor computed in Example 2.10 itemmgnted. Figure 2.8 shows the
resulting finite automaton. It is readily observed that tbhatmllable event is disabled in state

215 O
3Note that this supervisor implementation is not unique ileere are other automata implementing the same
supervisor.

14Recall that uncontrollable events are never disabled.
SNote that the event set &is g = {a,b,c}, and thug is a shared event & andR.

30 CHAPTER 2 — BASICS OFRW SUPERVISORYCONTROL THEORY

Figure 2.8: Automata implementatioR of the supervisof

In addition to realizing a supervisor for a controllabledangeE and a control systerHl, it is
also possible to compute the supremal controllable subkgeyof a specification language based
on automata representations. Algorithms for this compartadre given in [WR87, RK91]. They
initiate with an automata representati@randR of a control systent and the specificatiok <
FL,, respectively. Then, the supremal controllable sublaggug, (E) is computed by eliminating
states in the synchronous compositi®fiR of G andR. For prefix-closed specificatios = E,

the algorithm is of complexity)(mn) ([RK91]), wherem andn are the number of states Bfand

G, respectively. In case th&tis not prefix-closed, the complexity &(m?n?) ((WR87)).

Summarizing, in this section a finite automata represemtdtir both a control system and a super-
visor has been found. Hence, itis possible to implementteeretical results by using a finite au-

tomata representation of control systems and supervisbese are further control frameworks for

discrete event systems which shall not be considered imbrik [Pu00, dCCK02, Ma04, ZW01].

Chapter 3

Nonblocking Hierarchical Control

In the previous chapter, it was pointed out that the compjidwir supervisor synthesis is poly-
nomial in time (O(n?n?) if an automata implementation of a control system witktates and an
automata implementation of a specification wittstates is given). However, this does not imply
that it is always possible to compute a supervisor. This estduhe fact that the number of states
of a discrete event systems which is composed of several@oamis grows exponentially with its
number of components. This state explosion is the reasorswbgrvisory control for large scale
systems fails.

One approach dealing with this problemhigrarchical supervisory controlAn abstracted model
(with fewer states) is computed, instead of synthesizingpesrisor for the real system model.
For thishigh-level modelsupervisor synthesis is feasible and the resulting sigmras to be
translated to théow level Note that although the hierarchical approach facilitéiessupervisor
computation on the high level, it is still necessary to cotefihe overall low-level modéi.

Within the framework elaborated in Chapter 2, we develop a@robtineory for hierarchical discrete
event systems. Figure 3.1 illustrates the architecturenyidg this approach.

On the low level, there is a control systdfinwhich describes the detailed behavior of the given
system. The supervis@® applies its low-level control action td. TogetherH andS° form a
low-level closed-loop system, indicated by (f(control action from the supervisor) ahdf !
(feedback information from the control system). Similathe high-level closed-loop consists of
an abstracted plant model" and the superviso8. It is important to note that the standard
supervisory control framework can also be used on the regékl The two levels are intercon-
nected via Cofil® and Info". As the control action of the high-level supervis on G" is just
virtual, it must be translated to the control action of a llewel supervisoB8°, which directly con-
trols the low-level systerfi. This is done by Cof{°. The channel If®" provides the necessary
information for the progress of the high-level systeif.

1This issue is addressed in the next chapter.

32 CHAPTER3 — NONBLOCKING HIERARCHICAL CONTROL

From the perspective of the high-level supervisor, the &vdypath sequence C8fi, Corl® is usu-
ally designated “command and control”, while the feedbaatk gsequence IKf!, Inf" is identified
with “report and advise”.

g Infhi
i th
Cor
Corfilo Inflohi
< Infl©
0 H
Con°

Figure 3.1: Hierarchical control architecture

The hierarchical method is related to the work in [Pu00, dCCRERV96, Won04]. All these
approaches use the above hierarchical architecture, anobaed on a low-level automata repre-
sentation of a control system. They introduce a reporterfmagbstracting the low-level behavior
and represent the high-level model as an automaton. High-&vents are generated if particu-
lar states which are labeled with tokens are reached. [R{d@n04] and [WW96] investigate
the "observer" and "weak observer" property for relating tigg-fevel behavior to the low-level
behavior and for implementing high-level supervisors ia tbw level. Also, controllability of
high-level events in each high-level state is determinednbgstigating the low-level behavior
corresponding to the respective high-level state. In [R¥@@n04, WW96], high-level states are
marked, if all low-level states, which are reached, whemtlagked high-level state is entered, are
marked. Different from that, a new high-level control sture accounting for the controllability
and marking properties of local behavior is employed in [dCZK@hile the method in [Pu00]
is worked out for multi-level hierarchies, the approachd@CKO02] is formulated for a two-level
hierarchy.

In our work, the computation of the abstracted systéthis done by applying the natural pro-
jection of the control systerfil on a predefined set of high-level events. This projectiornés t
operation carried out by the information channel®f As in [Won04], the observer property is
needed, but a less restrictive high-level marking conditsorequired. Furthermore, as high-level
events are elements of the low-level event set, the coabitity properties are carried over from

SECTION 3.1 — BASIC DEFINITIONS 33

the low levef. Consequently, the Ramadge/Wonham framework is used on lthigh and the
low level, and the method is readily extended to a multiiénverarchy.

The chapter is organized as follows: In Section 3.1, badinitiens for the hierarchical control
framework are given. The notion difierarchical consistencys explained in Section 3.2. Our
method forhierarchically consisterdindnonblocking controbf hierarchical systems is established
in Section 3.3. These properties are guaranteed by makiagiudifferent conditions on the
structure of hierarchical systems. The chapter concludésam algorithmic implementation of
the concepts described before in the automata representati

3.1 Basic Definitions

The information channel If#" is realized by a natural projection. Formally, both langsagf a
control system are projected to a given event set. The foliguemma states that the resulting
languages again form a control system.

Lemma 3.1 (Projected Control System)

LetH = (L1,L2) be a control system and Igb : * — > be the natural projection whedg) =
ZQCUZQUC C ZandXgc = po(Zc) andZgyc = Po(Zyc). Further on, the projection is generalized
to control systems by definingo((L1,L2)) := (po(L1), Po(L2)). ThenHo := po(H) is again a
control system. The tupléH, po, Ho) is denoted grojected control systeiiPCS). O

Proof: It has to be shown that the conditions in Definition 2.11 afflled.

(i) Because of Lemma 2.3, botty(L1) andpo(L2) are regular.
(i) With Lemma 2.1,po(L1) is prefix-closed.
(iii) po(L2) € po(L1) directly follows from monotony of the projectiopy.

(iv) Zo = ZocUZouc by definition.

ConsequenthyHy is a control system. O

2The latter condition may sound very restrictive, but it isoi@d for the hierarchical and decentralized approach
presented in the next chapter.

34 CHAPTER3 — NONBLOCKING HIERARCHICAL CONTROL

Integrating the projected control system, thierarchical closed-loop systeimthe basis for further
considerations. It establishes the abstraction of a letleontrol systenH via the natural pro-
jection p" on the high-level events", yielding the high-level control systehi™. It also includes
the high-level supervis@®" and the low-level supervis@° and poses a condition on the relation
betweers" andSP°.

Definition 3.1 (Hierarchical Closed-Loop System)

Referring to Lemma 3.1, kierarchical closed-loop system (HCLS)}-Q(H, p", H" " 5°) con-
sists of a projected control systeéPn= (H, p", H") equipped with aigh-level supervisorSand
alow-level supervisor's, where

(i) SV: LY — i with the high-level control patterdg" := {y|=. C yC =",
(i) S°: Ly —T.

S is calledvalid w.r.t. S if p"(8°/H) € S/HN. Qs finite if the languages$, LS, LT’C, Lgi’c
are regular witt8° /H =: (LS, LS) andS" /HM —: (L€ 1) 3 O

In the above definition, the choice of the command channel™imstill arbitrary unless validity

is required. If this is the case, the low-level supervisostguarantee that the abstracted low-level
closed-loop behavior stays inside the high-level closegrbehavior. This is a desirable property
as the low-level supervisor should be able to realize thérabactions requested by the high-level

supervisor.

Starting from these observations, the crucial point is td ainvalid low-level supervisor and to
achieve nonblocking behavior of the hierarchical clossaplsystem. This requirement is formally
stated in the following definition.

Definition 3.2 (Hierarchical Control Problem)

Given a projected control system= (H, p",H") and a nonblocking high-level supervisst,
compute a valid low-level supervis@® such that the HCLE) = (H, p", H" S 3°) yields a
nonblocking low-level closed-loop systedi? /H. O

If such low-level implementation of the a high-level supsov has been found, the question re-
mains, if the corresponding abstracted behapibL$,LS) is also nonblocking. The positive an-
swer to this question is given in Lemma 3.2.

Lemma 3.2 (Nonblocking HCLS)
LetQ = (H, p" HM SV S°) be a HCLS with a nonblocking valid low-level supervisft. Then
the abstractiop™(S°/H) is nonblocking. O

3This definition ofS" /H" andS°/H will be used throughout the thesis.

SECTION 3.1 — BASIC DEFINITIONS 35

Proof: It has to be shown that for any strirgf € p"(L$), there existg € (Z")* s.t. st €
pM(LS). Lets" € p"(L$). Then, there is a stringe L§ s.t. p(s) = s"'. As S° is nonblocking,
there exists & € =* s.t. suc LS. But thenp™(su) € p"(LS) because of Lemma 3.1. O

The above notions are explained in the next example.

Example 3.1

Consider the projected control systérh, p", H") in Figure 3.2 with the control systehh, the nat-
ural projectionp™ : * — (=")* and the abstracted control systetfl. The low-level languages are
L, = aa(ba(dc)*(y+dp) +dy) andL, = e+ aaba(dc)*(e+y+ dp) + aady with the low-level al-
phabetz = >,UZ. = {a,a,d}U{B,y,b,c}. The high-level alphabet is chosen®$= >N Uzh =
{a}U{B,y}, and the high-level languages afg = LY = a (B +y).

The superviso8" with

i niv. [{a,B} fors"=a
S = { {a,B,y} otherwise (3.1)

is chosen fos" ¢ LT for high-level control, i.e. the eventis disabled after the high-level string
a. A valid low-level supervisor fo8" is for example

{a,B,a,b,c,d} if s=aad
S(s):=<{ {a,B,y,a,c,d} if s=aa (3.2)
> otherwise

It disables the everytandb for the stringsxad andaa, respectively. For the other low-level strings
all events are enabled.

Figure 3.2: Hierarchical closed-loop system

36 CHAPTER3 — NONBLOCKING HIERARCHICAL CONTROL

The resulting closed-loop projected systeniS8/H, p", S/HM) with the low-level closed-loop
language4$ = aad andL§ = €. The closed-loop languages in the high levelldfé = L) = ap.
Note thatp" (LS) = @ c L7 and p(LS) = & ¢ L)*°, which proves validity o8° asp(S°/H) C
g /HN, O

The example shows an instance of a valid low-level supen@Sofor the high-level supervisor
gV i.e. the high-level abstraction of the low-level contedllbehavior is included in the desired
high-level behavioiS" /H". In the subsequent section, the preferable cadsesérchical con-
sistencyis addressed, i.e. the abstraction of the low-level cldsed-behavior equals the desired
high-level behavior. It can be proven that the hierarchtt@éed-loop system in Definition 3.1 is
hierarchically consistent for a particuleonsistent implementatiasf the low-level supervisor.

3.2 Hierarchical Consistency

Before elaborating the main results of this section, somi bagresentations of local behavior of
projected control systems are introduced. Similar corscapg used in [Pu00, dCCKO02, Won04].
The set okntry stringé contains all low-level strings which are just projected tieen high-level
string.

Definition 3.3 (Entry Strings [dCCKO02])
LetP = (H, p",H") be a projected system and asswHes L{. The set of entry strings &' is

Lengi == {s€ L1|p"(s) =s"A 29 < ss.t. pM(s) ="} C 3

LY

Figure 3.3: lllustration of entry strings.

“Entry strings also called vocal strings in the literature.

SECTION 3.2 — HIERARCHICAL CONSISTENCY 37

The local behavior after stringse L1 is described next. It represents the behavior which can
occur locally after the observation of a high-level everdr &ny strings € L1, the continuation of
swith stringsu € (Z —3")*(ZUe¢) in Ly is a prefix-closed language. A second (not necessarily
prefix-closed) language contains local continuations iofL, and also local continuations Iy
terminating with a high-level event.

Definition 3.4 (Local Languages [SMP05])
Let (H, p",H") be a projected control system, and ¢et L; for " := pM(s) € LY. The local
prefix-closed languagdes 1 is

Ls1:={ue (Z—2")*|sue Ly} C =*
and the local languade; > is

Ls2:={ue (Z—2")*|sue Ly} C =*.

Figure 3.4: lllustration of the local languages.

Ls1 can be thought of as the local behaviortbfafter the strings until a new high-level event
occurs, i.e. until the progress of the system can be obsdrgadthe high-level. The language
Ls2 consists of all continuations afin Ls1 which are either marked strings or which can just be
observed in the high-levél.

Combining the two languages defined above, it turns out tretuple (Ls1,Ls2) is a control
system. As pointed out above, it represents the local behawiich is possible after the occurrence
of the strings. We show this result in the following lemma.

SLs2 C Lg1 is shown below.

38 CHAPTER3 — NONBLOCKING HIERARCHICAL CONTROL

Lemma 3.3 (Local Control System)
Let P = (H, p" ,H") be a projected control system, anddet L, for s" := p"i(s) € LY. Also let
Ls1 andLs2 be defined as in Definition 3.4. Théfy := (Ls1,Ls2) forms a control system. [

Proof: The properties required in Definition 2.11 have to be verified

(i) s(=—z")*is aregular set because of Definition 2.6 and 3.4. AlsandL; are chosen to be
regular. Considering Lemma 2.2, the intersectisizs— >")* N Ly ands(Z — Z")* N L, are
regular. By Definition 3.4, it holds that> — ="')*NL; = sLg1 ands(Z — =")* NL, = sLsy.
Again, because of Lemma 2.8ls1 andsLs, are regular sets and with Definition 216,
andLs> are regular.

(i) (= —=")* andL; are prefix-closed. Henc®> — =")* NL; = sl is prefix-closed. As a
consequenceé,s ;1 is prefix-closed.

(i) ShowingLs2 C Lggi is equivalent to showingls, C slss. Lets' € slsp. Thens € s(Z —
>")*NL,. Hence, ag, C Ly, it holds thats' € s(Z —=")*NL, C s(X —Z")*NL; = sL;.

(iv) = Z,UZ; by definition.
O

In the hierarchical control framework, the high-level siyior is designed for a high-level spec-
ification, and a corresponding low-level supervisor is cated. A change in the control strategy
of the low-level supervisor is only meaningful, if the casltaction of the high-level supervisor

changes. As entry strings are just projected to high-lewelgs, we synthesize one local super-
visor for each local behavior which can happen after theaesge entry string. We denote these
local supervisorsonsistent implementations

Definition 3.5 (Consistent Implementation [SMPO05])

Given a projected control systefdl, p",H") and a supervisd8", the consistent implementation
S° is defined as follows. Fas€ Ly, lets" := p"(s) andsen € Lopgi, UE€ (2 —Z")* s.t. 5= Sepll
Then

i i __shi ; hi (i i i
So(g) — {§‘(§”)U(Z =hi) if =hi(sh)n i) £ 0,

{oe(Z—32"M)|uo e ki, (Lsn2)} UZuc else
(H,pM HM S 39 s called a HCLS with a consistent implementation. O
The consistent implementatiameeds the computation of a supremal controllable sublaggeiia

there are no successor events allowed by the high-levehaapeatfter a high-level string. This
guarantees that no blocking can occur in the low-level biginalvthere are no successor events

SECTION 3.2 — HIERARCHICAL CONSISTENCY 39

after the corresponding high-level string. Otherwise, ¢basistent implementation enables all
low-level events and just disables the occurrence of hagktlevents if necessary.

Taking into account the properties of a hierarchical cleleeg system, it has to be shown that the
supervisor implementation in Definition 3.5 is admissilbke, it agrees with Definition 2.14.

Lemma 3.4 (Admissible Supervisor Implementation)
Let (H, p",H") be a projected control system, afdl be an admissible supervisor with a consis-
tent implementatio°. ThenSP is admissible, i.e(H, p", HM " S°) is a HCLS. O

Proof: It must be proven thaf,. C S°(s). Letsc Ly ands™ := p"(s). Then eitherS"(s") N
shi(d) £ 0 or SV (") N ZN(s") = 0. In the first casezk € V(") and (Zyc— =) € (= — =M.
Thus,Z,c € SY(s™) U (Z — 2M) = S°(s). In the second casg,c C S°(s) by definition.

]

Looking at Definition 3.1, a low-level supervisor is conselé to bevalid if the projection of the
low-level closed-loop behavior stays inside the highdelesed-loop behavior, i.e. the system
restriction imposed by the virtual high-level supervisan®e implemented by low-level control.

Yet, this requirement does not guarantee that the contréde-level behavior is nonempty. A
more restrictive conditionhierarchical consistencgnsures nonempty low-level closed-loop be-
havior. It states that the low-level control is such that biedavior of the abstracted low-level
supervised system equals the behavior of the high-levekdidoop system.

Definition 3.6 (Hierarchical Consistency [ZW90])
Let Q = (H, p™ HM S 9°) be a hierarchical closed-loop systef.is hierarchically consistent
if phi(LS) =L, 0

LN

La

Figure 3.5: lllustration of hierarchical consistency.

40 CHAPTER3 — NONBLOCKING HIERARCHICAL CONTROL

The consistent implementation in Definition 3.5 only diggblow-level events after a low-level
string, if there is no feasible high-level event after theresponding high-level string. Because of
this reason, using a consistent implementation for theltwet supervisor is sufficient for hierar-
chical consistency of a hierarchical closed-loop system.

Proposition 3.1 (Hierarchical Consistency)

Let (H, p™,H") be a projected control system, and #tbe a high-level supervisor. 8° is the

consistent implementation &, then the HCLSH, p",HM SV S°) is hierarchically consistent
O

Before proving this result, we establish the following teichhlemmas.

In Lemma 3.5, we assume that a low-level string in the lovelelosed-loop behavior has a local
extension to some high-level event in the uncontrolledesyst Then it has the same extension
in the closed-loop system if the high-level event is enalblgdthe high-level supervisor after the
corresponding high-level string.

Lemma 3.5

Let (H, p",H" S 9°) be a hierarchical closed-loop system with a consistentémphtation.
Assume that" e L)"® ands e LS with phi(s) = s". If sw e Ly for ue (2 - 2M")*, 0 € =" and
dig € LI, thensuw € LS. 0

Proof: suc L§is proven by induction. We writa = 0o07 . . .0 With 0g = € andg; € (= — =)
fori=1,...,m Thensop=sec L{. Now assume thadog...0j_1 € L] fori € {1,...,m}. From
S00...0i-10; € L1 andoj € S°(sap. .. 0i_1) = S(s") U (2 — =), observe thatog . .. 010 € LS.
As this is true for alli = 1,...,m, it holds thatsue L. But then, alssuo € L§ assuw € L; and

oe (suy) = (U (z -z, O

The next lemma shows that any entry string correspondinchigtalevel strings™ in the closed-
loop behaviorS" /H" is an element of the low-level closed-loop behad8yH.

Lemma 3.6
Let (H, p",HM S 9°) be a hierarchical closed-loop system with a consistentémphtation. If
i e LE"C andsen € Lengn, thensen € LS. O

Proof: senands can be written asen = UpOgU1071 . . . UmOm ands™ = 001 . .. Om, respectively,
whereu; € (£—2")* andoj € =" fori = 1,...,mandug = 0o = . Itis shown thate, € LS by in-
duction. Itis readily observed thagog =€ € L‘i andog=¢¢ LT’C. Now letugoguy ... Uji_10j_1 €
LS. Thenugoous ... ui—10i-1Ui0; € L1 and because of Lemma 31#y0p...0i_1U;0; € LS. As this

holds for alli = 1,...,m, the result iSip0p.. . . UmOm = Sen € LY. O

SECTION 3.2 — HIERARCHICAL CONSISTENCY 41

Using the above Lemmas, hierarchical consistency is proven

Proof: Validity of the supervisoS?, i.e. ph(L%) C L', is shown by induction. Firsg € LS
follows from the admissibility 08P (see also Lemma 3.4). Now et L$, so € LS for someo € =
ands" := phi(s) e LI"°. It holds that eithes € =" or o € (£ — =M. In the first caseg € S'(s") as
o 9°(s) = (") U(z— ") ando ¢ (£ ="). In the second casgl'(so) = pi(s) =" e L],
For the reverse direction, it has to be proven tAf C phi(LS). Assume that e L™, Then
there exists @n € Lengn ang"C C L = pM(Ly). But this meansen € L with Lemma 3.6. O

Summing up, the consistent implementation is a straigivdiod supervisor implementation that
guarantees hierarchical consistency without further ireqments on the system behavior. This
means any hierarchical closed-loop system equipped withnaistent implementation is hierar-
chically consistent. However, it need not be the case tleatlthsed-loop low-level system is non-
blocking. It can happen that although the desired hightleekavior can be achieved by low-level
control, there are local paths which lead to deadlock otdilesituations. This is demonstrated in
the following example.

Example 3.2

Let H, H" and S be the control system, abstracted control system and kigH-supervisor of
Example 3.1, respectively. The local control system of figathevel stringa with the correspond-
ing entry stringa € Lena iS Hoa = (La,as Laa {a,py}) With Laa = a(ba(dc)*(y+dB) +dy) and
Loa, o pyr =a(ba(dc)*(e+y-+dB)+dy). AsSV(a) =" (a) = {a, B} N{B,y} # 0, the consistent
implementation for the high-level strirgis

o/ .) {a,B,a,b,c,d} if se aa(ba(dc)*+d)
(s = { > otherwise (3:3)

The resulting closed-loop behavior # /H = (LS,LS) with LS = aa(ba(dc)*dB-+d) andL$ =
aaba(dc)*(e+dp). It is readily observed that the hierarchical control sysis hierarchically
consistent but blocking, ds +# LS. O

In Example 3.2, nonblocking control fails because of twesoess.

(i) the high level considers the strireg as marked although there are both marked and non
marked corresponding low-level stringaba(dc)* andaad, respectively.

(i) the high level assumes that the ev@ntan always be generated after the occurrenae, of
but this is not possible after the low-level striagd.

42 CHAPTER3 — NONBLOCKING HIERARCHICAL CONTROL

3.3 Nonblocking Control

The two blocking issues from above are addressed by inastggsufficient conditions for non-
blocking control of hierarchical closed-loop systems. refh@e, two additional conditions —
marked string acceptancandlocally nonblocking projected control systems are introduced.
Before discussing these properties, the set of exit strmgefined. It contains all strings which
have a high-level successor event.

Definition 3.7 (Exit Strings)
LetP = (H, p",H") be a projected control system, and assusthe L. The set of exit strings of

s
Lexsi == {s€ L1|p"(s) =s" A (Fo" € 2" s.t.so™ € L1)} C T*.

O

In Example 3.2, one reason why nonblocking control failb& tot all local strings corresponding
to marked high-level strings are also marked. A solutiorhis problem is the requirement that if
the high-level observes a string lug' the low-level also has to pass a string-in This means if a
high-level strings" is contained in the languadd', then it must be guaranteed that any low-level
string which is projected tg" and which has a high-level successor event, must have a prefix
L, and with the same projectiai’. This property is denotegharked string acceptance

Definition 3.8 (Marked String Acceptance)
LetP = (H, p" H") be a projected control system. The strige LY is marked string acceptifig
if for all sex € Ley g

35 < sex with pM(s) = " ands € L.

P is marked string accepting &' is marked string accepting for afl' € LY. O

Example 3.3

The hierarchical closed-loop system in Example 3.1 is nokethstring accepting. For the marked
high-level stringn, the stringnad is an exit string irLey o but there is no string € Ly s.t.s' < aad
andp"(¢) =a. O

The second issue in Example 3.2 originates from the congirucf the low-level supervisor. It is
based on the assumption that after a low-level string, glittével events which are feasible in the
corresponding high-level string can be generated.

®Note thats" € L' — L5 = (p")~1(s")nL, = 0.

SECTION 3.3 — NONBLOCKING CONTROL 43

The property for dealing with this issue is equivalent to thserverproperty in [WW96, Pu00,
Won04]. We state it for the choice of the natural projectisraacausal reporter map, where the
high-level events are a subset of the event set of the loal-lxstem. Systems with this property
are denotedbcally nonblocking projected control systemghe sequel.

Low-level stringss fulfill the following condition if the projected control siam is locally non-
blocking: For all high-level events which are feasible aftee corresponding high-level string
p"(s), a local path starting frommust exist, such that the high-level event is possible.

Definition 3.9 (Locally Nonblocking Projected Control Systens)

Let (H, p",H") be a projected control system. The strifige LY is locally nonblocking if for all
se Ly with p"(s) = s" andvo € =M (s, Jug € (Z - 3M)* s.t. swo € Ly. (H, p™, H") is locally
nonblocking ifs" is locally nonblockingys™ € L. O

Locally nonblocking projected control systems prove vesgful in the decentralized framework
which is addressed in Chapter 4. Yet, there are also integestisults concerning nonblocking
control for the monolithic hierarchical architecture. Tafternative requirements are discussed
in the subsequent sections that — apart from each other —agtgs hierarchical consistent and
nonblocking behavior of the HCLS. First, a condition for thghlevel closed-loop behavior is
investigated. It is required to biwe, i.e. any of its strings must have successor events. Thedeco
condition involves the system structure of the projectedirad system. It deals with low-level
strings corresponding to high-level strings without angcassor events in the high-level closed
loop behavior.

3.3.1 Condition on the High-level Closed Loop
A language idive, if any of its strings can be extended by some successor.event

Definition 3.10 (Live Regular Language)
A regular languagé € Z* is called live ifvse L,Jo € £ s.t.so € L. O

Looking at hierarchical closed-loop systems, the higlellelosed-loop language being live means
that there is always a continuation of high-level stringegéther with the locally nonblocking
condition, this means that also low-level strings can aag extended and thus the low level can
never get stuck.

In the following theorem, we consider locally nonblockingdamarked string accepting projected
control systems with a consistent implementation. The tadil requirement of a live high-
level closed-loop language guarantees that the hieralatimsed-loop system is nonblocking and
hierarchically consistent.

44 CHAPTER3 — NONBLOCKING HIERARCHICAL CONTROL

Theorem 3.1 (Live Nonblocking Control [SPMO05])
Let (H, p", H" S 9°) pe a hierarchical closed-loop system with a consistentémphtation.
Also let the projected control syste(h, ph',Hh'_) be marked string accepting and locally non-

blocking. If the high-level closed-loop Ianguakg'j#’C is live, thenS° solves the hierarchical control
problem in Definition 3.2, and the HCLS is hierarchically astent. O

The following three technical Lemmas support the proof oédilem 3.1.

Lemma 3.7 states that if a locally nonblocking projectedtarsystem is equipped with a con-
sistent implementation of a nonblocking high-level supsw then the resulting projected control
system is again locally nonblocking.

Lemma 3.7

Let (H, p",H") be a locally nonblocking projected control system, anddetbe a high-level
supervisor. Also leS° be a consistent implementation 8f. Then (S°/H, p", S /H") is a
locally nonblocking projected control system. O

Proof. Lets" e L!"®and letse L s.t. pMi(s) = s, For proving Lemma 3.7, it has to be shown

thatvo € SY(s") N zNi(M) there existsly € (Z— ZM)* s.t. swyo € LS. If S(sT) Nz (sh) = 0, the
condition is fulfilled automatically. Thug € S"(s") N Z"(s") £ 0 is assumed. AgH, pM HM)
is locally nonblocking, there existg; € (X — Zh‘)* s.t. S0 € L1. Then, because of Lemma 3.5,
SWwO € L]. Assandao were chosen arbitrarily, Lemma 3.7 is true. O

It is also valid that if a high-level string can be extendedha high-level closed-loop behavior,
then any corresponding low-level string can be extendeld that its projection yields the extended
high-level string. This is shown in the subsequent lemma.

Lemma 3.8

Let (H, p™, HN S 5°) be a hierarchical closed-loop system with a locally norkilug projected
control systen{H, p"', H"), and letS° be a consistent implementation. AssuseL§ ands" :=
pi(s) € LG 1f t € (ZM)* s.t. it € L™, then there exists & € =* with p"(u) =t andsue
LSN Lenghit- O

Proof: Lets" sandt be given as in Lemma 3.8. Defining = 0g = €, t can be represented
ast = 090103 - --Om With g; € =N for i = 1,....m. First it is shown that there exists a string
U = UpOpU1071 - - UmOm € Z* with u; € (X —Z")* for i = 1,...,ms.t. suc L$ by induction. The
base case is easily verified agog = s < L§. For the induction step, laipogu101---Uio; €

>* St SwOoUp---0j € L fori € 1,...,m. Then, agS°/H, p", S"/HM) is locally nonblocking
(Definition 3.9 and Lemma 3.7), there exists; € (X —2")* s.t. SlhooUs - - - G+ 101 € LS. As
this applies for ali = 0,...,m, it holds thatsu= sty0o- - - UmOm € L§ and p"(u) =t. Because of
the construction ofi and with Definition 3.3su€ Lgpgig ML, O O

SECTION 3.3 — NONBLOCKING CONTROL 45

It is also valid that every entry string in the low-level adosloop behavior can be extended to a
marked low-level string if the projected control system iarked string accepting and the hierar-
chical closed-loop system has a consistent implementation

Lemma 3.9

Let (H, p", HM SV S°) be a hierarchical closed-loop system with a marked string@ting and
locally nonblocking projected control syste, p", H") and letS° be a consistent implemen-
tation. AlSo letsen € Lopgi NLS for s e L) with S(sh) n=hi(sh) £ 0. Then there exists
U e (2—3M)* s.t.sonll € LS. O

Proof: Leto e S"(s") Nz (s") #£ 0. Considering thatH, p"', H") is locally nonblocking and
with Lemma 3.5, there exists € (X — Z")* s.t. sequo € LS. Then, because of Definition 3.7,
Senl € Ly gni- Marked string acceptance states that there emistsu s.t. sepU € Lo. Because of
the consistent implementatiogU’ € LS. O

Now, Theorem 3.1 can be proven.

Proof: Letse LS ands" := phi(s) € LI'"C. Then, asl_:g_’C is live, 307 € M s.t. Moy € LI, As
ic

S is nonblocking 3t = 0z --om € (ZM)* s.t. sMogt € Ly"°. Considering Lemma 3.8u € * s.t.
SUE L§ N Lgngiigy- Then, using Lemma 3.9 € (£ Z")* sit.sud € L§ and hencsc L. O

Recapitulating, three conditions have to be fulfilled. Petge control systems are required to be
marked string accepting and locally nonblocking. Furthenerthe high-level closed-loop behav-
ior has to be live. Altogether, these conditions guarante®mlocking behavior of the hierarchical

closed-loop system, if a particular low-level supervisoplementation — the consistent imple-
mentation — is chosen.

Marked string acceptancensures that if a marked string is passed in the high-lelveh also a
marked low-level string is passed. If the control systetoceslly nonblockingthen any low-level
string can be extended to generate the high-level eventswelne feasible after the corresponding
high-level string. Together with theonsistent implementatiomhich allows all low-level paths by
default, this condition guarantees that if a high-levelné\e enabled after some high-level string,
then for any corresponding low-level string, there is areegion containing the high-level event.
Considerindivenessthis means that the closed-loop system will not get stuskhere are always
enabled high-level events and thus any low-level path caextended. This already explains why
the hierarchical control system is hierarchically corsist Combining the last observation with
marked string acceptangaelds nonblocking behavior. It is interesting to note thet second part
in the definition of the consistent implementation (Defomiti3.5) is never used as the high-level
closed-loop system is live. This observation leads to tHeviing lemma.

46 CHAPTER3 — NONBLOCKING HIERARCHICAL CONTROL

Lemma 3.10
Let (H, p",HM S 3°) be a hierarchical closed-loop system with a consistentémphtation and
the low-level closed-loop syste8P /H. Then it holds that

hi,
LS = L7"||L1.
O

Proof: Atfirst note that.}"%||Ly = L[| (£ — £)* NLy, asLM€ € (zM)* andLy € =%, As S is
admissible, it holds thate L. Observing that € L1, itis also true that € L"-¢||(Z — Z")* L.
Analogously,s € L becauses® is an admissible supervisor. Starting from this, Lemma 3510
proven by induction. Assumee L ands € L"¢||(Z — =M)* nL;.

Itis first shown that§ C L"¢||(£— =")*NL;. Leto € £s.t.so € LS. Thenso € Ly ando € S°(s).
If o € =", theno € §'(s") because of Definition 3.5 anlg (£ — =M). Thusso € L)"/|(£— =M)*.
If 0 € (£— M), thenso € LI"9)|(= — =", too. Thusso € L}"°[|(Z — £)* NL,.

For the reverse directioh-¢||(Z — =M)* Ly C L has to be shown. Lete T s.t.so € L7"°[|(2 -

sh* L. Thenso € Ly andp"(so) € L. If o € 5", thenpP(s)o € L and thuso € ().
Because of Definition 3.55 € S°(s) and henceso € LS. If 0 € (£ —2"), theno € S°(s), too.
Consequentlgo € L. O

The above result is of particular interest for implemewpiapurposes. It states that the high-level
closed-loop system can directly be used as the low-levedrsigor, i.e. now additional low-level
supervisor has to be computed. This facilitates implemgrttie supervisor tremendously as will
be shown in Section 3.4.6.

In the above consideration, thigenesscondition made sure that the control system cannot get
stuck.

Now we consider the case that the high-level closed loogrys& not supposed to be live. Then, it
is possible that a marked high-level string cannot be exddiahy further. According to Definition
3.5, corresponding low-level strings (which need not beked) also might not have a further
extension. This leads to blocking in the low level. Thus,Hagh-level strings with no successor
events, a controllability computation for the local cohggstem of the respective high-level string
is necessary. The next section addresses this issuepanked string controllabilitys introduced
to solve the problem.

3.3.2 Structural Condition

In case a high-level supervisor disables all events aftaeduigh-level string, a nonblocking low-
level supervisor must take care of the possible future lbehlaviors as no more changes in the
high-level can happen. This is achieved by computing theesoal controllable sublanguage of

SECTION 3.3 — NONBLOCKING CONTROL 47

the second languagéy) of the local control system w.r.t. its first languadg)(A nonblocking
supervisor can only be implemented if this supremal colaioté sublanguage is nonempty. This
is guaranteed if thenarked string controllabilitcondition is fulfilled!

Definition 3.11 (Marked String Controllability)

Let (H, p" H") be a projected control system. Lt € LY with y" € M s.t. V' 0 Zi(") = 0.
s is marked string controllable if for atkn € Lengi, the languager, , (Ls.,2) # 0. (H, p HM)
is marked string controllable #" is marked string controllablés™ < L', O

With the above property, it is no longer necessary that tga-tevel closed-loop behavior must
always be able to generate events. Replacing liveness witkeghatring controllability, the fol-
lowing theorem provides the same result as Theorem 3.1.

Theorem 3.2 (Nonblocking Hierarchical Control)

Let (H,pM HM S 9°) be a hierarchical closed-loop system with a marked strirgpting,
marked string controllable and locally nonblocking progetcontrol systeniH, p™, H™). Also
let SV be a high-level supervisor with a consistent implemente®. ThenS° solves the hierar-
chical control problem in Definition 3.2, and the HCLS is hrefacally consistent. OJ

The proof is similar to the proof of Theorem 3.1. It also aausufor the case that there are
high-level strings which cannot be extended.

Proof: Hierarchical consistency directly follows from Propaositi3.1.

For proving nonblocking supervision, it has to be shown'sat L, Ju € >* s.t. suc LS. Because
of hierarchical consistencg} := ph(s) € L. There are two cases. First &f(s")n="(s") = 0,
Then, writings = Senld With Sen € Lepgn, U € (2 —Z™)* and noting that € LS, it holds that
U €Ki, (Lsn2)- Thus, there exists” € (£ —2")* s.t. u=u'u" € K ,(Ls,2). Because of
the consistent implementatioay € LS. Now let S"(s") 0 5Mi(sh) £ 0. As S is nonblocking,
there exists # € s.t. st € L)'®. Because of Lemma 3.7 and Lemma 3.8, therd/ is * s.t.

sU € L§ NLengir. Then, considering that't € L)™® andsu € Ly, g, there existar” € (= — =M
s.t.suu” € LS because of Lemma 3.9. In both cases; Uu” € * s.t. sue LS. O

Thus, if liveness of the controlled high-level behavior @ given, marked string controllability
ensures nonblocking behavior of the hierarchical conyslesm®

In this section, two theorems for nonblocking and hierarally consistent control were derived.
Nonblocking supervision was established by focusing ondases. In the first case, the high-level
closed-loop system was required to be live. In the secone, @structural condition for local

"Note that the definition of the consistent implementatiorady captures this case.
8Hierarchical consistency is already guaranteed by theistems implementation.

48 CHAPTER3 — NONBLOCKING HIERARCHICAL CONTROL

behaviors was needed. In the next section the language-beselts are worked out in a finite
automaton framework. In this representation, algorithorschecking the above conditions are
elaborated.

3.4 Hierarchical Control For Finite Automata

It has been pointed out how nonblocking hierarchical cdrfbodiscrete event systems can be
achieved. For this purpose, a language based frameworlsextiral conditions on control systems
was provided. We rewrite the above results in an automataeinaork for algorithmic realization of
these concepts. The relevant algorithms for verifying #wuired conditions and for synthesizing
supervisory controllers are also provided.

We use the following notation for a high-level automa®# and a low-level automato®, for
investigating the computational complexity of the algamits.

e G": number of statesa := |X"| and number of event&" := ||,

e G: number of statem := |X|.

3.4.1 Natural Projection

From Lemma 2.9, it is clear that any projected systemp™, H") can be represented by automata
G andG", whereL(G) = Ly, Lm(G) = Ly, andL(G") = L', Ly(G") = L', respectively. In
addition to that Lemma 2.11 states that the supervisors ierarchical closed-loop system can
be implemented as automata, too. If the hierarchical cksel system is finitd then any of the
above automata is finite, and thus a finite representatidmedfiCLS is given.

Corollary 3.1 (Automata Representation of a Hierarchical dosed Loop System)
Let Q= (H, p™ HM S° ') be a hierarchical closed-loop system. There exists a fintenaata
representationG, G", R R"), whereG, G", R R" are finite automata, s.t.

(i) H=(L(G),Lm(G)),

(i) H" = (L(G"),Lm(G™)),
(i) S°/H = (L(R),Lm(R)),
(iv) S"/H" = (L(R"),Lm(R™)).

°Recall that a hierarchical closed-loop system is finitesitdinguages are regular.

SECTION 3.4 — HIERARCHICAL CONTROL FOR FINITE AUTOMATA 49

O

Proof: Item (i) and (ii) directly follow from Lemma 2.9. Corollary Bstates thag®/H and
g'/HN are control systems and thus applying Lemma 2.9 préiigsand(iv). O

Considering this result raises the question of computingane®us automata. The automat@ns
the system model, and itis the automaton which is providetiégystem designer or modeler. For
determining the automata representation of the abstragttdm behavio", an implementation
of the natural projection is needed.

To this end, a nondeterministic automaiBry, generating and recognizing the languages of the
projected control system is constructed. This is done byieéting local paths in the given au-
tomatonG = (2, X, 8, X0, Xm)-1% Gng = (=", Xnd, 8nd, Xo.nd, Xmnd) has the high-level event s&f'

as its alphabet and its state s¥tg = X, Xo.nd = Xo andXm nd = Xm are directly adopted frore.

The transition function 0B, is given for every statg € X as follows. For any € ="

¢ if 3(x,uo) = % forue (Z— M)
not defined else

Ond(X,0) = {

For constructing a deterministic high-level automatomfi@,4, Lemma 2.4 can be used, and the
corresponding algorithm ([HU79]) can be appligd.The result of this computation is a deter-
ministic automatorG", every state of which corresponds to a set of staté3,in The function
mapping a high-level state to its corresponding set of stat6,q is defined as Mo : xh —, 2X
with £M10(x") 1= {x € Xng|®na(Xo.na, ") = x} for xM = &N (xBi My € xNi.12

An algorithmic implementation of the natural projectioneogtion is given in the sequel. The
main function "compute_gnd" gets the low-level automa®and the high-level alphab&f" as

its inputs. In the main loop, the recursive function "hl_iesde" is called. It returns the states
which are reachable via a string including a high-level é¥som a state inG. Note that in the
theoretical representation, the state setsgf equals the state set @, i.e. Xng = X. In the
practical computation, it turns out that there are statiedgs which are reached by local strings)
in Xng Which are not reachable from the initial state. The algamijlist considers the reachable
states and thuX,q C X in the resulting automaton.

10A |ocal path is a sequence of low-level eventgin =M.

HNormally, this is the costly step in the computation. In therst case, the complexity of the projection is expo-
nential in the number of states of the original automatort, \Yavill be shown that the complexity is polynomial for
our approach.

12¢hilo js needed later.

50 CHAPTER3 — NONBLOCKING HIERARCHICAL CONTROL

/* Computation of Gq: compute_gnd */
compute_gnd@G, =M)

/* Initialization of the waiting list */
waiting= {Xo}

[* Initialization of Gpq */
Snd =M, Xnd = {X0}, 8na = N.def., Xond = {Xo}, Xmnd = Xm N {Xo}

* Loop through all states in the waiting list */
while waiting# 0

pick x € waiting, set waiting= waiting— {x}.

/* Initialize the state setgpnefor each cycle */
Xdone= {X}

[* Call the recursive function hl_reachable */
Xnext = X

(Xdone Gnd) = hl_reachableq Xnext Xdone zhi7 Gna),

end while

return(Gng)

Figure 3.6: Computation of the nondeterministic automayy

Starting from the statg, the recursive function hl_reachable proceeds along ktcimlgs until a
high-level event can occur. To this end, the function lodpsugh all successor events of the
current state,ext and checks if they are high-level events or not. In the firsecéhe successor
state for the detected high-level event is a high-level sssor of the state If it is not an element
of Xnq yet, the transition functiodnq of Gng as well as the state seXgq andXm ng are updated and
the new successor state is added to the waiting list. If iniglament ofX,q, just the transition
function is updated. In the second case, the transitionetoéw state is not seen by the high level
and thus the function "hl_reachable" is evaluated for the stewe.

The recursive function terminates if either a state is redalhich has already been investigated
before, i.e. it is contained in thggnelist, or if all transitions have been examined.

As mentioned before, the automatGprqy is nondeterministic. It can be represented by a determin-
istic finite automaton as stated in Lemma 2.4. An algorithmclamputing such automatd®™
is given in [HU79]. In this thesis, the function is called "@uhi". Its output is a deterministic

SECTION 3.4 — HIERARCHICAL CONTROL FOR FINITE AUTOMATA 51

automatorG", recognizing_m(Gng), i.€. Lm(G") = Lm(Gng)-

/* Find all states which are reachable from x via a local patmtgnated with a high-level even
hl_reachable */
hl_reachable, Xnext Xdone Z", Gnd)

I* If X hext Was not investigated yet, it is put into th@xlist */

if Xnext & Xdone
Xdone = XdoneU { Xnext}

I* If X hext Was already examined, it need not be examined again */
else
return (Xgone Gnd)

/* The current state x is marked if any of the locally reaclea$iates is marked. */
if X & X .nd A Xnext € Xm
Xm,nd = XmndU {x}
/* All transitions in x,ext are investigated */
T = transitionSknext)
while(T # 0)
pickte T, T=T —{t}
[* If t is a high-level event, a new transition from the origirstate x is added t®,g.
if(t e =)
Ond(X,t) := &(Xnext t)
If the new state is not an element gfXit is added to X4 and to the waiting list */
if (d(Xnext: t) & Xnd)
Xnd = XndU {O(Xnext: 1) }
waiting = waiting U{d(Xnext,t) }

/*If t is a low-level event, the recursive function is called the new successor state */
else

(Xdone Gnd) = hl_reachableq 8(Xnext t), Xdone zhi’ Gna)
end while

[* Base case of the recursive function: end of the loop ishedc*/
retum (Xdone, Gnd)

[

Figure 3.7: Computation of locally reachable states

52 CHAPTER3 — NONBLOCKING HIERARCHICAL CONTROL

Combining the functions "compute_gnd" and "gnd2ghi" , it isglole to compute a determin-
istic automaton which recognizes the projected Iangqaib(d';m(G)). The complete algorithm
"projection” is shown in the next figure.

/* Compute a deterministic automatory@cognizing p'(Lm(G): projection */
projection(G, ™)

[* Compute the nondeterministic automatopg®

Gng = compute_gndg, =)

/* Compute the deterministic automatof'G/

(G, l°) = gnd2ghiGna)

return(GM)

Figure 3.8: Computation of the projected automatGh

The functionf"° is explained in the next section. In the worst case, the nurobstates of a
canonical recognizer for the natural projection of a largia exponential in the number of states
of the original automaton. Nevertheless, [Won97] providesore positive result which is adapted
to the framework presented in this chapter.

Theorem 3.3 (Automata Representation of Projected Languagd$Von97])

Let (H, p" H") be a marked string accepting and locally nonblocking ptefecontrol system
with the automata representati¢® G™). Then,G" has an equal or smaller number of states than
G, i.e. XM <|x].13 O

This means that for systems considered in this chapternigver the case that the projected au-
tomaton has a larger number of states than the original attym In applications, it turns out
that the number of states &' is smaller than the number of states@f The proof of Theorem
3.3 is given in Appendix A.2. It is based on the fact that lbcabnblocking and marked string
accepting projected control systems obtain the obseregrepty used in the result in [Won97].

For the time complexity of the natural projection, there s@railar result.

Theorem 3.4 (Time Complexity of the Natural Projection [Won97])

Let (H, p",H") be a marked string accepting and locally nonblocking ptejgcontrol system
with the automata representati¢6,G"). The time complexity of computin@" is at worst
polynomial in the state size @ and the number of high-level ever#8'. O

13Note that bothG andG™ are canonical recognizers.

SECTION 3.4 — HIERARCHICAL CONTROL FOR FINITE AUTOMATA 53

In [Won97], an algorithm with the complexit§ (n”(€")?) is developedr{is the number of states
of G and€e is the number of high-level events).

After providing an algorithm for computing the natural gdijion, it is possible to compute au-
tomata representations of projected control systems.edméxt step, the properties established in
Section 3.3 have to be verified. At first, marked string acoeqe is inspected.

3.4.2 Algorithmic Verification of Marked String Acceptance

Marked string acceptance can be verified algorithmicalipgidinite automata. Marked string
acceptance fails, if for some marked high-level stringsipossible to find a local path from a
corresponding entry string to an exit string without pagsanmarked string. For checking this
property, a representation of entry strings in the autorfratmework ir required. It turns out,
that this representation can be derived by evaluating #itesbof the automata andGq defined
above. It is denoted theet of entry statei the sequel.

Definition 3.12 (Entry States)
Let G andG" be given as above. Also assusiec L(GM) andx" = 8" (xf),s"). The set of entry
statesXgp i is
Xenxhi := {X € X[X = 8(X0, Sen) for Sen € Lepgni} € X.
0

Regarding Definition 3.12, it is interesting to take a closeklat the mag"°. It turns out that
the set of state§""°(x") for some high-level state" € X" equals the se,m of entry states of
X,
Lemma 3.11 (Entry States)
Let G, G" and f"° be given as above. Also assusfec L(GM) andx™ = 8" (xf)',s). The set of
entry stateg,,n of X" is

Xenxhi — fhilO(Xhi)_

[

Proof: Assumexy € Xenxhi- Thendsen € L, i S:t. 0(X0,Sen) = Xm- Sen Can be written as
Sen=Uo0p " - - UmOm for up = 0g = € andu; € (2 —3")*, g; € =" fori =1,...,m. Xm € na(Xona, ")
is shown by induction. It holds that nq € dnd(Xo,nd, 00) @ndxgnd = Xo € &(Xo,0p). Now assume
thatx;_1 € dnd(Xo,nd, 00 - - Gi—1) for Xi_1 = &(Xo, UpOp - - - Uj—10j—1). Thenx; € dng(Xi—1,0;) for x =
O(Xo,Up0p - - - Ui) asu; € (X — Zh‘)* andd(xi—1, Uioj) = X and consequentby € 8n4(Xo nd, 00 - - Oi)
with the definition ofGng. As this is valid for alli = 1,...,m, Xm € dnd(Xona, S") follows. Hence
Xm € fhiIO(Xhi)_

Now letxm € fM10(x"). Thenxm € 8ng(Xo.ng,S™) and thusis = ug0o - - - UmOm as above s.8(xg, S) =
Xm. But asp”(s) = ", it holds thats € Le, ¢ and thusm € Xen - O

54 CHAPTER3 — NONBLOCKING HIERARCHICAL CONTROL

In view of the above lemma, the map'® is directly obtained from the construction of the au-
tomatonG, 4. As an effect, the set of entry states for each high-levét stan easily be determined.
Knowing that the transition functiod of the deterministic automatd®™ is unique, it is readily
observed, that for every string ifG") there is exactly one stat8 € X". Thus, a finite represen-
tation of the set of entry strinds,,« of a high-level string € L(G") is obtained by computing
X" = 5(xl, s") and determining the set of entry states Xjagi = f"0(x").

The subsequent example illustrates the computation of jegieal system from an automat@n
and also describes the concept of entry states.

Ghi

Figure 3.9: Projected control system with the low-level automa®and the high-level automatd®™

Example 3.4

Let G in Figure 3.9 be the automata representation of the congstésn in Example 3.14 For
computing the abstracted automat®H, all local paths have to be filtered out. The resulting high-
level automaton is also depicted in Figure 3.9. All state§8fare marked, as there is always
a low-level string inL, which is projected to the corresponding high-level striag. € € L,

is projected tce € LY andaaba € Ly is projected toa € LY. The set of entry states @ is
highlighted by the shaded nodes. It holds tMaf1 = {1}, Xen2 = {2} andXen3 = {8,9}. O

The marked string controllability condition can be exandinas it is possible to represent entry
strings as a finite set of entry states. It has to be verifieth®automata implementation, that for
every entry state of a marked high-level state, any locdl paist first reach a marked state before
a high-level event is active. The corresponding algoriteipresented in Figure 3.10. The function
"check_msa"is explained in Figure 3.11.

YcControllable transitions are labeled by a tick and higrelésansitions are dashed.

SECTION 3.4 — HIERARCHICAL CONTROL FOR FINITE AUTOMATA 55

/* Verify marked string acceptance: marked_string_acaape */
marked_string_acceptanceG, G, fhilo)

/* Investigate each marked high-level state */
Xhi — xhi
while X' £ 0
pick XM e XN setxhi = Xhi _ (xhi},
/* Compute the set of entry states corresponding™ty x
>~<en — fhilo (Xhi)
/* Investigate all entry states */
while Xen # 0

pick Xen € Xen, S€tXen= Xen— {Xen}-

if Icheck_mséxen, Xdone Z™, Xm)
return(false)
end if
end while
end while
return(true)

Figure 3.10: Verification of marked string acceptance

The function "check_msa"is a recursive function determininthe current low-level state is
marked. If not, it is checked if a high-level event is activié.this is the case, marked string
acceptance is violated as there exists a local path fromtaynsnng to a high-level event without
passing a marked state. The algorithmic description of 'ikkh@sa'is given in Figure 3.11.

For analyzing the computational complexity of the algorntim Figure 3.10, the following items
are considered.

(i) loop through all marked high-level state® ¢ X'. This set is bounded hy".
(i) loop through every entry state correspondingtb This set is bounded hy.

(ii) Perform the function "check_msa"for the entry statorresponding ta. The function is
mainly a reachability computation on states which are lgaalachable fronx. This set is
also bounded bw.

Consequently the complexity of the above algorithr) {g"'n?).

56 CHAPTER3 — NONBLOCKING HIERARCHICAL CONTROL

/* check_msa */
check_msax, Xgone =M, Xm)
[* Check if x is marked in the low level */
if X € Xm
return(true)
[* Check the successor states and events of x */
else
x = N\(X)
while 2 £ 0
pick o € Zy, setZy = 2y — {0}
[* if the successor event is a high-level event, markedgcteptance is violated */
if 02N
return(false)
[* if the state has not been investigated yet */
else ifd(x,0) € Xdone
X' = 9(x,0)
Xdone= XdoneU {X/}
if Icheck_ms&x’, " Xgone Xm)
return(false)
end if
end if
end while
end if
/* marked string acceptance is valid for the current state x *
return(true)

Figure 3.11: Function check_msa

3.4.3 Algorithmic Verification of the Locally Nonblocking Condition

For verifying if a projected system is locally nonblockingcal behaviors starting from entry
strings are examined. It has to be determined if from any stethe local behavior corresponding
to some high-level state and for each high-level event wisiah the active event set of that high-
level state, a local path terminating with the respectighHevel event can be found.

For a projected control systeh, p" H" and its automata realizatid@ G", the locally nonblock-

SECTION 3.4 — HIERARCHICAL CONTROL FOR FINITE AUTOMATA 57

ing condition can be checked by the algorithm in Figure 3.12.

/* Verify Locally Nonblocking Condition: locally_nonblocig */
locally_nonblocking(G, G, fhilo)

[* Investigate each high-level state */

hi _ xhi

while X" £ 0
pick X" € XN setXM = XN — {xhiy,
/* Compute the set of low-level states correspondindtd/x
X0 = reachfx")

[* Investigate all low-level states */
while X'° £ 0

pick x € X'°, setX!o = X0 — {x1.

/* Investigate all forward paths (recursive function Inb) */
var = Inb_reachabilitgx, A" (x"), =0 = 0, xgone= {X})
if lvar
print ("The hierarchical control system is not locally nonbloakin
return(false)
end while
end while

return(true)

Figure 3.12: Verification of the local nonblocking condition

For every high-level statg" € X" the set of corresponding low-level states is computed by a
standard forward reachability computati®? = reaciix"). The entry state$"'°(x") of x" are
used as the seeds for this computation. For any sta¥Cirit has to be checked if all high-
level eventsAM (x") can be reached via a local path starting fremThis is done by using the
function "Inb_reachability”, with the argumentsz X' (current state)A"(x") (high-level event
set), = (list of reachable high-level events) aidone (list of states which have already been
investigated). It returns true if all events Ad"(x") can be reached and false otherwise. If none
of these computations returns "false", the projected cosfrstem is locally nonblocking. The
function "Inb_reachability” is realized by the followinggalrithm.

58 CHAPTER3 — NONBLOCKING HIERARCHICAL CONTROL

/* Compute local reachability for the current low-level stabeb_reachability */
Inb_reachability(x, AM(x"), 0 Xone

/* Compute and investigate the outgoing events of x */

while =, # 0

pick o € 2y, set¥y = 2 — {0}.
[* Check if the event is a high-level event */
if o0 € =

si=3uo

/* Check if all high-level events are already reached */
if hi — AR (xh)

return(true)
end if

I* apply "Inb_reachability"ond(x, o) if that state has not been investigated, yet */
else ifd(x,0) € Xdone
X = 8(x,0)
Xdone= XdoneU {X,}
if Inb_reachabilityx’, A" (x"), 201 Xyone)
return(true)
end if
end if
end while

/* the locally nonblocking condition is not fulfilled */
return(false)

Figure 3.13: Realization of the function "Inb_reachability"

For determining the computational complexity of the algon in Figure 3.12, the following list
provides the necessary information.

(i) Loop through all states iR € X". The cardinality of the set i&"| = n".

(i) Investigate all low-level states correspondingdt This set comprises the low-level states
which are locally reachable from the entry states{®f It is bounded by the number of
low-level stategX| = n.

SECTION 3.4 — HIERARCHICAL CONTROL FOR FINITE AUTOMATA 59

(iii) Perform the function "Inb_reachability" for ak corresponding tod™. The function is a
reachability computation of states which are locally reddé fromx. This set is also
bounded byn.

Evaluating the above enumeration, the complexity of theralgm is(‘)(nhinz). It has to be men-
tioned that the bound on the state sizes of the local autormatary conservative. In practical
applications, the number of states which are locally rellehiaom some low-level state is consid-
erably smaller than.

3.4.4 Algorithmic Verification of Liveness

In addition to the system properties verified in SectionZahd 3.4.3, liveness of the high-level
closed-loop language is needed for nonblocking contrabiating to Theorem 3.1. Every state of
the high-level supervised automaton has to be checked fgomg events. The system is live if
all these states have successor events, and the complexidgrhputing this result only depends
on the number of states of the high-level supervised systris number is bounded by"m,
wherem is the number of states for the canonical recognizer of thle-fével specification. Thus
the complexity ig9(n"'m).

3.4.5 Algorithmic Verification of Marked String Controllability

In Theorem 3.2 the liveness condition is replaced by markeagscontrollability. For checking
this property, local control systems as in Section 3.3 aexled. Local control systems were
derived by computing the local behavior after some entngtof a low-level control system.
Analogouslylocal automataare defined in the automata framework.

Definition 3.13 (Local Automaton)
Let G andG" be given as above and be, € Xenxi b€ an entry state for som@ ¢ X", The local

automatorG, i = (Zxens Xxens Oxens X0.xens Xm.xen) 1S defined as

[Z)(en = Z,

X := {X € X|FU € (Z—ZM)* s.t. X = 8(Xen, U) },

Oxen(Xen €) 1= Xen _
. . [3(x,0) if 30 € (Z—2")* s.t.Xx=8(Xen,U) ando € I}
Ben(%,0) = {not defined otherwise

X0 Xen = Xen,

60 CHAPTER3 — NONBLOCKING HIERARCHICAL CONTROL

® Xinxen := {X € Xyn|X € Xm}.
O

Local control systems capture the local behavior of a cosyrstem after some entry string. Anal-
ogously, local automata represent the local behavior ofusonaaton after some entry state. We
establish the link between local control systems and lograata in Lemma 3.12, using the ob-
servation that an entry state in an automaton representoaesetry strings in the corresponding
control system (see Lemma 3.11).

Lemma 3.12 (Automata Realization of a Local Control System)

Let (H, p",H") be a projected control system with the automata realiza@G"). Also letHg,,
be a local control system fagn € Lggi With s" € LY. The local subautomato®, i for Xen =
3(Xo, Sen) is an automata representationtf , i.e. L(Gy, i) = Ls,,1 aNdLm(Gy wi) = L 2. U

Proof: First it is shown thal (G, i) C Ls,,1 @ndLm(Gy, i) C Ls,2. Assume thau €
L(G,,,xi)- Then, considering Definition 3.18,€ (£ —2")*. Also sentt € L(G) and because of
Lemma 2.9, withL(G) = Ly, it follows thatsenu € L1. Observing thati € (X — =")*, Definition
3.4 states that € Lg,, 1.

Now letu € Lm<Gxen,xh‘)' AS Oy, (Xen, U) € Xm xen, then alsad(Xo, Sentt) € Xm by definition Ofoemxhi-
Then, because of Lemma 29y € L, and with Definition 3.4u € Lg,,, 2.

For proving the reverse direction it has to be shownlthgh C L(G, i) andLs,, 2 € Lm(Gy_, wni)-
Assume thati € Lg,, 1. Thensent € L1 Nsen(Z —ZM)* = L(G) Nsen(Z — ZM)*. Asu € (= —2M)*,
Definition 3.13 states thai,,(Xen, U)! asd(Xo, Sent))!. Hence,u € L(Gy i)

For showingu € L, 2, assume thagenu € L, for u € (Z — Z")*. Thensenu € Lm(G) because of
Lemma 2.9. But thedy,,(Xen, U)! and thusu € Lm(Gy_ xni)- O

Consequently, it is true that any property which can be estadad for the local automaton at an
entry statexen, is also valid for the local control systems of all correspgagcdentry stringSen with

6()(07 Sen) - Xen-15

With the above result, marked string controllability candecked by computing a controllabil-
ity result for the local automata of each marked high-levates<" with a specification automa-
ton D, i Which has the marked languagie (D, i) = Lm(Gy, <) and the closed language
L(Dy,,xi) = Lm(Gy,, xti)- (G,G") is marked string controllable, if the supremal controkablib-
IanguageKLm(GXen’Xhi)(Lm(DXethi)) is nonempty for the local automata of all marked high-level
states and corresponding entry states.

The number of marked high-level states is bounded®bgnd the number of states of the local au-
tomata is bounded by. Furthermore, the controllability computation (with colety O(n?n?))

BIn particular, the local control systems of these entryngsiare all equivalent.

SECTION 3.4 — HIERARCHICAL CONTROL FOR FINITE AUTOMATA 61

is carried out with a specification automaton with one stage,m= 1. Thus, the complexity of
the algorithm ig9(n"n?).

Combining these results, the condition relying on the ligsnaf the high-level controlled behavior
(Section 3.3.1) can be verified &(n"'n?), and the purely structural condition in Section 3.3.2 can
also be computed in polynomial time with(n"'n?).

The following detailed example illustrates the automadada concepts explained in this section.

Example 3.5

The automaton modéb used in this example is equivalent to the model in Example ékdept
for marking of the states 5 and 9 and the transitoinom state 5 to state 7. Analogously, the
high-level event seX" = {a,B,y} is used and,c = {a,a,d} andZ; = {b,c,B,y}. The high-level
and low-level automata are shown in Figure 3.14.

N O e _£3_y_ @

R O
L@@ T

Figure 3.14: Low-level and high-level automata andG"'.

For verifying marked string acceptance and the locally hmcking condition, a closer look at the
local automator, ; is taken in Figure 3.1%% It is readily observed that from any local state of
Gy, there is a local path to a state where any of the high-levatts or y can occur. According
to Definition 3.9, the locally nonblocking condition is fliid. Furthermore, all local paths from
the entry state 2 to any of the exit states 5, 6 or 7 pass a mataedl Hence, with Definition 3.8,
marked string acceptance is also true.

16The evaluation is trivial for the remaining local automata.

62 CHAPTER3 — NONBLOCKING HIERARCHICAL CONTROL

JoR¥O
HoRNo¥cESo

Figure 3.15: Local automator@, »

It is readily observed that the high-level closed-loop sgsicannot be live as there are no cy-
cles in the automaton graph. Thus, the structural conditioiiheorem 3.2 has to be used.
Checking for marked string controllability involves comimgt the supremal controllable sublan-
guageKLm(szz)(Lm(Dgz)) with D2 as in Figure 3.16, which results i(Lm(szz)(Lm(Dz,z)) =
aba(dc)* +adaqdc)* +ad. It turns out, that this language is nonempty and thus thgepted
system is marked string controllable, too.

D2

Figure 3.16: Specification automatol, » for marked string controllability in the high-level state 2

Considering the above results, it is possible to design arsispe for the high-level modet" and
translate it to the low level. As a high-level specificatidns desired that the eventis disabled
in the high-level state 2, i.&8"(2) = {a,B}. The resulting high-level closed-loop syst&H||G"

with the automata realizatidR" of the superviso8" is depicted in Figure 3.17.

RhiHGhi . B

Figure 3.17: High-level supervised system

SECTION 3.4 — HIERARCHICAL CONTROL FOR FINITE AUTOMATA 63

The supervisor implementing the low-level control is theneasupervisor as shown in Equation
3.3. It disables the eventin all states corresponding to the high-level state 2. Thel&vel
closed-loop behavior is shown in Figure 3.18. Note that threesponding hierarchical closed-
loop system is hierarchically consistent as well as norknhar

Figure 3.18: Low-level supervised systeRI°||G

3.4.6 Evaluation of the Hierarchical Approach

We have shown that it is possible to verify all the conditiarisoduced in Section 3.3, i.e. the lo-
cally nonblocking condition, marked string acceptanceskea string controllability and liveness,
algorithmically. The complete procedure for synthesizangerarchical supervisor is presented in
the following list. G is the low-level system modél.

o Compute the projected automat@i' with Ly, (G™) = p"(Lm(G)). For the systems under
consideration, this computation can be done in polynoniiaé t0(n’(€")?) according to
Section 3.4.1.

o Verify marked string acceptance. The complexitpig™n?).
e Check the locally nonblocking condition. This is done withrgaexity O (n"n?).
e Synthesize the high-level supervis8t for a high-level specification automat@®f{" with

m states. The complexity i8((n")2(m")2).

Using the consistent implementation, nonblocking lowelesontrol is guaranteed if either the
high-level closed-loop system is live or the projected oargystem is marked string controllable.

17Recall than is the number of states &, €' is the number of high-level events! is the number of states G"
andm is the number of states of a high-level specification automat

64 CHAPTER3 — NONBLOCKING HIERARCHICAL CONTROL

e Test for liveness. The complexity &(n"m").

e The verification of marked string controllability is done@in"n?).

It is obvious that the complexity of the complete procedsrédaminated by the natural projection.
Evaluating the complexities of the subtasks, the overatmlexity of the hierarchical approach
is O(max(n’(e")2, (n"")2(mM")2)). The limiting factor is clearly the number of states of the-o
level model. As pointed out in the beginning of this chagtas number can be huge for composed
systems.

However, composed systems have an inherent structure vghidstroyed by the composition to
the overall system. Because of this, it is worthwhile consimtpdecentralized architectures where
the low-level components need not be composed and thusatiesesiplosion in the low-level model
does not occur. The next chapter introduces a hierarchichdacentralized architecture which
both makes use of this structural information and provideseéhod for applying the presented
hierarchical control method in a decentralized setting.

Chapter 4

Hierarchical and Decentralized Control

As pointed out in the previous chapter, hierarchical aeditres reduce the computational com-
plexity of supervisor synthesis, by only taking into accotire relevant behavior of the control
system. The architecture in Chapter 3 guarantees that tomatd representation of the high-level
model always has less or equal states than the automataeapton of the low-level model. It
is pointed out that in applications, the number of statetiefitigh-level model is always smaller.
However, for computing the high-level model, the projectaperation must be carried out for the
low-level control system. To this end, a representatiorhefdomplete low-level automaton must
be provided. Especially for composed systems, this autamedn have a very large number of
states.

Addressing these issues, we provide an approach for tharbiecal and decentralized control
of discrete event systems in this chapter. In particulammased systems are investigated. They
consist of several smaller components which have their amntfonality. These smaller compo-
nents interact to make up the behavior of the overall sysfamnstance of a composed system is
presented in Chapter 5. Itis important to be aware of the lfedtthe state sizes of the components
multiply if they are put together to form the complete systérherefore, it is highly desirable to
preserve the decentralized structure for supervisor sgrghThis is indeed possible if the abstrac-
tion method and the consistent implementation of low-lestgdervisors outlined in the previous
chapter is used. The decentralized low-level models camdjeqgted to the high level, where they
are composed to an overall high-level plant. Then, superyisontrol is applied for the high-level
model, and the resulting supervisor is implemented as antiedieed low-level supervisor for the
subsystems. This hierarchical and decentralized ar¢bieets based on the hierarchical architec-
ture in Chapter 3 for monolithic systems. We extend thesdteegudecentralized systems and
provide sufficient conditions which guarantee nonblockang hierarchically consistent behavior
of the closed-loop system.

As in Chapter 3, we first elaborate a language-based descriptithe theoretical concepts, fol-

66 CHAPTER4 — HIERARCHICAL AND DECENTRALIZED CONTROL

lowed by an automata representation along with the algostihich are necessary for implemen-
tation.

4.1 Hierarchical and Decentralized Control Architecture

An informal characterization of composed systems has been gbove. The following definition
formalizes this description in the form décentralized control systems

Definition 4.1 (Decentralized Control System)

A decentralized control systeffl_,H; (DCS) consists of subsystems, modeled by finite control
systemdH; = (Lj 1,Li2),i =1,...,nover the respective alphabéts The overall system is defined
asH := ||"_;H; =: (L1,L) over the alphabe¥ := [JL; Zi. The controllable and uncontrollable
events ar@; ¢ := % N Zc andZ; yc := Zj N Zyc, respectively, whergUZc = 2. O

A decentralized control system can be considered as a hsV-eodel of a composed discrete
event system as shown in Figure 4.1.

shared events
— | S

~
/// ‘ ™~
— | ~.
H Ho [e+ 1 Hy

Figure 4.1: Decentralized control system

The different components of a DCS interact via shared eveatsvents that are elements of the
intersections of at least two alphabets. This interactsoorucial for the behavior of the overall
system because the different components can block each) wfhieh is clarified in the following
example portrayed in Figure 4.2.

Example 4.1

The stringssy, s, in L1 2 and the strings in L, > contain the shared everas 3 andy. The strings

s and sz agree on the order of these events, such that the stringg|$ in the synchronous
compositionHi||H2 are also elements df; (i.e. they are marked strings of the control system
H = Hi||H2). However, the order of the high-level events is differemt the stringss, and ss.
Thus, none of the strings ®||sz is a marked string ith.. O

SECTION 4.1 — HIERARCHICAL AND DECENTRALIZED CONTROL ARCHITECTURE 67

This indicates that although the control systé#asandH» are nonblocking, the composed system
H1||H2 can be blocking. If this is the case, then the decentralipatpbonents areonflicting(see
also [RW87a, Won04, dQCO00, QC00, LWO02]).

Figure 4.2: Blocking in a decentralized control system

This observation suggests that the abstraction of the tladieged components must always pre-

serve the shared behavior and thus an abstraction alphaisétiways contain the shared events.
n .

Accordingly, the high-level alphabet is chosen such thdt) (%NZj) C =" C 5. The abstrac-

Li=Li#]
tion of the DCS results in therojected decentralized control system

Definition 4.2 (Projected Decentrglized Control System)
Let |'_,H; be aDCS, let" st. |J (ZNZ)CMC3i=1...,nand letp": 3" — (Z")*
L] #]

be a natural projection. Also define the decentralized kégbt alphabets ag" := =" NZ; with
the corresponding decentralized natural projectknﬂ‘?%: - (Zihi)* fori=1,...,n. A projected
decentralized control syste(i"_,Hi, p", |"_;HM") (PDCS) is composed of finite control systems
H = pdeS(H;), i = 1,...,n. The overall high-level model ig" = ||"_ HM. 1 High-level control-
lable and uncontrollable events are definedis= >N =" andzl. := 3, =", respectively]

1For Hy = (L1,17 L1,2) andH, = (Lz;]_7 Lz’z), the notatior1—|1||H2 = (L1,1|“—2717 L172||L2’2) is introduced.

68 CHAPTER4 — HIERARCHICAL AND DECENTRALIZED CONTROL

Figure 4.3 illustrates the concept of the projected deaéméd control system with the decentral-
ized control systenj|!! ,H; on the low level, the projectionpﬁ'ec, i=1,...,nand the projected
decentralized high-level systejfi_ H"

hi hi R — hi
Hl H2 — P —— Hn
d d d
plec pzec pnec
—> —>
Hl H2 e o o Hn

Figure 4.3: Projected decentralized control system

Definition 4.2 suggests the computation of the overall Hegrel model adH™ = ||"_ H". Now,
the question arises if this high-level model equals the rhddeved from projecting the overall
low-level system, i.e. if|l_, pf®S(H;) = p"(||"_,Hi). For our particular choice of the high-level
event set, this equality indeed holds, as established imvotk in [SRM04, SMPO05]. Proposition
4.1 states the respective result.

Proposition 4.1 (High Level Plant [SRM04, SMPO05])
Let (|, Hi, p", ||"_;H") be a projected decentralized control system. Then the kigH tontrol
system isH" = p"(|[Hi) = ||, pfe(Hy). [

The proof of Proposition 4.1 is based on a result in [Won04)@lQIt is given in Appendix A.3.

Proposition 4.1 provides an important result which redubescomputational complexity of the
projection operation for decentralized systems tremesiggouNow, it is no longer necessary to
compute the overall low-level control system and then tdjeo the high level, but it is possible
to project the decentralized subsystems to the high lew&l éind then compose the projected
systems to form the high-level control system.

Due to the fact that all shared events are contained in tHelbigel alphabet, the complete shared
behavior is preserved in the high-level control systems passible that the feasible shared be-
havior of each subsystem is different from their independeavior, i.e. it can happen that
p"(LY) c L") This means that there are strings which are feasible indepiendent system but

SECTION 4.1 — HIERARCHICAL AND DECENTRALIZED CONTROL ARCHITECTURE 69

which don’t agree with the strings in the other systems. Haurhore, as already seen in Example
2.3, if a string is marked in one subsystem, a correspondiggsn another subsystem need not
be marked. This means that the string in the composed systeat marked, either.

The feasible projected decentralized control systeinta decentralized control system represents
its possible behavior after the synchronization.

Definition 4.3 (Feasible Projected Decentralized Control ystem)
Let (|| Hi, p", " ,HM) be a PDCS and legp!" : (=")* — (=) be a natural projectiof. The
feasible projected decentralized control system (FPOES)™, H™), i =1,....n, is defined as

() HM" = (L L) = pli (HM)

(i) Hf == (Lfl,L ,) With Lf1 = {sc Li1|pes) € L,h'lf} ande2 = {sec Li|pfes) € L,h'zf
]

It is clear that the feasible projected decentralized abrdystem for a projected decentralized
control system exactly represents the possible sharedsioetiar the interacting decentralized
control systems. We give a formal statement of this resuhéfollowing lemma.

Lemma 4.1
LetH;, Hf, HM andHhlf i =1,...,nbe defined as in Definition 4.3. Then

hi,f

hi f
e H™ = [[LH™ and [l Hi = [l H;.

OJ

The proof of Lemma 4.1 uses the fact that the composed systeshagree with the shared behav-
ior of the decentralized subsystems. It is provided in ApiteA.4.

Because of the above equivalence, the feasible projectesysteims(||"_,Hf, p" || H"")

considered in the sequel, instead of the projected higél- Imbsystem&H,“:lH., h', ||,”:1H,h').

are

After establishing the connection between the high levélthe low level of a decentralized control
system, supervisors for both the high level and the low laveladded to the architecture. This
leads to the formal definition of tHaerarchical and decentralized closed-loop system

Definition 4.4 (Hierarchical and Decentralized Closed Loop $stem [SPM05, SMP05])
A hierarchical and decentralized closed-loop system (HDGL'S, H!, p", ||n_,H"™ S 50°) con-
sists of the following entities

2The natural projectiong™ andpecare given in Definition 4.2.

70 CHAPTER4 — HIERARCHICAL AND DECENTRALIZED CONTROL

e aFPDCY||" ,Hf, p", |"_,H"™") according to Definition 4.3,
e ahigh-level supervisd@®" : L" — M with the high-level closed-loop control syste&t/H",

e avalid low-level superviso8°: L; — I s.t. p"(S°/H) C SV /HM,
[

That is, the low-level model of a hierarchical and decerzeal control system is a decentralized
subsystem which is abstracted by projecting to a superdbedhared events of its components.
Because of the decentralized nature of the system, the dability properties of the low-level
events are directly transferred to the high-level in thigrapch, i.e. a high-level event is control-
lable if it is controllable in the low-level, and it is uncealiable if it is uncontrollable in the low
level2 On the high level, standard supervisory control is appléelding the high-level supervi-
sor. The translation of the high-level control action to line level is considered to be valid if the
low-level control achieves the desired behavior in the héyel.

In this approach, the low-level control is defined by usingeaeantralized implementation of the
high-level supervisor which is similar to the consistenpiementation introduced in Section 3.2.
Definition 4.5 introduces thdecentralized consistent implementation

Definition 4.5 (Decentralized Consistent Implementation)
Let (" Hf, p",||n_,H™" S 5°) be a hierarchical and decentralized closed-loop systerso Al
implement

(i) decentralized high-level supervisd® : (s)* — i s.t. i /HM = phi(hi /Hhiy 4

(i) decentrallzed low-level superwsorﬁ0 2 — T for the prOJected control systems
(Hf, plec HM™") as consistent |mplementat|ons$f fori=1,.

If the low-level supervisoB° : 3* — T is defined s.t.
S°/H = S"/HM||(|IL48°/H),

then(||"_,Hf, p, ||"_,H™" S 5°) is called a HDCLS with a decentralized consistent implemen-
tation. O]

The HDCLS with a decentralized consistent implementatioltuistrated in Figure 4.4.

3This choice of the high-level controllable and uncontrolkéaevents is called control delay freedom in [Zho92,
WW96].
4Conditions for the existence of such supervisors are givehd next lemma.

SECTION 4.1 — HIERARCHICAL AND DECENTRALIZED CONTROL ARCHITECTURE 71

. Col s
S Infhi HN
b || Pl || PR -l
g Cordy' HY .
i
Comhilo cte | S Corf \ o.q-0pf HN Inflohi

Corf!
S\ i /

pgec pgec pﬁec

Infl
sp Corf? Ho W

Infl9 X
L S"IO COdf” NIEXE Hn

|nf|f /
se Corl° Hy

Figure 4.4: Hierarchical architecture

A decentralized high-level supervisor, implementing tihgjgction of the high-level closed-loop
behavior to the event set of the decentralized componetinputed for each of the decentralized
projected control systems. The control action of this Higlel supervisor is then translated to a
decentralized low-level supervisor as a consistent implgation according to Definition 3.5. The
joint action of the decentralized low-level supervisgfsand the high-level supervis@" yields
the overall low-level supervis@°.

From Section 3.2, it is known how a consistent low-level suger can be computed if the cor-
responding high-level supervisor exists. However, thaterice of the high-level supervisors in

72 CHAPTER4 — HIERARCHICAL AND DECENTRALIZED CONTROL

Definition 4.5 is not automatically guaranteed. There nesdoe admissible high-level supervi-
sors implementing the projection of the overall high-leslelsed-loop behavior to the event set of
the respective decentralized subsystem. Yet, if the fespilnjected control systems are required
to bemutually controllable then it is true that these supervisors always exist. Mutoatrolla-
bility ensures that the decentralized subsystems agreeeorontrol action to be executed. It was
established by Lee and Wong in [LW02].

Lemma 4.2 _
Let (||"_,Hf, p".||"_,H™") be a feasible projected decentralized control system an@'lde a
high-level supervisor for the overall high-level systétfi. Also the natural projections; j :
(ZM)* — (=M=~ fori,j=1,...,n are defined. If the high-level subsystem®' i=1,....n
are mutually controllable, i.eZi,j =1,...,n,i # j

hi,f - hi f i f

Lj_‘l’l (ZLucm ZLuc) N (pLi) 1(piJ(l—i ")) - Ljh)

thenp(L}") is controllable w.r.tL; foralli=1,....n. O
Lemma 4.2 is proven in Appendix A.5. A short illustration bétconcept of mutual controllability
is given in the subsequent example.

Example 4.2

LetL; andL; be two languages with the controllable shared ewesnd the uncontrollable shared
eventoy.. Also leta € 27 andb € > be non-shared events. Figure 4.5 illustrates some strings
from Ly andL,.The strings, € L, is chosen for verifying mutual controllability. It holdsah
$2b0uc € LaZye and sboye € (P21) H(Pr2(La)) @s prz(s1) = p2a(s2) = aa. Thus,sboye €

LoN (pz,l)—l(pl./z(Ll)) but s;boyc € Lo. This indicates that mutual controllability fails for the
example.

The problem is that the uncontrollable evert can either happen or not after different low-level
strings (e.g.s, andspb) which are perceived as the same string from the other sysfepjust
perceives the shared striag). Mutual controllability prevents this ambiguity. O

Figure 4.5: lllustration of mutual controllability

SECTION 4.1 — HIERARCHICAL AND DECENTRALIZED CONTROL ARCHITECTURE 73

To sum up, Lemma 4.2 ensures that the projection of the agél-iclosed-loop behavior to the
decentralized event sets is controllable w.r.t. the rdspgeteasible high-level language. Con-
sequently, the decentralized high-level supervisors ifinken 4.5 can be implemented. The
application of the hierarchical and decentralized archites is shown in the following example.

Example 4.3

Let H; andH> be control systems with the languadas = ab(a +ca), L1 » = ab+aba+abca
andLy 1 = ada, Lo 2 = ad +ada, respectively. The shared evenand the event are controllable
and for the high-level projectiod™ = p"(H;)||p"(H.), the languages ait€' = o@ andL}) = a.
Note that both decentralized projected control systgfasp™, H) and(Hy, p", H)) are feasible
as pr(H"M) = H" and pp(H") = HY'. The resulting hierarchical and decentralized structare i
denoted in Figure 4.6. The high-level superviSiris defined such tha (a) = 0 andS" (") =
{a} for all others™ € LY. Mutual controllability of the high-level subsystems cam \erified.
As the two high-level system]" andH)' have the same event set HE', the corresponding
decentralized high-level supervisors are equat® Applying the consistent implementation, the
supervisorsS® andS? are

Qf(sl)z{{b} if sy €ab gzo(Sz):{{d} if s,=ad 4.1)

{a,b,c} else {a,d} else

The resulting low-level closed-loop behaviors &&'H; = (ab,ab) andSP/H, = (ad,ad). O

Figure 4.6: lllustration of the decentralized supervisor implementation

SNote that in this case, the projectiop andpl)' are the identity map.

74 CHAPTER4 — HIERARCHICAL AND DECENTRALIZED CONTROL

4.2 Hierarchical Consistency

The decentralized consistent implementation is basedeodhsistent implementation in Section
3.2. As this low-level supervisor realization is sufficiémot hierarchical consistency of a HCLS, a
similar result is expected for the decentralized case. ¢&itipn 4.2 confirms this conjecture.

Proposition 4.2 (Hierarchical Consistency)

Let Let (||1_(Hf, p", |In_, h' f) be a feasible projected decentralized control system wiilgh-
level supervisosh' and the high-level closed-loop systedfti/HM = (L1"¢ L0'¢). If S°is a decen-
tralized consistent implementation 8F and the feasible high-level subsysteHiE’f are mutually
controllable, therf||"_,Hf, p', |n_,H"" S 9°) is a hierarchically consistent HDCLS. O

Proof: Considering Lemma 4.2, it holds for al= 1,...,n that p(L 2') is controllable w.r.t.

Lf,. Thus, for alli, there exists &" : (£/")* — ' s.t. S“/Hhlf = pP'(S"/HM) .6 Using con-
S|stent |mplementat|on§° for the high-level supervisor§" and the projected control systems
(Hf, pfec H™") the hierarchical control systenis!, pdec H™' ,S",9°) are hierarchically consis-
tent because of Proposition 3.1, and hepe(S° /Hf) S,h /Hhlf = pMi(S/HM.

Implementing the low-level supervisor as in Definition 4.Bsults in phi(SO/H)

P (S"/HM|(IIyS°/H)) = (S /HM) M (I,S°/Hi) = S"/HM[| pfeq(||,§°/Hi) because
of Lemma 4.1. Also with Lemma 4.1 and with the above obsemmatt is true thap" (||"_,S° /H
- H 1pldec QO/H - HI 1p| (Sh /th) NOtIng thatsh /th C H| 1p| <§ /Hm) (Lemma A-6)1 it
holds thatS" /Hh'HpFIec (||, S°/Hi) = SV /HN| (||, pM(S/HNY)) = S /HN. Consequently, the
hierarchical and decentralized control system is hiereatly consistent. O

The above result makes use of the fact that the joint behaVibtie decentralized high-level super-
visorsShi results in consistent behavior on the high-level, i.e. tiglthevel controlled decentral-
ized systems combined with the overall high-level superygeld the same behavior as the overall
high-level plant. Further on, the fact that the low-levehtol of the decentralized projected con-
trol systems is achieved by consistent implementationsesialdre that the high-level closed-loop
behavior of the decentralized subsystems can be implechégtw-level supervisors.

Example 4.4
The HDCLS in Example 4.3 is hierarchically consistent. Thera corresponding string in the
low-level closed-loop behavior for all strings in the hitgvel closed-loop behavior. O

After showing that the behavior implemented by the low-lestgervisor is hierarchically consis-
tent, it has also to be verified if the specified language caltyrbe implemented. The subsequent
lemma states the required result.

6Also observe thapf(L)¢) = phi(L5"¢) = phi(LY") asS /HM is nonblocking.

SECTION 4.3 — NONBLOCKING CONTROL 75

Lemma 4.3 .
Let (||"_,H, p", ||n_,H"" S 9°) be a HDCLS with a decentralized consistent implementation.
ThenS"/HM||(||"_,S°/H]) is controllable w.r.tL;. O

Proof: Assume thatS" /HM||(||"_,9°/H) is not controllable w.r.t.L;. Then it holds that
Ise LinS/HM||(IN.,9°/Hf), 0 € Sycs.t.so € Ly butso ¢ S /HN| (||n_,§°/Hf). Leto € =M.
Thenp"(so) € LY andp"(so) ¢ p"(LS) = L because of Proposition 4.2. A8i(so) € L1, this
means that "¢ is not controllable w.r.tL" which leads to contradicion.

Now assumeo € ¥ — 3", Then3i such thato € %; andi is unique (otherwise € ="). Then
pi(s0) € Lix andpi(so) ¢ Li$ (otherwiseso € L§). Hencel [is not controllable w.r.tL! ; which
contradicts the admissibility °. O

4.3 Nonblocking Control

Looking at the decentralized consistent implementatioDafinition 4.5, it is readily observed
that the supervised system consists of decentralizedrbiecal closed-loop systems. Thexally
nonblockingandmarked string acceptan@@nditions are needed to guarantee that the hierarchical
closed-loop systems are nonblocking. Consequently, trees#tons are also required for feasible
decentralized projected control systems.

In addition to the above mentioned properties, two differequirements were formulated in Sec-
tion 3.3. Analogous to the approach in Chapter 3, two altermatersions of the main theorem
are elaborated in the sequel. The first version provides ditton on the high-level closed-loop

subsystems, and the second condition requires marked swimtrollability as a further structural

condition for the feasible decentralized projected cdrsystems.

4.3.1 Condition on the High-Level Closed Loop Subsystems

The main theorem of this section is similar to Theorem 3.ktdad of requiring the overall fea-
sible projected control system to be locally nonblockingl amarked string accepting, only the
decentralized components need to fulfill these conditiofse decentralized consistent imple-
mentation ensures hierarchical consistency and nonligdkehavior of the overall hierarchical
and decentralized closed-loop system in combination wignkess of the decentralized high-level
closed-loop systems.

76 CHAPTER4 — HIERARCHICAL AND DECENTRALIZED CONTROL

Theorem 4.1 (Main Result)
Let (||"_H, p"|I"_,H h' f) be a feasible decentralized projected control sy$teith a nonblock-

ing high-level superwsoé". Assume that all projected control systemf, iec, Hih'f), I =
1,...,nare marked string accepting, locally nonblocking and thatdecentralized high-level lan-
guagesk_,h'lf are mutually controllable. Also |&° be a decentralized consistent implementation of
g, Ifall IanguagesLh' " are live, then the HDCLS|" ,H!, p" || H"™" S 50} is nonblocking
and hierarchically consistent. O

The subsequent lemma provides a property of feasible peajedecentralized control systems
with live high-level subsystems. It says that any high-lesteng in the overall behavior can be
extended to a marked high-level string such that the exdarntains symbols from all alphabets
in a specified set of alphabets.

Lemma 4.4

Let (|| ,Hi, p", [|"_;HM), i = 1,...,n be a projected decentralized system with a nonblocking
high-level control systerdl" and assume thaf"} is live fori = 1,...,n. Also letJ be an index set
with 9= {i1,...,im} € {1,...,n}. Then for alls € L, there exists ac (z")* s.t. it € L and
forall j €7, pii(t) #e. O

Proof: The following algorithm for constructing a suitable strings proposed for proving
Lemma 4.4. Assumg" € L' andJ are given.

1. ki=1,5=7
2. chooséy € J
3. findt € (") s.t. Sty -ty € LY andpfl(ty) # ¢
4. remove allj with pll(t,) # & from J
5

. if 7= 0, setk* := k andterminate
elsek := k+ 1 andgo to 2.

First note thatk as in item 3. exists for eadh Observing thap (§“ th...tko1) € Lh 1 and with
L,h'l being live, there exists @, € Zj; s.t. p; hi(ity ... t_1)0, € LIk 1- As LIk 1= p,k(F‘) there is
afi s.t. ity ..t ifk e LY and pl!'(f) = 0i,. But asH" is nonblocking, there existsfasuch that
ity .tk € L2 Thus,ty .= tktk fulfills the condition in item 3. of the algorithm. Secondly,
observe that the algorithm terminates as theJseffinite and in each loop through the algorithm
at least one element is removed frdmAfter termination of the algorithm, the stririg=t; - - - ty-
fulfills Lemma 4.4. It holds thas"t < L) andpl'(t) # € for all i € J by construction of. O

’Note that the theorem can also be stated for the original nietized projected control system
(In_,Hi, pM, |I"_;HM). However, as this DPCS contains redundant behavior, Gonditvould be more restrictive.

SECTION 4.3 — NONBLOCKING CONTROL 77

The proof of Theorem 4.1 is supported by Lemma 4.4.

Proof: Hierarchical consistency is provided by Proposition 4.2.

The strlngse L{ are considered for showing nonblocking behavior. NotegHat= p"i(s) e LT ‘

= phi(sy e phi(L""%) ands 1 = pi(s) € pi(LS). Nowletd: ={ie{1,...,n}| ﬂu. € (5 —=hhyr
st SU; € L 2} Because of Lemma 4.4, it is possible to findea(=")* W|th §"t €Ly hiCst.vied,

pl'(t) #e&.

Applying Lemma 3.7(S°/H;, p", §"/HM) is a locally nonblocking projected control system for
alli = 1,...,n. With this observation, Lemma 3.8 states that fori alith p"(t) # €, there exists
U € 2] s.t.su; € L}cfﬂ Ler@ipi(t). Furthermore, because of Lemma 3.9, thereusa (% — Zhi)*

s.t.suli € L{;g for i with pl(t) # €.

Fori with pl'(t) = €, defineu; = € and note that there also exists<™(Z; — =")* s.t. suiG; € Llfg
asi ¢17.

Consequently, for any € ||i_,u;iG; it holds thatsue || ,L;’;. Just as wellpj(su) € LI ', for all
i =1,...,nandp"(su) = st € L), Thussue L"||(||",)whlch means € L5 (|[_,L{9).
Thus, (|| Hf, p", |0 H™ f,S"”,SO) is nonblocking. O

Looking at Theorem 4.1, it turns out that the conditions megglifor nonblocking control are very
similar to the monolithic case. The reason for this is thatdbcentralized consistent implemen-
tation is chosen for the low-level supervisor. It uses thecept of a consistent implementation
for each decentralized high-level supervisor. In this #amrk, the decentralized high-level super-
visors exist, because the high-level languages are mytcalfitrollable. Together, the existence
of the high-level supervisors and the decentralized ctargismplementation guarantee hierarchi-
cally consistent and nonblocking control.

4.3.2 Structural Condition

The main result in the previous section is dependent on ttietiat the high-level closed-loop
subsystems are live, that is a condition on the closed-lgsfes is imposed. In the sequel, this
condition is replaced by a structural condition which cevitle case that liveness is not given for
the high-level closed-loop subsystems, i.e. there are-leigdl strings which cannot be extended
further. The second condition in the consistent implententan Definition 3.5 covers this case if
marked string controllability is required.

Theorem 4.2 (Main Result)
Let (||"_,Hf, pi, |I"_,H™") be a feasible decentralized projected control system witmélocking

high-level supervisoB". Assume that all projected control syste(hé, pidec, Hihi’f), i=1...,n

78 CHAPTER4 — HIERARCHICAL AND DECENTRALIZED CONTROL

are marked string accepting and locally nonblocking. Atsiothe decentralized high-level lan-
guages].,h'l’f be mutually controllable and 1&° be a decentralized consistent implementation of
g Ifall pro;ected systemgH!, pdec HM") i = 1,... n are marked string controllable, then the
HDCLS (||"_,Hf, phi, |0 1M i oy is nonblocklng and hierarchically consistent. O

Proof: Hierarchical consistency follows from Proposition 4.2.

For proving nonblocking behavior, first note tHzt £ ® asL}"® 0 and pM(L¢) = L!"°. Now
assume thag € LS ands” = phi(s) € L. It has to be shown thate LS.

hi,c hi.f,c

Because of Definition 4.5 ¢ L"/| (||, L] 7). Thuss = pi(s) € Ll 1ands" = pfeq(s) e L}
LetT:={i|l1<i<nA Au € (Zi— T st.gu € Lif’g}. The following algorithm is performed to
find an appropriate string leading to a marked sring in thé-tegel.

1. k=1,7=17.

2. chooséy € 7.

3. findty € (Z)* s.t. Mty -t € L) and Pl (ty) # €.
4. remove allj with pli(t,) # € from J.

5. if 7 = 0: setk* := k andterminate
elsek := k+1 andgo to 2.

First note that the striny in 3. always exists. There are two possible cases. In caBE{ﬂQd“) N
g(d") = 0for some, it holds thai ¢ 7, as there must hg € (Z; —3")* s.t.suj € LT‘Z’ becausdﬂf’C
is nonblocking according to Theorem 3.2. Thus, foi all, it holds thai):h' (&) () £ 0. For
this case, there existgja# € s.t. Pi, (§“t1 M)t € L,h'zf /¢ because-l hif.c is nonblocking. With

LM — phi(L5) it is readily observed thatt, € (ZM)* with pli(t) =t # € andst; ... t_aty €
L';' ¢
Secondly, note that the algorithm terminate§ finite index set which is reduced in every step.

Hence, the above algorithm provides a high-level stringt; - - -t s.t. "t € L) andpi(t) # 0
for all i € J. It holds thatgt; := pl(s"'t) € Lhlfc asL,h'lC = pl'(L"¢). Then, because of Lemma

3.8,vied, Ju €3 stsuelffn Lengiy - Further on, because of Lemma 33 € (£ — =")*
s.t.sy; € Lﬁz.

Fori ¢ J, defineu; := € and note that there is@ & (X — Z")* s.t. Ul € L,fg by definition of
J. ThenVu € ||"_,uG;, it holds thatsue || ;SuiG; C ||P:1L{:§ and pi(su) = Mt € L. Thus

sue L3"%/|(||"_4L{5) = LS, which proves thas € LS. O

SECTION 4.4 — AUTOMATA IMPLEMENTATION FOR THEDECENTRALIZED CASE 79

The proof of Theorem 4.2 is very similar to the proof of Theoré.1. The difference comes in,
if high-level strings do not have any extension in the respecontrolled high-level subsystem.
Then, analogous to Section 3.3, the combination of the stersiimplementation and the marked
string controllability of the feasible decentralized mcjed systems results in nonblocking behav-
ior of the hierarchical and decentralized control system.

4.4 Automata Implementation for the Decentralized Case

After elaborating the theoretical concepts of the hiergadrand decentralized control method, an
algorithmic implementation of the presented results iggiw the automata framework.

4.4.1 Notation

At first, the notation used for evaluating the computaticrmahplexity of the algorithms presented
in this section is introduced.

e GM: number of statesa™.

DN number of statesm.

G;i: bound on the number of statas:

GM': bound on the number of stateg¥ and bound on the number of evergs.

G!: bound on the number of states:

Gihi’f: bound on the number of staten?.i’f.

4.4.2 Feasible Projected Decentralized Control Systems

According to Definition 4.1, a decentralized control systeomsists of finite local control sys-
temsH;. With Corollary 3.1, these control systems can be repredesdefinite automat&; =
(Z,%,0i,X0,i,Xm.i) S.t. L(Gi) = Li,1 andLm(Gj) = Li 2, and also the overall control systdf=
||, Hi corresponds to the finite automatGn= ||, G; with L(G) = L1 andLm(G) = L. Thus the
automata representation of a decentralized control sygferHi; is given by||_,G;.

Applying the natural projection to the high-level eventspgprojected decentralized control sys-
tems(||"_,H;, p", [|"_;HM") can be formulated as a set of finite automata, with the autoregre-
sentationgG" of the high-level control systents. The algorithm providing this result is shown
in the following figure.

80 CHAPTER4 — HIERARCHICAL AND DECENTRALIZED CONTROL

/* Compute a projected decentralized control system: compdcs */
compute_pdcGi, .. .,Gp, =)

[* project all automata to their high-level event set */

for(L<i<n)

s =33

(G, fhiloy — projection(;, =)
end for

return (GY',...,Ghi fpilo . fhiloy

Figure 4.7: Computation of a projected decentralized control system

The natural projection has to be executed fornatlontrol systems of the decentralized control
system||"_,Gi. Considering Section 3.4.1, the complexity of the algorifarfi(nn/(e)?).

With the finite automata representatigif_,Gi, p", ||_,G") of a projected decentralized control
system(||"_,Hi, p", ||_;HM), it is possible to compute the high-level pla@f. According to
Lemma 4.1, the high-level subautomata have to be compase@'f = || G". This is done in
the subsequent algorithm.

/* Compute the high-level automaton: compute_ghi */
compute_gh{G}',...,Gh"
/* Initialize GN with the first decentralized high-level automaton */
Ghi — GQI
/* Loop through all high-level subautomata and compute §rechronous composition */
for(2<i<n)
Ghi — Gh|||G|h|
end for
return (GM)

Figure 4.8: Computation of the high-level automaton

The algorithm evaluates the synchronous composition fon Aigh-level subautomata. Recall-
ing the complexity of the synchronous composition, the cotajonal effort for the algorithm is
O((nM). Here, the positive effect of Lemma 4.1 can be recognizetie Tomputational effort

SECTION 4.4 — AUTOMATA IMPLEMENTATION FOR THEDECENTRALIZED CASE 81

is exponential in the number of states of the high-level comemts of the decentralized control

system instead of being exponential in the number of stdtdsedow-level subautomata. As the

number of states of the high-level subautomata is expeotbd smaller than the number of states
of the low-level automata, (Theorem 3.3), this denotes sidenable computational gain.

The feasible projected decentralized control system catetermined according to Definition 4.3
with the projected decentralized control systéifi_,H;, p", ||"_,H") and the overall high-level
control systenH". The following Lemma states how this is done in an automgieesentation.

Lemma 4.5

Let (Gi,G") be an automata representation of a projected control sy@terp™, H") and letGM
be the automata representation of the high-level contrstesyH". ThenGihi’f is an automata
representation op" (H"), and the automaton fo is

Gl =cM™|G;.
0

Proof: pl(HM) is a control system because of Lemma 3.1. With Corollary {1 is the
minimal recognizer op(H").

Letse L(G!"'||Gi). Thenphi(s) € L(G!"") ands€ L(G)). Thus,se L(G!) according to Definition
4.3. Now lets € L(G]). Thens e L(G;) andp"(s) € L(G""). This means thatc L(G"'||G;). O

It is sufficient to evaluate the projection of the high-lemetomatonG" to the event set&" N
i) fori=1,...,n and to compose the high-level feasible control systeﬂé with the low-
level systems5; to compute the automata representaﬂGﬁ Gih"f). The algorithm in Figure 4.9

illustrates this procedure.

[* Compute the feasible projected decentralized contralesys compute_fpdcs */
compute_fpdcgGy,...,Gn, G, f{“lovf’ L rI;mo,f)

/* Project G" on the different alphabets */

for(1<i<n)
G = projectior(G", (=" N'=;))
Gl =G"|[G,
fihilo,f _ fhilo(GL fih"o)
end for
return (G, ,Gh'",GE,..., G, £iof ghief)

Figure 4.9: Computation of the feasible projected decentralized control system

82 CHAPTER4 — HIERARCHICAL AND DECENTRALIZED CONTROL

The function "' determines the new mapping of high-level states to enttgstaFromf/io,

it gets the information about the entry state<Gn Every state in the synchronous composition
Gi||Gihi’f is associated to the corresponding high-level stat@ihiiﬁ by inspecting the state name
pairs(x,x"") in X{.

The natural projection of the high-level automat6i has to be carried out times to com-
pute the feasible projected decentralized control sysf€éhe complexity of this computation is
O(n(n")7(e)2). The subsequent synchronous composition is done @t n™").

Combining the above algorithms, determining the feasibbgeoted decentralized control system
from a decentralized control system and a high-level alphals of complexity

O (max(nry' ("), (n)").

4.4.3 Marked String Acceptance and Locally Nonblocking Condition

Marked string acceptance as well as the locally nonblockorglition have to be checked for all

feasible projected control syster@ftif, p, Hih“f) by examining the corresponding automata repre-
sentationé\G{,Gr"f). For verifying marked string acceptance, the algorithmiguFe 3.10 has to
be carried oun times, while the locally nonblocking condition is checkedadpplying the algo-

rithm in Figure 3.1 times. Consequently, the complexity of both computatiorti}('rs(nif)znihi’f).

4.4.4 Liveness and Marked String Controllability

Similar to the previous section, liveness and marked sttorgrollability have to be evaluated for
each feasible projected decentralized control system.ciecking liveness, it has to be verified
if every state of the natural projections of the high-ledeked-loop behavior to the decentralized
alphabets has successor events. This can be done by chéaaygentry state (for the respective
decentralized alphabet) has a path to a successor eventcohiygexity isO(((nih"f)“rrf“)zn),
where(nih"f)”mhi is a bound for the number of states of the high-level closeg-butomaton. The
complexity for verifying marked string controllability jast multiplied byn, i.e. O(n niznihi) in the

decentralized case.

4.4.5 Supervisor Computation

All conditions for the hierarchical and decentralized aygwh presented in this chapter can be
verified computationally with the above algorithms. The ptete procedure for synthesizing a
hierarchical and decentralized supervisor for a decengclcontrol system with a given high-
level alphabet is presented in the following list.

SECTION 4.4 — AUTOMATA IMPLEMENTATION FOR THEDECENTRALIZED CASE 83

e Compute the feasible projected decentralized automataseptationgGf,G"'1). For the
systems under consideration, this computation can be dquaynomial timed(nr/' (el')?)
according to Section 4.4.2.

e \erify marked string acceptance. The complexitpig h'f(nf)).
e Check the locally nonblocking condition. This is done witlmg@exity O (n r{" f(nh2).

e Synthesize the high-level supervis8t for a high-level specification automat®f" with
m states. The complexity 8((n"")21(mh)2),

Nonblocking low-level control is guaranteed if either treedntralized high-level closed-loop sys-
tems are live or the feasible decentralized projected obsyistems are marked string controllable,
using the decentralized consistent implementation.

e Test for liveness. The complexity &((n™")2"(m")2n).

e Verify marked string controllability. The complexity &(n r{“ f(nH?).

Putting together the complexities of the different aldars needed in this approach, it turns out
that the overall complexity for verification of the strualproperties and synthesis of the high-
level supervisor i®) (max(nn’ (e")?, (nh' f)Z”(mh) n)). Thus, the main contributions to the com-
putational effort are the natural projection of the decadited components to their respective high-
level alphabets@(nn/ (e')?)) and the composition of the decentralized high-level sstasys to
the overall high-level system in combination with the chéak liveness ©((n"")2"(n)2n)).
Considering the fact that the state size of the abstractddrmgss supposed to be smaller than
the state size of the original low-level models, the comorsal gain is evident (fron)(n?) to
O((nhM), wheren <<).

The fact, that the computational complexity of the approachtill exponential in the number
of states of the decentralized high-level components, issarising, if the result in [RLO2] is
considered. It is stated that "the verification of large diseevent systems modeled as interacting
sets of finite automata will not lead to computationally tadte results unless we make more
assumptions about the models themselves".

These additional assumptions are exactly what is explaitedr method. The structural properties
of marked string acceptan@ndlocally nonblocking DE§uarantee that systems can be projected
to models with a smaller number of states in the high level.

In addition to the reduced computational effort, it is alswtlv mentioning, that the implementation
of the decentralized supervisors is manageable. Smalhttatieed supervisors which can directly
be implemented for their respective component are desigis¢ed of synthesizing one low-level
supervisor implementation for the overall system. A dethdlescription of the procedure with an
extension to a multi-level hierarchy is given in Chapter 5.

84

CHAPTER4 — HIERARCHICAL AND DECENTRALIZED CONTROL

Chapter 5

Manufacturing System Case Study

An example for a large-scale composed discrete event syistéine Fischertechnik Simulation
Model of the "Lehrstuhl fir Regelungstechnik, UniversitalaBgen-Nurnberg”, that represents a
distributed manufacturing system (see Figure 5.1). Theesysomprises 28 components, and a
monolithic automaton model reaches an estimated numbed?6fstates: Due to the size of the
manufacturing system, monolithic supervisor synthesmisadvisable.

Nevertheless, the decentralized nature of the system stgytpe applicability of the hierarchical
and decentralized approach in Chapter 4. To this end, thegaystem is divided into structural
components, and 4 hierarchical levels are used.

The chapter is organized as follows. At first, a thorough deson of the the example system
(called the "manufacturing system”in the sequel) is givenanti®n 5.1. Section 5.3 focuses on
the supervisor synthesis for a part of the manufacturingesysFor thedistribution systemwhich
embodies the entrance area of the system, the hierarchb&taaation and decentralized supervisor
design are worked out in detail. Finally, the complete sysieconsidered, and the performance
of the method is evaluated for a representative supervi@opatation in Section 5.4.

A bird’s eye view of the manufacturing system is shown in Fegbl. 1. It consists of a stack feeder,
conveyor belts, pushers, rotary tables, production celsarail transport system. A schematic
overview is given in Figure 5.2. The purpose of the manufaogusystem is to process workpieces
(symbolized by wooden blocks) which enter the system fronaeksfeeder (sf). From there, the

workpieces are distributed by the long conveyor belt (ctl)ere are two pushers pul and pu2
attached to this conveyor belt, that transport workpieodis¢ actual production part of the system.
Also there is a reject depot (dep) at the end of the long canmvesit.

IFor implementation reasons, control systems will be regesl by the corresponding finite automata throughout
the whole chapter.

86 CHAPTERS5 — MANUFACTURING SYSTEM CASE STUDY

5.1 Manufacturing System Overview

Distribution
system

Production
cell 1

Production
cell 2

system

Exit system 1 Exit system 2

Figure 5.2: Schematic overview of the Fischertechnik simulation model

SECTION 5.2 — NOTATION 87

The production part is entered via two conveyor belts (cb@ @B) which serve as buffers for
workpieces waiting for processing in one of the productiellsqmhl1, mh2). The rotary tables rt2
and rt3 (with conveyor belts cb12 and cb13) move workpiecéisd respective machine (mhl and
mh2), where they are drilled (d1 and d2). From the machineskpieces either maneuver back
by using the rotary tables rt2 or rt3 again or move forwardrtdeor rt4 (with conveyor belts cb11
and cb14).

For leaving the manufacturing system, the conveyor belfs cb8, cbh9 and cb10 deliver work-

pieces to the rail transport systems rts1 and rts2, whichuoéad to the roll conveyors rcl and

rc2. Each of the roll conveyors is able to store up to four \peekes. The rail transport system rts1
can serve the conveyor belts cb7, cb8 and cb9, while rts2 elaredworkpieces to the conveyor

belts cb8, cb9 and cb10.

The manufacturing system is equipped with different senadiich detect logical signalsAlso,

the motors driving the conveyor belts, rotary tables, maehietc. only assume discrete values, i.e.
moving into one of two directions or stopping. In this sejtisensor signals can be imagined as
uncontrollable events (there is no direct influence on tlewence of the signal), while actuator
signals are considered as controllable events (theselsigaa directly be set or reset). Using
these event definitions, the behavior of the manufacturystesn can be described as sequences
of actuator and sensor signals, i.e. sequences of coftiBad uncontrollable events. Regarding
the definition of a discrete event system in Chapter 2, the faatwring system belongs to this
class of systems.

Furthermore, it is readily observed, that the manufactusystem is composed of different compo-
nents which interaét It is possible to apply the hierarchical and decentralirethod developed
in Chapter 4 for supervisory control of the manufacturingtesys At first, the design and syn-
thesis procedure is performed for the distribution systenfdcility of inspection. It comprises
the stack feeder sf, the long conveyor belt cbl, the two psghel and pu2, the deposit dep and
the conveyor belts cb2 and cb3. The same approach is therfarstid rest of the system, and
performance details are discussed in Section 5.4.

5.2 Notation

The following notation is used for modeling system compasemn different hierarchical levels.
e plant automata are Writt@?), wherei denotes the level of the hierarchy where the automa-
ton model resides andis the name of the component, according to the schematiwiever
in Figure 5.2.

2A detailed description will be given in Section 5.3.
SFor example consider one conveyor belt transporting a wedkpto another conveyor belt

88 CHAPTERS5 — MANUFACTURING SYSTEM CASE STUDY

o if Zgi) is the alphabet oG(i) andZSi“) C Zgi) is an abstraction alphabet, then the correspond-

(||+1) (Z(I)> —>(Z(-i+1))*
j .

ing natural projection ispl l

2

e assume that one componéh-f) of the system is composed of smaller subcompon@m

kzl,...,nandeéj,i.e.G(')_||k 1G () . Then, the alphabetcﬁ()lsz Uk_lzj)

k

o let G(=[|n_,G () be as above and Iét("o U 1#'(2(') mZ(')) be an abstraction
alphabet for the Ieve|I+ 1. Then the natural projection for the subsystems is defiged a
pg'k“Fl) (z())* . (Z(+1) ﬂz()))

Jk

e specification automata for an automaton mcﬁ@l are written a@%i).

e the automaton realizing the supervised behamtorD. (Lm(GE'))) is written angi).

e event names indicate the component where the event ocadith@mction which is related
to the event. For example, the evesitapar means that a workpiece arrives at the stack
feeder.

o for better orientation, a coordinate system is defined inif&d.2.

¢ in the automata graphs, dashed arrows indicate high-levgditions, and a tick on an arrow
denotes a controllable event.

5.3 Supervisor Synthesis for the Distribution System

The distribution system as shown in Figure 5.3 has severapooents. The stack feeder, the
depot and the two conveyor belts cb2 and cb3 are modeledge smmponents, whereas the long
conveyor belt cb1 with the pushers pul and pu2 is split integlparts for modeling convenience.
The first part (cblapu2) describes cbl between the stackrfeed the pusher pu2. The second
part (cblbpul) models cbl from the pusher pul to the depdtharthird part (cbdonnec) accounts
for the physical connection between cblapu2 and cblbputhgibelt. In the following sections,
the hierarchical architecture for the distributionsysteith 4 levels is constructed, starting from
the lowest (sensor and actuator) level. The automaton reaifehe system components were
derived in [Ers02, Per04].

5.3.1 Stack Feeder

The stack feeder consists of a stack which can hold maxinf@aliyworkpieces and a belt with a
small block which can shove workpieces to the conveyor lElt cThe belt's motion and end of

SECTION 5.3 — SUPERVISORSYNTHESIS FOR THEDISTRIBUTION SYSTEM 89

Figure 5.3: Components of the distributionsystem

motion is triggered by the everdénv andsf st p, respectively. The stack feeder is equipped with
a photoelectric barrier which detects if a workpiece is enés Arrival of a workpiece generates
the eventsfwpar and the evensfwpl v occurs if a workpiece leaves the stack feeder. The rest
position of the small block is detected by a magnetic sengoctwtriggers the eventsf r (rest
position) andsf nr (not in the rest position).

sf

G(O) sf-chl
iy sfr

Figure 5.4: Stack feedeGgf))

90 CHAPTERS5 — MANUFACTURING SYSTEM CASE STUDY

The stack feeder is a control system. Referring to Lemma B.@ugomaton model of the uncon-
trolled behavior of the stack feeder is shown in Figure 5He &dditional everdf - cbl indicates
that interaction with the neighboring component is possiblthe respective state, i.e. a workpiece
can be transported to the conveyor belt cbl. The eveapresents the elapse of a nonzero time
period until the occurrence of the next event. In this mod&aptures the physical property that
when the small block arrives at the rest position, the belthmstopped before the rest position is
left.

For the controlled stack feeder, it is desired that it onlyve®if a workpiece is detected at the
sensor ¢f wpar) and if cooperation with the long conveyor belt cbl is pass{bf - cbl is feasi-
ble). Also, the belt has to stop if the small block reachesréis¢ position and only then. Figure
5.5 shows the corresponding specification autommgh Observing thaLm(Dg?)) is Lm(Gé?))-
closed, Corollary 2.2 guarantees that the maximally pem@dgehavior fulfilling the specification

can be determined. The resulting supervised behaYic%E)(o)) (Lm(Gg?))) is implemented by the
M~ sf

finite automatorRé?) in Figure 5.6 using Lemma 2.11.

0) sfwplv
D !
o st

Figure 5.5: Specification automatoR'? for the stack feeder

sf

Figure 5.6: Supervised automatd®y for the stack feeder

The stack feeder is connected to the rest of the distribitystem via the conveyor belt cbl. The
only shared event which has to be considered for hierarchlustraction is the eversf - cbl.

SECTION 5.3 — SUPERVISORSYNTHESIS FOR THEDISTRIBUTION SYSTEM 91

Thus,Zg) = {cbl-sf}is chosen. The projectiorpg?’l) yields the abstracted automaton model

Gg) depicted in Figure 5.7. Applying the algorithms presentethe Sections 3.4.2 and 3.4.6, it

can be verified that the projected syst(alﬁﬁo), pgf)’l),Gg)) is locally nonblocking, marked string

accepting and marked string controllable. Hence, it is ipts$o useGg? as a component in a
composed system on level 1.

(1) sf-cbl
G s

Figure 5.7: Abstracted automato@é? of the stack feeder on level 1

5.3.2 Conveyor Belt cbl

For modeling, the long conveyor is divided into three paststaown in Figure 5.3.

5.3.2.1 Conveyor Belt cbla and Pusher pu2

Level 0: The first part of cbl combined with the pusher pu2 has thressemnd two actuators.
The conveyor belt transports workpieces while moving ih®negative x-directiorcpl- x). The
eventsf - cbl, which can occur in state 1 and 2 represents the possibleghahavior with the
neighboring stack feeder. Arrival of a workpiece is detddby the capacitive sensor attached
to the pusher pu2p(2wpar for arrival andpu2wpl v for departure of a workpiece). The pusher
pu2 pushes workpieces from cbl to the conveyor belt ch2 {efer2). It has two push-buttons,
which indicate if the pusher is in the extendeddar - y, pu2l v-y) or retracted positiorpi2ar +y,
pu2l v+y). In general, the pusher can move forwapdZnv-y), backward fu2nv+y) or stop

(pu2st p).

Low-level models for the pusher puagﬁ)z) and the conveyor belt cbl@ﬁ)la) have 20 and 8
states, respectively. It is desired that the conveyor bekeas to the negative x-direction if a
workpiece is delivered from the stack feeder and until ithees the pusher. From there, it is either
further transported on the conveyor belt or pushed away byptisher. It is required that if a
workpiece is present, then the pusher either moves forwatitiitis completely extended or until
the workpiece leaves the sensor. After that it is retraabeitstrest position. The corresponding
specification automa@) andDé%)lahave 11 and 9 states. Locally supervised models of pu2 and

pu2
cbla are shown in Figure 5.8.

92 CHAPTERS5 — MANUFACTURING SYSTEM CASE STUDY

cblawpl v
bla ﬂ@
1st

Ry b1
)
chlawpl v

pu2r dy pu2ar -y

Figure 5.8: Low-level supervised models of puREf}z) and cblaIR(C%)la)

The automato@é%)lapuz:: RQQR&?Z has 43 states and describes the composed behavior of chla
and pu2 synchronized by the shared evebtsawpar andcblawpl v. As a requirement on this
shared behavior, it is desired, that the conveyor belt doeésnove if the pusher is extending or
retracting and that the pusher stays in its rest positionrag &s the conveyor belt is moving. The
corresponding specification automaﬂb[;%)lapuzis depicted in Figure 5.9. The event séig and

@, are defined a®;, ={cblawpar, cbhlawpl v, chlstp, sf-3,cbl-x, sf-chl}and ®, ={pu2stp,
pu2mv+y, pu2mv-y, pu2ar +y, pu2ar -y, pu2l v+y, pu2l v- y}.

q)1 CDz
0) / ™ / RN

(
chlapu2 ili) sf-2 i II)
——>
pu2r dy

Figure 5.9: Specification automatolaé?))lapuzfor cblaand pu2

Evaluating the supervisor computati&p 0O
M\~cblapu

(Lm(G((:%)lapuﬁ) yields the automatoﬁzg)))lapu2

SECTION 5.3 — SUPERVISORSYNTHESIS FOR THEDISTRIBUTION SYSTEM 93

for the supervised plant as shown in Figure 5.10.

ipu2r dy pu2l v+

cblx
N OanO==0 ORNO
ij.st’

sf -
cbi-x | cbistf-C £blst Buzm-y

o= oo oo

Figure 5.10: Supervised behavi(ﬁé%)lapuzof cblaand pu2

Level 1. The shared events with other componentssdrecbl (shared with the stack feeder),
sf-2 (shared with cb2)sf - 3 andsf - dep (connecting to cblbpulgbl-x andcblst p (shared

with cb1bpul). Addingblawpar andpu2r dy to the high-level event sét we arrive aﬁgb)lapuz

{cblawpar, pu2rdy, sf-cbl, sf-2,sf-3,sf-dep,chl-x,cblistp}. The automatorG((:b)lapuzln

Figure 5.11 represents the abstracted behaviﬁ{%fapuzon level 1. Again, the projected control
system

(0.1)
(Rcblapuz pcblapuz
controllable.

G((:blapug is locally nonblocking, marked string accepting and markethg

4chlawpar has to be reported to the high level, as the belt cb1l might dygpst in reaction teblawpar and
pu2r dy terminates the operation of the pusher.

94 CHAPTERS5 — MANUFACTURING SYSTEM CASE STUDY

(
Gcblapuz

(1)
cblapu2

Figure 5.11: Level 1 automatoi®s of chlapu2

5.3.2.2 Conveyor Belt cblb and Pusher pul

The design process for the combination of cb1lb and pul i®gaoas to the synthesis in section
5.3.2.1. To sum up, this component is able to detect worlkgsiet the sensor of pusher pul and
push the workpieces to the conveyor belt cbh3. It is importantnention that the component
cblbpul is physically connected to cblapu?2 via the long IBstause of this reason, the events
cbl- x andcblst p are shared events of these components. Also note that icabeés transport of
workpieces to the depot is not allowed by the specified beinavi

The resulting model on level 1 is depicted in Figure 5.12. dh @asily be verified that the
PCS(Rgt’,)lbpuI pﬁ%llz,pum Gf:t)lbpu]) is also locally nonblocking, marked string accepting andk®ea
string controllable.

L)

Gcblbpul @ pulrdy 5

L)

Figure 5.12: Level 1 automatoi®

Ci

b1bpu1Of CO1bpul

5.3.2.3 Connection between cblapu2 and cblbpul

Up to now, the two components cblapu2 and cblbpul have bedeledoindependently except
for the shared eventd1- x andchlst p. However, certain temporal conditions, which restrict the
synchronized behavior of the components, apply. It is ydhdt a workpiece can only arrive at
the sensor of pusher pughllbwpar) if it has passed the sensor of pusher pci2lawpar). In
addition to that, there cannot be more than 3 workpiecesd®ivthe two sensors due to physical
limitations. These constraints are captured in the auton@ﬁ,)nnectas shown in Figure 5.13.

SECTION 5.3 — SUPERVISORSYNTHESIS FOR THEDISTRIBUTION SYSTEM 95

(1)

Gconnect

chlawpar

Figure 5.13: Level 1 automato@é?nnectconnecting cblapu2 and cblbpul

Gé%,)nnectcan be seen as a buffer accepting up to 3 workpieces betweesetisors of pul and
pu2. The eventf - 3 increments the number of workpieces, and the evehtwpar decreases this
number.

5.3.2.4 Complete Conveyor Belt cbl

Composing the above automata, the model of the complete yonbelt cbl is obtained with
Gf:t)l = Gf:t)lapuﬂGg)nneCHGét)lbpul The resulting automaton has 67 states.

There are three specifications for cb1 (see Figure 5.14) fildtéwo specifications address secu-
rity aspects, while the third specification determines amndi{rary) desired manufacturing routine.

° D&)ll: If the conveyor belt is empty, it is only allowed to start nmay (cb1- x) if a workpiece
is delivered from the stack feedesf¢ cbl). On the other hand, if cbl is not empty, a
workpiece can only be delivered from the stack feeder, itcthreveyor belt is moving.

° Df:t)xz: The conveyor belt has to stoph(lst p) if a workpiece arrives at one of the pushers
(chblawpar orcblbwpar).

° D&))Ls: There must always be two workpieces pushed by pul and ongiece pushed by

pu2.

96 CHAPTERS5 — MANUFACTURING SYSTEM CASE STUDY

(1) -
Dep11 ‘ o
(= / (s)
7774‘, N iy el
sf chl -

sf-2
sf-chl ~y8f-2 chi- X bl 3 cbl-x

Figure 5.14: Specifications for the conveyor belt cb1 on level 1

The overall specification is computed as the synchronougosition of the above specifications
D&))l: ||3 ét)h It has 78 states. Evaluating the supervisor computat@controlled behavior

of cbl is represented by the automat%gh which recognizes the Ianguagﬁ)(Lm(Déb)l))
bl

and has 39 states. For hierarchical abstraction, the skesesdssf - cbl, cbl- 3 andsf 2 as well
as the eventshlawpar andchlbwpar are contained in the high-level alphatiécﬁl ={sf-cbl,
cbl- 3, sf-2,cblawpar, cblbwpar}. The automatorGg,)l, representing the abstracted behavior is

shown in Figure 5.15.

Figure 5.15: Automaton modeGg))1 of the conveyor belt cb1 on level 2

SECTION 5.3 — SUPERVISORSYNTHESIS FOR THEDISTRIBUTION SYSTEM 97

5.3.3 Conveyor Belts cb2 and cb3

The conveyor belts cb2 and cb3 are used in the same mode dtioper Both conveyor belts
receive workpieces from the respective pusher and trahgpoworkpieces to the remaining com-
ponents of the manufacturing system. Because of this reasbngb?2 is explained in detail.

The conveyor belt can move in the negative y directidi?(y) and the sensor which is attached
to it detects arrival of workpiecesi{2wpar). The eventsw?2- 13, sf-2 andcb2- 13 are shared
events with neighboring components (see Figure 5.2). Thayccur as specified in Figure 5.16.

Figure 5.16: Automaton moderft),)2 of the conveyor belt cb2

The following requirements are specified for this conveyat.b

Df:%)21: cb2 is only allowed to movecp2-y) if the eventssf - 2 or cb2- 13 occurred.

Dé(t)))zz: cb2 must stopab2st p) when a workpiece arrives at its sensolvwpar).

Dc(:%)zs: The eventwp2- 13 happens if a workpiece lefc2wpl v) and the conveyor belt
stopped.

Df:%)24: The conveyor belt has to stop if a workpiece arrives or lsave

Composing the four specifications aé.?}z = ||i4:1D((:%)2i, an overall specification automaton with 7

states is derived as shown in Figure 5.17.

ch2stp

ch2stp

Figure 5.17: Specification automatdi)gk)))2

98 CHAPTERS5 — MANUFACTURING SYSTEM CASE STUDY

The maximally permissive(s)upervisor for this specificaﬁ'mlplements) the supremal controllable
0 , . 0 .
sublanguag&Lm(Dé%)z) (Lm(Ggpp)) - Itis recognized by the automat<51f;b2 in Figure 5.18.

0
R((:b)Z -
sf-2

cb2-y

Figure 5.18: Supervised behavior of ch2 representedﬂ)é

The shared events of cb2 with the other components of theldigon system aré((:t)z ={sf-2,
ch2- 13, wp2- 13}. Abstracting with the projectiomﬁ%zl) : (Zé%)z)* — (Z((:t)z)*1 the automaton repre-

sentatiorGf:t)2 on level 1 can be computed as shown in Figure 5.19. Itis reatiserved that the

PCS(RSE))Z, pg%zl),G&)z) is locally nonblocking, marked string accepting and markteitig control-

lable.
Geb ()22 Dl 3-13.@
2-13 Typ3-12

Wp

- \

ch2-13 ~

Figure 5.19: Level 2 automatm(i;&))2 for cb2 and specificatiofﬁgt for the distribution system

5.3.4 Overall Distribution System

Having applied local control to the components of the distion system, the overall system is
constructed on level 2 of the hierarchy. To this end, letéhrell2 models of the stack feeder and the
conveyor belts cb2 and cb3 be equal to the level 1 modelssﬁh%.: Gg), Gé%)zz G&)z andej,é:
Gét)s. Then, the distribution system G((fgt = Gg) | |G£f))l|]Ggi)2| |Gg))3. The automata representation
has 144 states. We now specify a desired behavior requhratgatways two workpieces leave the
conveyor belt cb3 before one workpiece can leave cb2 (sesd-tg19).

The supervisor automatdiagﬂt on level 2 has 69 states. The shared events with the rest of the
manufacturing system awb3- 12, wp3- 12, cbh2- 13 andwp2- 13. Thus, the high-level event set
Zé?gt ={cb3- 12, wp3- 12, ch2- 13, wp2- 13} is chosen. Abstracting the distribution system to the

third level results in the automatcﬁr?l(j::’gt as depicted in Figure 5.20. The projected control system

SECTION 5.3 — SUPERVISORSYNTHESIS FOR THEDISTRIBUTION SYSTEM 99

(R&ﬂt, pgféf),Gé?gt) is locally nonblocking, marked string accepting and markieithg controllable.
Thus the level-3 model of the distribution system can be asemlcomponent in the overall model
of the manufacturing system.

Figure 5.20: AutomatonGé?gt for the abstracted distribution system on level 3

The complete hierarchy is shown in Figure 5.21. It is intengsto take a closer look at the
high-level supervisor automata (highlighted by the shdut®das) which have to be implemented
in the low level (for exampIeRffgt). All of them are live. Hence, because of Lemma 3.10, the
corresponding low-level supervisors do not have to be caedpextra. The high-level supervisors
can directly be used for implementing the low-level control

100 QHAPTERS — MANUFACTURING SYSTEM CASE STUDY

3
Glia
2,3
p((jist)
2 2
Glia Riie
1
2 2 2 2
Gy Gloy Giay Girs
1.2
pébl)
A
1 1
G((:b)l (b)l
|
A
1 1 1 1 1 1
Ggf) G((:b)lapu:. Gftb)lconnect GE:b)lbpuj ng)z G((;b)g
0,1 0,1 0,1
pgfll) pf:blf)ipuz pc(;m%pul p((;%zl) Pébg)
A A A A A
0 0 0 0
Ggf) G((:b)lapu: G((:b)lbpuj Géb)z Gg%)s
t ! T ! T
0 0 0
(?) R&b)lapuz Réb)lbpul Rg%)z R((:b)3

Figure 5.21: Hierarchical architecture for the distribution system

SECTION 5.3 — SUPERVISORSYNTHESIS FOR THEDISTRIBUTION SYSTEM 101

5.3.5 Performance Evaluation

The level 3 model of the distribution system has been cocgdustarting from low-level models
of the different components sf, cblapu2, cblbpulghdc cb2 and cb3. An overview of the
different automata with their respective state countsvsimgin Table 5.1.

Level O
0 0 0 0 0 0 0 0 0
Ggf) Dgf) Réf) G((:b)lapuz D((:b)lapuz Rgb)lapuz G((:b)lbpul D((:b>1bpu1 Rgb)lbpul
13 8 9 43 2 22 27 2 20
0 0 0 0 0 0
Gao| Duwy | Ry || Ga | Day | R
4 7 9 4 7 9
Level 1
i i i il i i i 1 i
(ng) (agﬁﬁapuz csgﬁﬁbpul gﬁlmnned (3252 (5£Qg (3£QH EDEQH (Qa
1 8 6 7 3 3 67 78 39
Level 2
2 2) @ 2 2 2 (2
Ggf) G((:bl Gcb)Z Gcb)S Gdigt D((jigt Rdigt
1 16 3 3 144 9 138
Level 3
3
Gdgt
6

Table 5.1: State quantities of the automata forming the distribution system

The monolithic approach is compared with the hierarchical decentralized method for classi-
fying the computational effort of synthesis and implemé&ata The composite plant automaton
G = G? [|Gion dIGiend |G |G| |G| [GLoy| | Glos has 360 000 states and the monolithic
specification is represented by an automeﬁxé?it with 3-10° states. Applying standard supervi-

sory control, the closed-loop automatlaiﬁ)gt has 400 000 states.

It is evident that the large number of states is caused byatttetiat the state sizes of the compo-
nents are multiplied when the overall automaton is compuBstierent from that, the decentral-
ized approach avoids computing the complete low-level maslé makes use of the decentralized
nature of the system.

On the low level, there are 5 decentralized supervisors avisam of 71 states, on level 1 there
is one supervisor with 39 states and on the second levek iBealso one supervisor with 69
states. Together, the hierarchical and decentralized@spes have 179 states. The considerable

102 QHAPTERS — MANUFACTURING SYSTEM CASE STUDY

discrepancy in the state sizes of the different supervisptiementations originates from the fact
that the state sizes of the components have to be multigietthé monolithic approach while they
are just added for the hierarchical and decentralized ndethas also important to note, that not
only the number of states of the decentralized supervisossaller, but also the complexity for
computing the supervisors is lower than for the monolitimpraach.

Additionally, PLC code has been generated from the autonept@sentations of the hierarchical
and decentralized supervisors (see Figure 5.22 as an expmigh a tool, that was developed in
a student project at our institute ([Fig05]). The automa&jaresentation is converted into PLC
functions, and practical issues suchcascurrencyand thesequence of commandee addressed.

The PLC running the code generated from the hierarchicaldeeentralized supervisors of the
distribution system operates the Fischertechnik simadatodel correctly.

L "state" a002: L 2 ao05: L 5 a007: L 7
JL END T “state".sf[0] T “state".sf[0] T “state".sf[0]
JU A001 A002: S “event".sf-chl A005: A "event".sfwplv A007: S “event".sfstp
JU A002 JU a002 R "event".sfwplv JU a001

. a003: L 3 JC a006 a008: L 8

: T ‘“state".sf[0] JU END T “state".sf[0]
Ju A009 A003: S “event".sfmv a006: L 6 A008: A “event".sfr
END BEU JU a004 T “state".sf[0] R "event".sfr
/] automata realization a0o4: L 4 A006: A "event".sprar JC a009
a001: L 1 T “state".sf[0] R “event".sfwpar JU END

T “"state".sf[0] a004: A event".sfnr JC a008 a009: L 9
A001: A “event":sfwpar R "event".sfnr A "event".sfr T “state".sf[0]

R "event":sfwpar JC a005 R "event".sfr A009: S "event".sfstp

JC a002 JU END JC a007 JU a002

JU END JU END

Figure 5.22: PLC code for the level 0 supervisag?) of the stack feeder

5.4 Hierarchical and Decentralized Control for the Manufac-
turing System

After the detailed description of the hierarchical and ae@dized supervisor synthesis for the
distribution system, a controller for the overall Fiscleefhnik model is designed. To this end, the
manufacturing system is divided into the 6 structural egishown in Figure 5.2. Thaistribution
systems adopted from Section 5.3. The production cpltd andpc2are composed of cb4, mhi,
di, rtl, cbll, cb7 and cb6, mh2, d2, rt4, cb14, cb10, resmdeti The components rt2, cb12,
cb8, cbb, rt3, cb13 and cbh9 form a system component whiclvaltf exchanging workpieces
between the different parts of the manufacturing systens dalled the interchange systeas.
Also, there are two rail transport systems (rtsl and rts2) wonveyor belts (cb15 and cb16),

SECTION 5.4 — CONTROLLER DESIGN FOR THEMANUFACTURING SYSTEM 103

each combined with a roll conveyor (rcl and rc2). As the mairppse of these components is
to remove workpieces from the manufacturing system, theylanoteckxitl (rts1, cb15, rcl) and
exit2(rts2, cb16, rc2).

First, an overview of the functionality and supervisor $ygdis for these components is worked out.
All'locally controlled components are then composed to firenoverall manufacturing system and
finally, a supervisor for a high-level progress specifiqatesynthesized.

5.4.1 Production Cell pcl

The production cell pcl consists of the conveyor belt cbé, ttachine with drill mh1d1l, the
rotary table rt1 with the conveyor belt cb11 and the convéircb7. Low-level models for these
components are derived analogously to Section 5.3.

cb4: Applying a similar specification as for cb2 in Section 5.38 low-level closed-loop au-
tomatonRgck),)4 has 18 states and the projection on level 05%4 as depicted in Figure 5.23.

mhldl: The machine head mhl can move up and down, and the drill tlzdtashed to it can

start its operation any time. The rest position of mh1 is thgp&r" (+z) position, while workpieces
can be drilled when it is in the "lower" (-z) position. A supe, guaranteeing that the drill only
works in the down position and that the machine head onlyele#e rest position if a workpiece
is to be processed, results in a closed-loop autom@iﬁﬁﬁd1 with 12 states. The level 1 model

1t)ﬂdlhas 2 states (see Figure 5.23).

Gl

m

(1 (2)
Gm%ldl Gcb4mh1d1

() O

mhistart I nhlend wpl2-4

Figure 5.23: Conveyor belt cb4 with machine mh1dl on level 1 and 2

: 1 1
cb4mhldl: Onlevel 1, the models of cb4 and mhldl are compos@ﬁgmldlz G((:b)4| |ana]1d1
(12 states). For this component, it is specified that the @pmvbelt cb4 is not allowed to move
if a workpiece is currently processed by the machine andthieatnachine is not allowed to move
as long as the conveyor belt is transporting workpiecesdtlitian to that, workpieces shall only

104 QHAPTERS — MANUFACTURING SYSTEM CASE STUDY

move from right to left. The maximal permissive supervisotoanatoan:thhldlimplementing
this specification has 6 states. The projecl}ifgtﬁ%thdlon the shared events with the neighboring
components yields the automat@ﬁ@mhldlwith 4 states as shown in Figure 5.23.

rtl: The rotary table rtl is equipped with 2 sensors, which indicartl is in the x- or in the
y-positior?. The rotary table rtl is able to turn clockwise from the x- te /- position (event
rt 1xy) and counterclockwise {1yx). A local controller guaranteeing that the rotary tableyonl
stops at the sensors and that it always turns in the cornexttain (minimal angle for reaching the
next sensor) is implemented with the supervisor automﬁ@n The projected level 1 automaton

Gﬁtll) is presented in Figure 5.24.

cbll: The functionality of the conveyor belt cb1l is equivalenthd (see Figure 5.24).

wpll- 4

Figure 5.24: Rotary table rtl with conveyor belt cb11

rtlcbll: The automatowGEtll)cbllz Gﬁtll) \ \Gf:t)ll representing the behavior of the composition of
rtl and cb11l has 14 states. Itis desired that the rotary tilgle not turn if the conveyor belt moves
and vice versa. Also, it is required that workpieces are ydweansported from the machine to the
next conveyor belt cb7. The closed-loop autom p110N level 1 has 8 states and its projection

thzl)cbllis depicted in Figure 5.25.

cb7: The conveyor belt cb7 is just required to transport workpsemoming from the rotary table
rtl to the rail transport system rts1. The level 2 abstracﬁ?’.ﬁi)7 of the locally controlled system
has 4 states (see Figure 5.25).

2

pcl: With the locally controlled and abstracted componefagﬂrmhld1 Glgtl)cbll and GE:Z)

the
b7
level 2 model of the production cell pcl is evaluatedi‘@l: G((:i)élmhldilertzl)cbleG((j))?' This

SFigure 5.2 shows rtl in the y-position and rt4 in the x-positi

SECTION 5.4 — CONTROLLER DESIGN FOR THEMANUFACTURING SYSTEM 105

automaton has 24 states. Applying the specification demgrtat there be at most 2 workpieces
allowed in the production cell yields the supervisor auttnnﬁiéi)l with 20 states. The projection

on the shared even):{?1 ={cb12- 4, wp12- 4, ch7- 15} results in the level 3 automatc@é?l with
5 states as presented in Figure 5.25.

Figure 5.25: Level 2 models of rtlcb11 and cb7 and level 3 model of the productiompcgll

The automatortiz-l(oz’;)1 in the above figure is the model of the complete component pdéwel 3.
Note that all projected control systems involved in the dnieny of pcl are locally nonblocking
and marked string accepting. In addition to that, all lowelesupervisors are consistent imple-
mentations of live high-level supervisors. Thus, it is gudeed that the overall production cell is
nonblocking according to Theorem 3.1. The complete hiéieat architecture of the production

cell pcl is shown in Figure 5.26, and the sizes of the diffeaeitomata are listed in Table 5.2.

Level O
(0) (0) (0) (0) (0) (0) (0) (0) (0)
Gcb4 ch4 Rcb4 Gmhldl Dmhldl Rmhldl Gcb11 chll Rcbll
18 18 18 20 12 12 18 18 18
(0) (0) (0) (0) 0) (0)
Grtl Drtl thl Gcb? ch? Rcb?
10 12 12 18 10 10
Level 1
1) 1) €Y 1) 1) 1) 1) (1) 1)
Gcb4 Gmhldl Gcbll Grtl Gcb? G(:b4mh1d1 ch4mh1d1 Rcb4mh1dl Grtlcbll
6 2 6 4 4 12 4 6 16
1) 1
Drtlcbll REtl)cbll
8 8
Level 2 Level 3
@) 2 2 @) 2 2))
Gcb4mh1d1 C':'Stl)cbll G((:b)7 Gpcl Déc)l Rpcl Gpcl
4 4 4 24 5 20 3

Table 5.2: State quantities of the automata forming the production cell pcl

106 QHAPTERS — MANUFACTURING SYSTEM CASE STUDY

3
G;()c)l
T
23
pécl)
T
2 2
C';E)c)l (c)l
|
T
2 2 2
Glero Gliep11 Glpamhad1
12 12
pStlcz)ll p((:b42nhld1
1 1 1
Grtl)cbll REtl)cbll G<(:b)4mh1d1 Rgt)dfmhldl
i i
||« || e
1 1
1 1 1 1 1
Glro Gy Gipns Glhay Gy
01 0.1 0.1 , 0,1
p((:bl()) pstl) pg:bl)l Pﬁr?hll)dl p£b4)
A A A A A
0 0 0 0
G<(:b)10 GEtl) G((:b)ll GEn%ldl G((;%)A,
! t . Ty t . t 3
0 0 0 0 (0
Réb)lo Rstl) R(cb)ll Rﬁn%m Rcb)4

Figure 5.26: Hierarchical architecture for the production cell pcl

SECTION 5.4 — CONTROLLER DESIGN FOR THEMANUFACTURING SYSTEM 107

5.4.2 exitl

The component exitl consists of the subsystems rts1, clid &cdn The rail transport system rts1
can move between the roll conveyor rcl and the conveyor blelitscbh8 and cb9, and workpieces
are either loaded on or unloaded from the conveyor belt cb15.

rtsl: The behavior of the rail transport system shall be resttitbeeither moving to rcl or cb9
or coming back to the rest position at cb7. The superﬂé@{ guarantees the specified behavior.

The abstracted automatdiﬁtls)1 on level 1 has 10 states.

cb15: Similar to cb6, it is required that cb15 only accept workpedrom cb7 and deliver to
either rc1 or ch9 (automatd%ﬁ%)lg. The projected automatc@ét)won level 1 has 5 states.

rcl: The roll conveyor rcl has space for 4 workpieces. It only ctstthe arrival and departure
of workpieces. The level 1 modfi)l is depicted in Figure 5.27.

exitl: Composing the exit systelﬁ(ex)Itl = GrtsluGct,lSHGrC1 leads to a level 1 model with 58

states. The supervised systé&ﬁitl must fulfill the following requirements:

e cb15 must not move while rtsl is moving and vice versa.
e rts1 must wait at cb7 until a workpiece arrives

e if rts1 moves to rcl or cb9, it must deliver a workpiece

(2)

exit

{cb7-15,cb15-rcl, ch15-9, wpl15- 9}.

The supervisor automaton has 28 states Figure 5.27 psdaberievel 2 automato@

projection péX,ti to the level 2 event sé’[eX,tl =

, after the

All projected control systems involved in the hierarchyxiteare locally nonblocking and marked
string accepting. In addition to that, all low-level supsors are consistent implementations of live
high-level supervisors. Thus, it is guaranteed that theadMexit system is nonblocking according
to Theorem 3.1. The complete hierarchical architecturexiti és shown in Figure 5.28 and the
sizes of the different automata are listed in Table 5.3.

108 QHAPTERS — MANUFACTURING SYSTEM CASE STUDY

Figure 5.27: Roll conveyor rcl on level 1 and exit system exitl on level 2

2 2
G((ex)itl G((ex)itZ
1,2 12
p((BXit}. pt(exit%
1 1 1 1
G((ex)itl Rt(ex)itl Gt(ex)itZ R((ax)itz
| |
il T
1 1 1 1 (1)
Gﬁci G((:b)15 ths)l GEtS)Z G((:t)16 Gic2
0,1 0,1 0,1 0,1
pf;m% pgtsl) pﬁtsz) péblzs
A A A A
0 0 0 0
C:"((:b)15 Gsts)l GE’[S)Z G((:b)16
! T3 T e 'y
0 0 0 0
R&b)15 Rlgts)l REIS)Z R((:b)16

Figure 5.28: Hierarchical architecture for the exit systems exitl and exit2

SECTION 5.4 — CONTROLLER DESIGN FOR THEMANUFACTURING SYSTEM 109

Level O
0 0 0 0 0
GEts)l rtsl RSts)l GE:b>15 D((:b)15 Rgb)15
28 5 32 30 14 14
Level 1

1) (&N (1) (&N (&N
C':'exitl Dexitl Rexitl Grtsl Gcb15 Grcl
30 9 14 5 10
Level 2

@

exitl

5

Table 5.3: State numbers of the automata forming the exit system exitl

5.4.3 exit2

The component exit2 consists of the subsystems rts2, cldd 6can The rail transport system rts2
can move between the roll conveyor rc2 and the conveyor b8land workpieces are either loaded
on or unloaded from the conveyor belt cb16.

rts2: The rail transport system rts2 is only allowed to move frasirést position at the conveyor
belt cb10 to the roll conveyor rc2. The supervisRﬁf"S)2 guarantees the specified behavior. The

abstracted automatoihr(tls)2 on level 1 has 4 states.

cb16: The conveyor belt cbl6, is required to deliver workpiecesnficb10 to rc2. (automaton
Ré%)le;). The projected automatdh&}l6 on level 1 has 4 states.

rc2. The roll conveyor rc2 has the same behavior as rcl.

exit2: Computing the overall exit systeﬁl(;()it2 = thls)zl \Gg))ld]G%%,

40 state$. The supervised systelﬁ()it2 must fulfill the following requirements:

leads to a level 1 model with

e cb16 must not move if rts2 is moving and vice versa.

e rts2 must wait at cb10 until a workpiece arrives

®exitl and exit2 are of symmetric structure. The dif'I‘ereneEw\/ﬂeenGS()itl and GQ}X}Q results from the restriction
that exit2 is not allowed to unload workpieces to ch8.

110 QHAPTERS — MANUFACTURING SYSTEM CASE STUDY

e if rtsl moves to rc2, it must deliver a workpiece

The supervisor automatd%fj()it2 has 30 states. Figure 5.29 presents the level 2 autonﬁﬁﬁ}:@.
As this component works like a sink (accepting workpiecg$las just one state.

All projected control systems involved in the hierarchyxit2are locally nonblocking and marked
string accepting. In addition to that, all low-level supsors are consistent implementations of live
high-level supervisors. Thus, it is guaranteed that theadvexit system is nonblocking according
to Theorem 3.1. The complete hierarchical architecturexa? és shown in Figure 5.28, and the
sizes of the different automata are listed in Table 5.4.

c® ch10-16
exit2 - ~

Figure 5.29: Exit system exit2 on level 2

Level O
(0) (0) (0) (0) (0)
Grtsz rts2 thsz Gcb16 ch16 I:‘)cb16
28 2 12 30 10 10

Level 1
(1) (1) 1) (1)
Grtsz Gcble Gcm Gexit2 Dexit2 Rexit2
4 2 5 40 6 30
Level 2

@

exit2

1

Table 5.4: State numbers of the automata forming the exit system exit2

5.4.4 Production Cell pc2

The production cell pc2 is composed of the conveyor belt ¢thé,machine with drill mh2d2,
the rotary table rt4 with the conveyor belt cb14 ,the convdyalt cb10 and the exit system as
described in Section 5.4.3. The exit system exit2 is treatedart of the production cell pc2, as
it only interacts with this system component. Interactiathvother parts of the manufacturing
system is not specified. The supervisor synthesis for pciingas to the approach in Section
5.4.1.

SECTION 5.4 — CONTROLLER DESIGN FOR THEMANUFACTURING SYSTEM 111

cb6: The conveyor belt cb6 has the same functionality as cb4.

mh2d2: The same supervisor as for the machine mh1d1 is synthesizéief machine mh2d2,
and the projection of the closed-loop behavior to level lke@mesented by the automat@ﬁ}%Zdz

with 2 states analogously @ﬁ%ldl.

cb6mh2d2: For the composed syste@it)amhzdzz Gf:t)6|]GET}%ZO,Z itis specified that the conveyor
belt cb6 is not allowed to move if a workpiece is processedheymhachine and that the machine
is not allowed to move as long as the conveyor belt is transgpworkpieces. In addition to
that, workpieces are only allowed to enter cb6 from the cpowéelt cbl3 (i.e. from -x). The
supervisor automatoR&%thdzimplementing this specification has 7 states and the pioject
pét’gznmdzon the events shared with the neighboring components ylibhjautomatorij))Gmh2dz
with 5 states as shown in Figure 5.30.

rt4cbl4 and cb10: The component@ﬁgcb14 and G((;%)lo are constructed like the components
thzl)cbllande:ﬁ)7 of pcl, respectively. They are depicted in Figure 5.30.

(2)
Gcb6mh2d2

Figure 5.30: Level 2 models of cbémh2d2, rt4cb14 and cb10

exit2: For the exit system, the level 2 modai , in Figure 5.29 has already been elaborated.

Xit

pc2: The level 2 model of the production cell pczcﬁcz_ cb)6mh2dzHGrt4cb14]|Gcb10||GeX|t2
This automaton has 31 states. Applying a specification, dding that there are at most 2 work-

pieces in the production cell yields the supervisor autormafjc)2 with 25 states. The projection

on the shared even%C2 ={cb13- 6, wp13- 6, ch6- 13, wp6- 13} results in the level 3 automaton

G;()i)z with 4 states as presented in Figure 5.31.

112 QHAPTERS — MANUFACTURING SYSTEM CASE STUDY

cb6-13

Figure 5.31: Level 3 model of the production cell pc2

Just as the production cell pcl, also pc2 is representeden®il3d model. Note that all projected
control systems involved in the hierarchy of pc2 are locatipblocking and marked string accept-
ing. In addition to that, all low-level supervisors are dstent implementations of live high-level

supervisors. Thus, it is guaranteed that the overall pmoolucell is nonblocking according to

Theorem 3.1. The complete hierarchical architecture optbeuction cell pc2 is shown in Figure

5.32, and the sizes of the different automata are listed laheTa.5.

Level O
(0) (0) (0) (0) (0) (0) (0) (0) (0)
Gch ch6 b6 Gmh2d2 Dmh2d2 Rmh2d2 Gcb14 ch14 I:{cbl4
18 18 18 20 12 12 18 18 18
(0) (0) (0) (0) (0) (0)
Grt2 Drt2 t2 GcblO chlO Rcblo
10 12 12 18 10 10
Level 1
€Y 1) €Y (1) €Y (1) 1) (1) 1)
Gcb6 C':'mh2d2 Gcb14 Grt2 GcblO Gcb6mh2d2 ch6mh2d2 Rcb6mh2d2 Grt20b14
6 2 6 4 4 12 4 7 16
1) 1
Drt2cb14 Rngtz)cb14
4 8
Level 2 Level 3
(2 2 (2 (2 2 2) 3)
Gcb)6mh2d2 G§t2)cb14 Gcb)lo Gpc)z Déc)z RE)CZ GE)CZ
5 4 4 31 3 25 9

Table 5.5: State numbers of the automata forming the production cell pc2

SECTION 5.4 — CONTROLLER DESIGN FOR THEMANUFACTURING SYSTEM 113

3
Gy
T
23
pécz)
T
2 2
GE)C)Z R;()c)z
il
T
2 (2 2 2)
G((:b)GthdZ Gexit2 G§t20b14 GcblO
12 12
pt(:b6mh2d2 p§t4c%14
1 1 (1) (1)
G((:b)6mh2d2 Rgb)emhzdz Grt4cb14 th4cb14
i i
| e ||
1 1
1 1 1 1 1
ng)s ngi)12d2 Gﬁti Géb)14 Gt(:b)lo
0,1 0,1 0,1 0,1
p((;%é) pgnh2)d2 p£t4) Dﬁmﬁ p((:blg)
A A A A A
(0) 0 0 0
Geps GE\?%ZdZ G§t4) Gt(:b)14 Gt(:b)lo
! ! ! Ty !
0 0 0 0 0
R Rihoo R Rt L

Figure 5.32: Hierarchical architecture for the production cell pc2

114 QHAPTERS — MANUFACTURING SYSTEM CASE STUDY

5.4.5 Interchange System ics

The interchange system consists of the rotary tables rtZ2t&8nalith the conveyor belts cb12 and
cb13, respectively, the conveyor belt cb5 and the convegibch9. It is the most complex compo-
nent of the manufacturing system, as it allows transporadf workpieces from the distribution
system to all other components of the manufacturing systemedl as exchange of workpieces
between the different componerits.

cbl12: The conveyor beltcb12 is allowed to receive workpieces fcbfhor cb5, and it can deliver
workpieces only to cb4. The level 1 automatéi‘}))12 has 5 states.

rt2: The rotary table rt2 has the same functionality as rtl. Itrcaate clockwise (from X to y)
and counterclockwise (from y to x). On level 1, the automa:ﬁﬁjé has 4 states.

r2cb12: Forthe compositio@ﬁtlz)cblzz thlz) | |G£t)12 of the rotary table rt2 with the conveyor belt

cb12, the following specifications are required.

rt2 is only allowed to move if cb2 does not move and vice versa.

ch3- 12 must only happen if the rotary table is oriented in the y dicec

ch5- 12 andcb12- 4 must only occur if the rotary table points in the x direction.

workpieces are accepted from cb3 and cb5 and are delivecd®tito

After synthesizing a supervisor for this specification amdjgrting to level 2, the automaton

GEt22)0b12 has 6 states. Itis shown in Figure 5.33.

cb5: The conveyor belt cb5 gets workpieces from cb13 and delivens to cb12. (se@f:i)s in

Figure 5.33).

’Note that the conveyor belt cb8 is not used in this example astineeded for the specified operation.

SECTION 5.4 — CONTROLLER DESIGN FOR THEMANUFACTURING SYSTEM 115

(2
Grt20b12

Figure 5.33: Level 2 automat£§30b12 anngb5 of rt2ch12 and cb5

2)

cb13: The conveyor belt cb13 can receive workpieces from cb2, chth® and deliver work-
pieces to cb6 or cb5. The level 1 modélt)mhas 7 states.

rt3: The rotary table rt3 behaves analogously to rt2.

rt3cb13: The automatorﬁsgtlg)cblgz thlg)cblg \Gggcbwyields 32 states. The specifications for this
component are

e rt3 can only move if cb13 does not move.

workpieces can be received from cb9 and or cb? if the rotdoletis in the y position.

workpieces can be delivered to cb5 or cb6 or received fronoohgif rt3 is in the x position.

workpieces which arrive from cb6 have to be transported ¥ cb

workpieces coming from cb2 or cbh9 must be delivered to cb6.

The level 2 automaton after implementing this specificaithdaﬁgcblgwith 9 states.

cb9: The conveyor belt ch9 receives workpieces from cb15 andefslthem to cb13.

Figure 5.34 shows the automﬁé?cbmanngﬁ)g.

116 QHAPTERS — MANUFACTURING SYSTEM CASE STUDY

Figure 5.34: Level 2 automata of rt3cb13 and cb9

is: The overall interchange syst CZS)

sired that

2 2 2) 11 ~(2 .
= Glon1d|Crizcn1d|Gisl|Gine has 93 states. Itis de-

e workpieces which come from cb2 go to cbh6, come back to chl3aamdelivered to cbb.

e workpieces which come from cb9 go to cb6 and do not come back.

Applying the specification and projecting to level 3, thecaatonG.>) has 50 states.

As all decentralized projected control systems in the hi¢naof the interchange system are locally
nonblocking, marked string accepting and marked stringrotiable, it is possible to us@ffs) as

ICS

a decentralized component of the overall manufacturintegys

Level O
0 0 0 0 (0 0 0 0 0
Gaiz | Dipio | Ripto | Gig | Dip | R | Goms | Dims | Ripis
34 14 14 10 12 12 34 23 23
(0) (0) (0) (0) (0) (0) (0) (0) (0)
Gz D3 Riz || Geos | Deps | Rens || Gebe | Dens | Reng
10 12 12 18 10 10 26 10 10
Level 1
(1) (1) (1) (1) (1) (1) (1) (1) (1)
Gcb12 Grt2 C:"cbli-?, Grt3 Gcb5 C:"cb9 Grt2cb12 Drt2cb12 thZcblZ
5 4 7 4 4 4 20 5 9
1) (1) (1)
Grt3cbl3 Drt3cb13 thScblS
32 5 12
Level 2 Level 3
@) @)) CRECRINE)
Grt2cbl2 Grt3cb13 Gics Dics Rics Gics
6 9 93 5 81 50

Table 5.6: State numbers of the automata of the interchange system ics

SECTION 5.4 — CONTROLLER DESIGN FOR THEMANUFACTURING SYSTEM

117

3
Gioo
T
23
P
T
2 5
Gien R
|
T
2 2 2 2
Glos Glico12 Grach1s Gz
12 12
pthczalz pgtaczus
1 1 1
Glgerole 1R Deo12| | | [Giaobts e 1R Bepns
1 t
| [| |
' 1
1 1 1 1 1 1
Glys Gy Glpr Gipns G Gipo
0.1 01 0.1 0.1 0.1 0.1
p((;bS) pEtZ) pf:bl% pfm% p£t3) p((;bg)
A A A A A A
0 0 0 0
GE;b)s GS‘[Z) G((:b)lz G((:b)13 thogf G((;(t)))g
'l) T v ' . ! ty
0 (0) (0) 0 (0) 0
R<(:b)5 R Rep12 R<(:b)13 R R<(:b)9

Figure 5.35: Hierarchical architecture for the interchange system is

118 QHAPTERS — MANUFACTURING SYSTEM CASE STUDY

5.4.6 Overall Manufacturing System

After synthesizing supervisors for all decentralized comgnts of the manufacturing system ms,
supervisory control is applied to the overall system on ll&e The resulting automaton
Gint = GGl |G |G| |Gy has 863 states. The following functionality is specified for

the global plant:

e workpieces coming from cb3 have to go to cb9 via the rail fparnissystem rts1.

e workpieces coming from cb5 have to go to the roll conveyor rcl

The specification determines the order in which workpie@&ho be distributed by exitl after
their arrival from different directions at rt2cb12. The @uiaton realization of the specification
Dﬁﬁé has 7 states and is depicted in Figure 5.36.

rtsl 7-rcl ch5-12
| |
‘ 6

i
rtsl 7-rcl

rtsl 7-9
ch5-12

W
A

Figure 5.36: Level 3 specification automat@n(ﬁ'g for the manufacturing system

The supremal controllable sublanguaqe(D(s)) (Lm(Gﬁ?%)) is recognized by the canonical recog-

nizerRL) with 4700 states.

oL [| A
863 | 7 |4700

Table 5.7: State numbers for the manufacturing system on level 3

The supervisoR,(% handles the coordination of tasks for the overall systeroh s1$ the cooper-

ation of the decentralized system components. The ovdaalt s a composition of nonblocking
components, which were derived by successive applicatidheohierarchical and decentralized
control method presented in Chapter 4.

Globally, the closed-loop functionality of the manufaabgrsystem is as follows.

SECTION 5.5 — SUMMARY 119

e the distribution system provides workpieces via the coavéelts cb2 and cb3. There are
always 2 workpieces coming from cb3 before one workpiecelisered by cb2.

e workpieces arriving from cb2 are processed by the machir&@sent to machine mh1dl
via cb5 and then unloaded on the roll conveyor rcl.

e workpieces coming from cb3 are first processed by machinedihhthen transported to
mh2d2 via rts1 and cb9 and finally unloaded on the roll convey® via rt2s.

The path of the two different types of workpieces is illustchin Figure 5.37.

Figure 5.37: Flow of workpieces specified for the manufacturing system

Note that the paths cross at the rotary tables rt2 and rt3 gdtential interaction of workpieces
is the reason why blocking is possible in the manufacturysgesn. Yet, because of Theorem 4.2,
the hierarchical and decentralized supervisor synthessagtees that situations where blocking
can occur are avoided.

5.5 Summary

For the manufacturing system, supervisor synthesis onéldénas been carried out. The system
is composed of 28 components on the low level, and an estihmataolithic low-level model

120 QHAPTERS — MANUFACTURING SYSTEM CASE STUDY

reaches 1¢ states, while the state count of the decentralized modeleveh 0 adds up to 517.
A monolithic supervisor for the manufacturing system woliéve an estimated number of3£0
states. Both computation and implementation of the supenw&re infeasible for this scale.

Synthesis in the hierarchical and decentralized framewesklts in 39 decentralized supervisors
on 3 levels. Altogether, they can be implemented in parallét a total number of 5388 states.
Correct operation of the manufacturing system could be ohétexd after generating PLC-code
from the hierarchical and decentralized supervisors (J&jy

Chapter 6

Conclusions

The supervisory control of large scale composed discretatesytems (DES) involves computa-

tions on states spaces which grow exponentially with thebrarmof system components. In this

dissertation, a method for exploiting the decentralizedgicstire of composed systems in combina-
tion with a hierarchical abstraction is presented.

The mathematical concept fafrmal languageswhich is used for describing the dynamical behav-
ior of discrete event systems, is outlined in Chapter 2. F@stke of clarity, the basic ideas of the
Ramadge/Wonham (RW) supervisoy control theory are elalmbmate pure language framework.
The link to the equivalent automata formulation is also ld#thed.

In Chapter 3, our centralized hierarchical approach is dgesl. It involves abstracting a dis-
crete event system to a smaller high-level model, perfograupervisory control for the high-level
system, and computing a low-level implementation of thénHayel supervisor. Thhierarchical
closed loop systermaptures this hierarchical architecture. Trregural projectionis used for the
system abstraction, and high-level supervisors are @#atito the low level via theonsistent
implementation On all levels of the hierarchy, the RW framework is emplay€xr hierarchi-
cal approach can be applied if the systenosally nonblockingandmarked string acceptinglf
these structural conditions are fulfilled, then eitheenessof the high-level closed loop behavior
or marked string controllabilityof the low-level system guarantégerarchically consistenand
nonblockingcontrol.

The chapter also provides algorithms for the verificatiorthef structural conditions. They are
based on an automata representation of the low-level désevent system. It is important to note,
that the overall low-level model of the system has to be a®rsid for computing the high-level
model.

Addressing this issue, Chapter 4 extends our monolithicalstical approach tdecentralized
discrete event systemSach of the subsystems is considered as a hierarchicaldclosp system,

122 CHAPTER6 — CONCLUSIONS

and the hierarchical abstraction captures the shared lmela\the subsystems. Analogously to
the consistent implementation for the centralized caskecantralized consistent implementation
realizes the control action on the low level. If the same ook as in Chapter 3 are fulfilled for
all subsystems, then hierarchically consistent and nahkbig control is guaranteed. The crucial
advantage of the decentralized approach is that the olanalevel system need not be computed.
It is possible to first abstract the low-level subsystems thieth compose the high-level model,
which reduces the computational effort tremendously. lditaah to that, decentralized low-level
supervisors for the different subsystems are implememtstgad of one low level supervisor for
the overall system, and they are coordinated by the higél-Bypervisor.

The computational benefit of our method is illustrated by rgdascale example in Chapter 5.
The manufacturing system used in the example comprises@faents, and it has an estimated
number of 18 states. We synthesize 39 decentralized supervisors by osinhierarchical and
decentralized method with 4 levels of abstraction and cbnithey can be implemented individ-
ually with an average number of 140 states. In comparisorg faonolithic implementation, we
would expect a supervisor of order®fGtates.

There are two alternative supervisory control approacheshwcan handle large scale discrete
event systems. The method presented in [Led02] is basedctiard server architecture It is
applied to the "Atelier Inter-établissement de ProductiqéP) example of order 18 states. In
[Ma04], a top-down view on large discrete event systems igleyed. A supervisor for a version
of the AIP example with 1% states could be computed ([MWO3]) by usisigte tree structures
for structured system modeling. Our laboratory case st@hapter 5) is of a similar scale, and
our results compare well with [Led02, Ma04].

Appendix A

Proofs

The appendix provides proofs of several lemmas and theotieahsvere omitted in the previous
chapters.

A.1 Projection of a Regular Language

Lemma 2.3 (Projection of a Regular Language)
LetL C >* be aregular language and |&f: >* — % with X9 C % be the natural projection. Then
po(L) is regular.

Proof: (Outline) Section 3.4.1 provides an algorithm which computes a detestic finite
automaton recognizing the projection of a regular languagleus, the projection of a regular
language is also regular. O

A.2 Computation of the Projection

A.2.1 Space Complexity

Theorem 3.3 (Space complexity of the natural projection)

Let (H, p™,H") be a marked string accepting and locally nonblocking ptefsystem with the
automata representati@®, G"). Then,G" has an equal or smaller number of stateGase.
XM < IX]A

The result is derived from a theorem in [Won97]. The folloberms are used in this theorem.

INote that bothG andG™ are canonical recognizers.

124 APPENDIXA. PROOFS

Definition A.1 (Causal Reporter Map [ZW90])
LetL C >* and letz" be another event alphabet. A mapL — (=M")* is a causal reporter map, if

B(e) = e,
either@(s)
~ | ore(s)a™, for somec™ e 3N

Definition A.2 (K-Observer)
Let8:X* — (=")* be a causal reporter map, and leK be languages witk C L C Z*. s a
K-observer forl, iff it holds that for arbitrarys € L andt € (Z")*

B(s)t € 6(K) = Ju e 2" s.t. sue K andB(su) = B(s)t. (A1)
0

In the next lemma, we show that the projection to the higlellevent set constitutes an observer
for marked string accepting and locally nonblocking prtgelccontrol systems.

LemmaA.l
LetP = (H, p",H") be a marked string accepting and locally nonblocking ptefkcontrol sys-
tem with a nonblocking control systerh. Thenp™ is aLy-observer foll;. O

Proof: First note thatp™ is a causal reporter map and thatC L;. Equation A.1 has to be
verified. Assume thatc Ly, " := p(s) andt € (Z")* s.t. it € L' = pM(Ly). t is represented
ast = 0g01---Om With 0g = € ando;j € =" for i = 1,...,m. It can be shown that there is a
U = UpOoUy - - - UmOm € Z* with u; € (£ —3M i =1,...,ms.t. su € Ly, by induction. The base
case is true aswog = s € L. Now assume thadwooguy - --ujoj € L1 for i < m. As P is locally
nonblocking, there existsua 1 € (Z— Zh‘)* S.t.SWOg- - - OjUj+10j+1 € L1 (Definition 3.9). As this
is true for alli < m, it holds that there is & = UpOoUy - - - UmOm € Z* S.t.sU € Ly, pM(su) = pM(s)t,
and because of the constructionugfsu € Lgp it -

Now it has to be shown that there is a local strifige (X — =")* s.t. sUu” € L,. There are two
cases. First consider the case, whEEs") = 0. As H is nonblocking, there must be suaf.
Secondly, leE"(s") - 0 and choose < Z"(s"). Then, there is @ & (Z — Z")* s.t. suiio € Ly,
becausé is locally nonblocking. Considering th&tis also marked string accepting, there exists
au’ <{s.t. sUu” € Lp. Hence, in all cases there is a string- WU’ s.t. sue L, and p"(su) =

p(s)p"(u) = p"(s)t. 0

SECTIONA.2 — COMPUTATION OF THEPROJECTION 125

The result from [Won97] is recalled.

Lemma A.2 ([Won97])

Let G be a minimal, trim, finite generator wittE as its event alphabet. L& C ¥ and p" be
the corresponding natural projection. Suppose tais anLy,(G)-observer fol.(G). Then the
number of states of the canonical recognizep®fLm(G)) is less or equal to the number of states
of G. O

We now prove Theorem 3.3 by relating Lemmas A.1 and A.2.

Proof: An automata representati@of the control systen in Lemma A.1 is finite and trim
because of Lemma 2.9. Asn(G) = L andL(G) = Ly, it holds thatp" is anLy(G)-observer of
L(G), and thus Lemma A.2 can be applied. O

A.2.2 Time Complexity

Theorem 3.4 (Time complexity of the natural projection)

Let (H, p™,HM) be a marked string accepting and locally nonblocking ptesystem with the
automata representati¢@, G"). The time complexity of computing" is at worst polynomial in
the state size o and the number of high-level evergS'.

The corresponding result from [Won97] is given in the foliog/lemma.

Lemma A.3 ([Won97])

Let G be a trim, finite generator with as its event alphabet. LEF' C ¥ andp" be the correspond-
ing natural projection. Suppose that is anLy,(G)-observer folL(G). Then the time complexity
of computing a generator fcphi(Lm(G)) is at worst polynomial (in terms of the size Gfand the
size of=M). O

We relate Lemmas A.1 and A.3 for showing Theorem 3.4.

Proof: An automata representati@hof the control systen in Lemma A.1 is finite and trim
because of Lemma 2.9. As,(G) = L, andL(G) = Ly, it holds thatp™ is anLm(G)-observer of
L(G), and thus Lemma A.3 can be applied. O

2A generatolG is trim if Ly (G) = L(G).

126 APPENDIXA. PROOFS

A.3 Computation of the High-Level Plant

Proposition 4.1 (High Level Plant [SRM04, SMP05])
Let (|",Hi, p", ||"_,H") be a projected decentralized control system. Then the kigH tontrol
system isH" = p"([[1;Hi) = [|fL, p{(H).

Lemma A.4 is used for proving Proposition 4.1.

Lemma A.4
LetL; C Z3,...,Ln € Z} be languages over the alphabkis. .., >,. Assume thako C (ZqU---U
n
2y and |J (ZiNZj) C Zo with the natural projectionpg : (Z1U---UZn)* — X andp] : Zf —
L]
(ZiNZXZp)* i=1,...,n. Then

Po(Lall -+ [[Ln) = pa(La)[] -+ |[PH(Ln)-

We use a result from [Won04, dQO0Q] for proving Lemma A.4.

LemmaA.5

Let 25 andy, be alphabets and lét, C 37 andLy C . AssumeZg C S3UZ, andZaNZy € 3o
with the natural projectionpg : (ZaUZp)* — X, Pa: Z5 — (ZoNZa)* andpy @) — (ZoNZp)*.
Thenpo(Lal|lLb) = pa(La)l[Py(Lb)- O

Proof: Several natural projections on different alphabets arelesén this proof. For conve-
nience they are listed below.

Po: (ZaUZp)* — 25

pL: 2 — (ZanZo)* P, 2y — (ZpNZo)*
Pa: (ZaUZp)" — 23 Pp: (ZaUZp)" — 2}
Po.a: ZB — (Zaﬂ Zo)* Pob : ZB — (ZbﬂZO)*

First, po(Lal|Lb) € pa(La)||py(Lb) is shown. Assumé € po(La||Lp). Then there exists ac
La/|Lb, S-t. po(S) =t and alsopa(s) € La and py(s) € Lp. Consequentlyp,(pa(s)) € pa(La) and
Pb(Pu(S)) € Po(Lp). Observing thatpoa(t) = Poa(Po(S)) = Pa(Pa(s)) € Pa(la) and pop(t) =
Pos(Po(s) = Ph(Po(S)) € Ph(Lo), it holds thatt € (poa) *(Pa(Pa(s)) N (Pon)*(Ph(Po(S)))
C (poa) *(PalLa)) N (Pob)~(Ph(Lb)) = Pa(La)l|Ph(Lb)-

Now, pa(La)||p,(Lb) € po(Lal|Lb) is proven. Let € py(La)||py(Lb). Thenpoa(t) € ps(La) and
Pob(t) € py(Lp). Thus, there existss € Laand as, € Ly S.t. pi(Sa) = Po.a(t) andp,(Ss) = Pop(t).
Using the fact thak,N Xy C 2, there is also a string € Ly||Lp S.t. pa(S) = Sa and pp(S) = .

It holds thats € (pa) (PR 2 (Poal)))|l(P) 1 ((Ph) ~*(pob(t))). Hence,po(s) =t and with
s€ Ly/|Lp it follows thatt € po(Lal|Lp). O

SECTIONA.4 — FEASIBLE PROJECTEDDECENTRALIZED CONTROL SYSTEMS 127

Now Lemma A.4 is shown by induction.

Proof: Note that the same notation as in the proof of Lemma A.5 is tmetthe natural projec-
tions. In addition to that, the following notation is intnaced.

K
S o=U S k=1,...,n
Yok =20NZ, k=1,....n pok:(Z)" — Xy

It has to be shown thaip >(L1||L2) = pj(L1)||p5(L2) for the base case. Observing tBatn >, C
202, Lemma A.5 provides the desired result oy = >, andZ, = %,. For the induction step,
assume thapo,—1(La||---[|Li—1) = py(L1)[|-- p_1(Li-1). We show that als@o, (La|--- |[Li—1]]
L) = py(Lo)l|---p_;(Li—1)||p{(Li). GroupingLy,...,L;, we defineXq:=3 |, Zp =3, La:=
L1||---Li—1 andLp := L. Also note tha&| ,NZ C 2. Using this terminology, Lemma A.5 can
directly be applied. It holds thatto; ((La/|---[|Li—1)||L1) = poj-1(L1]|---||Li-1)||pi(Li) and with
the induction assumptiopg, (La||---[[Li—1|[Li) = Py(La)[[- P4 (Li—1)|[pf(Li). As 2<1 <n
was arbitrary, Lemma A.4 follows. O

The projected decentralized control system is defined $attitie high-level alphabet is a superset
of the shared events of the decentralized subsystems. @ixpéhis, it is clear that for the lan-
guaged. 1 andL; » of the decentralized subsystems, Lemma A.4 can be applied.cbncludes
the proof of Proposition 4.1.

Proof: Proposition 4.1 follows directly by applying Lemma A.4ltgy, ..., Ln1 andLyo, ...,
Ln72. |:|

A.4 Feasible Projected Decentralized Control Systems

Lemma4.1 _
Let Hi, H, HM andH™ i = 1,... . n be defined as in Definition 4.3. Then

hi hi,f f
L H" = [l H; " and Il qHi = [JlLH

We will use the following lemma in the proof of Lemma 4.1. latgs that the synchronous com-
position of projections of a language includes the origiaaguage.

Lemma A.6
LetL € Z* be a language and define the natural projectpn&* — Z,i=1,...,n, whereZ; C %
and|Ji; Zi = Z. Then it holds that

L CliLapi(L).

128 APPENDIXA. PROOFS

Proof: Letse L. Thense pi(s)||---||pn(S) = p1(S)||(Z—Z1)* N--- N pa(9)||(Z — Zn)* C
Ly pi(L). O

With this result, Lemma 4.1 can be shown.

Proof: Atfirst, || HM C || HM™ e |n L C | lL,h'lf and||"_, LI, C |0 1Lihi2’f is proven.
The result follows, oberving thaf! L,h'1 =L C ||I PRy =0 lL,h'lf because of Lemma A.6.

The same argument holds for the Iangudd@ézs

For the reverse direction, it can be written that

L = I, Py Ly
i 1p, (||k=1|-||2.,|1)

C Iy (P ('—251_)||"'||Pihi(|—231)) o

= (I (LI (s (P (LRL)))

= L[[l

= Il
Thus||"_,H™" C | HM and||"_HM C [|n_ H™" and hence|™ ,HMN = [|n_ H™",
Now ||, Li 1 = ||_4L{ ; shall be proven. Considering Definition 413, C L;; foralli = 1,.
Thus||" Lf1C||| 1Li 1. For showing the reverse direction, asswswg| ;Lj 1. Thenp” ()eLh'

and thuspl (pM(s))eL,h'lf foralli=1,....n. Aspi(s) € Li1 andpfe(pi(s)) = pl(p"(s)) € L]},

it holds thatp;(s) e LI 1. Itis readily observed that the same argument holds forahguages
[I"3Li2 and|[!_;L! 5. Hence, [y Hi = |74 H]. |

A.5 Mutual Controllability

Lemma 4.2

Let (||"_,Hf, p" || H™") be a feasible projected decentralized control system ar@'ide a
high-level superwsor for the overall high-level systéifi’. If the high-level subsysterrish'f
i=1,...,nare mutually controllable, i.&zi,j=1,....n,i # |

LTllf(zl ucN Zjuc) N (Pj,i)~ (p. j(L hlf)) C thf

thenphi(L1") is controllable w.r.tL foralli = 1,...,n

We establish the following useful properties of mutuallytollable languages.

SECTIONA.5 — MUTUAL CONTROLLABILITY 129

LemmaA.7
LetLy,Lo,...,Ln be mutually controllable for,j = 1,....n, 1 # j. Lets €L s.t. 50 € L; with
oc U?:Lj#i(zi,ucm Ziuc). Thenvs; € L s.t. pji(sj) = pi,j(s), it holds thatsjo € L. O

Proof: Letjs.t.o € £;. Because of mutual controllabilitijo N (pj,)~(pi,j(Li)) C L. With
Pi.i(Sj) = pi,j(s), alsopji(sj)a = pi(s0) = pij(s)0. Then, itholds thasja € (pji)~*(pi,j(s0))
C (pjji)_l(piJ(Li)) asso € Lj. Thussjo € L. 0

Lemma A.8

LetLy,Lo,...,Ln be mutually controllable for,j =1,...,n, i # j and letL := || ;L;. Assume

s €Ljando e UTzl,j;éi(ZLUCm juc) St.SO € L. Thenvse L s.t. pi(s) =s, it holds thatso € L.
O

Proof: Because of Lemma A.%;j s.t. 0 € % itis true thatpj(s)o € L;. For all j with o ¢ Zj,
pj(s)o € Lj|[(Z—Zj)*. Thusse L = ||f_;Lk = (L1]|[(E=Z1)*) NN (Ln][(Z— Zn)*). O

We prove Lemma 4.2, using the properties stated in LemmaidZamma A.8.

Proof: It has to be shown that the languagl®(L"") is controllable w.r. tLh'f

Assuming the contrary, it has to be the case fleat e andﬁ“ S L,h'lf Nl (L), s.t. g e LM

andso ¢ pl(L"%). Because of Lemma A.&s" e LY with pli(#" it holds thats"o e Lh'
andvs" e LhIC s.t. phi(sh) = g, it holds thatsio ¢ L"°. But thenL 'Ccm Lhi ¢ LM, which
contradicts the assumption thagf is controllable w.r.tLY}l. Thuspf ("¢ is controllable w.r.t.

hi,f
L O

Appendix B

Table of Events

The following table shows the list of events which are neefdednodeling the manufacturing
system in Chapter 5.

sfnv belt of stack feeder moves sfstp belt of stack feeder stops

sfwpar workpiece arrives at stack feeder| sfwpl v workpiece leaves the stack feeder
sfr stack feeder at rest position sfnr stack feeder not at rest position
sf-chl workpiece from stack feeder to ch1t elapse of time

chl-x cb1 moves in -x-direction pu2wpar | workpiece arrives at pu2

pu2wpl v | workpiece leaves pu2 sf-2 transport workpiece to pu2
pu2ar-y | pu2 arrives at -y-direction pu2l v-y | pu2 leaves -y-direction

puar+y | pu2 arrives at +y-direction pu2l v+y | pu2 leaves +y-direction

pu2mv+y | pu2 moves in +y-direction pu2m/-y | pu2 moves in -y-direction

pu2st p pu2 stops chlawpar | workpiece on chl arrives at pu2
cblawpl v | workpiece on cbl leaves pu2 sf-3 transport workpiece to pul

sf-dep workpiece from cbl to depot cblstp cbl stops

pu2r dy operation of pu2 is ready cblbwpar | workpiece on cbl arrives at pul
cbl-3 workpiece from cbl to pul pulrdy operation of pul is ready

ch2-y cb2 moves in -y-direction ch2stp cb2 stops

ch2wpar workpiece arrives at cb2 ch2wpl v | workpiece leaves ch2

ch2-13 workpiece from cb2 to cb13 wp2- 13 workpiece arrives at cb13 from cb?2
ch3-12 workpiece from cb3 to cb12 wp3- 12 workpiece arrives at cb12 from ch3
chl2-4 workpiece from cbl12 to cb4 wpl2- 4 workpiece arrives at cb4 from cbl12
chll-4 workpiece from cbl11l to cb4 wpll-4 workpiece arrives at cb4 from cblj1
ch4-12 workpiece from cb4 to ch12 wp4- 12 workpiece arrives at cb12 from ch4
ch4-11 workpiece from cb4 to cb11 wp4- 11 workpiece arrives at cb11 from ch4
mhlstart | machine mhl starts operation mhlend machine mh1l terminates operatign

131

rt1xy rtl from x- to y-position rtly rtl at y-position

rtlyx rtl from y- to x-position rtlx rtl at x-position

ch7-11 workpiece from cb7 to cb11 wp7-11 workpiece arrives at cb11 from cb7
cbl1-7 workpiece from cb11 to cb7 wpll-7 workpiece arrives at cb7 from cb11
ch7-15 workpiece from cb7 to cb15 wp7- 15 workpiece arrives at cb15 from cb7
chl5-rcl workpiece from cb15 to rcl wpl5-rcl | workpiece arrives at rcl from cb15
cb15-9 workpiece from cb15 to ch9 wpl5-9 workpiece arrives at cb9 from cb15
rciwpl v workpiece leaves rcl rtsl_7-8 | workpiece from cb7 to cb9 via rts1
rtsl 7-rcl | workpiece from cb7 to rcl viartslcb10-16 | workpiece from cb10 to cb16
ch13-6 workpiece from cb13 to cb6 wpl3-6 workpiece arrives at cb6 from cb13
ch6- 13 workpiece from cb6 to ch13 wp6- 13 workpiece arrives at cb13 from cb@
ché- 14 workpiece from cb6 to cb14 wp6- 14 workpiece arrives at cb14 from cb@
ch14-10 workpiece from cb14 to cb10 wpl4-10 | workpiece arrives at cb10 from cb14
rt2xy rt2 from x- to y-position wpl0- 16 | workpiece arrives at cb16 from cb10
cbl13-5 workpiece from cb13 to cb5 wpl3-5 workpiece arrives at cb5 from cb13
cbh5-12 workpiece from cb5 to cbh12 wp5- 12 workpiece arrives at cb12 from cb§
ch9-13 workpiece from cbh9 to cb13 wp9- 13 workpiece arrives at cb13 from cb9

rt3xy

rt3 from x- to y-position

132 APPENDIXB. TABLE OF EVENTS

References

[Bar99] G. BARRETT. Modeling, Analysis and Control of Centralized and Deceized
Logical Discrete Event SystemBhD thesis, The University of Michigah999.

[BGKT90] R.D. BRANDT, V. GARG, R. KUMAR, F. LIN, S.I. MARCUS, AND W.M. WON-
HAM. Formulas for Calculating Supremal Controllable and Normabl&guages.
System and Control Letter$5:111-117, 1990.

[BH93] Y. BRAVE AND M. HEYMANN. Control of Discrete Event Systems Modeled as Hi-
erarchical State MachinesEEE Transactions on Automatic Contr@8(12):1803—
1819, 1993.

[CDFV88] R. QEsLAK, C. DEscLAUX, A. FAWAZ, AND P. VARAIYA . Supervisory Control of
Discrete Event Processes with Partial ObservatiBfctE Transactions on Automatic

Control, 33(3):249-260, 1988.

[CL99] C.G CASSANDRAS AND S. LAFORTUNE. Introduction to Discrete Event Systems.
Kluwer, 1999.

[CTdCO1a] J.E.R. ORY, C.R.C. ToRRICO, AND A.E.C. DA CUNHA. A New Approach for
Supervisory Control of Discrete Event Systerasropean Control Conferenc2001.

[CTdCO1b] J.E.R. ORY, C.R.C. TORRICO, AND A.E.C. DA CUNHA. Supervisory Control of
Discrete Event Systems with Flexible Markirguropean Control Conferenc2001.

[dCC02] A.E.C.pA CuNHA AND J.E.R. QRY. Hierarchically Consistent Controlled Dis-
crete Event System$FAC World Congress2002.

[dCCKO02] A.E.C.pA CUNHA, J.E.R. ARY, AND B.H. KROGH. An Assume Guarantee Rea-
soning for Hierarchical Coordination of Discrete Event &ys$. Workshop on Dis-
crete Event System2002.

[dQO0] M.H. DE QUERIOZz. Controle Supervisério Modular de Sistemas de Grande Porte.
Master thesis, Universidade Federal de Santa Catarité0.

134

REFERENCES

[dQCO0]

[Ers02]

[Fig05]

[GMO4]

[GMO05a]

[GMO5b]

[Goh9sg]

[Goh03]

[HCO02]

[Hop71]

[HU79]

[JCKO1]

[JKO2]

M.H. DE QUERIOZ AND J.E.R. @RY. Modular Control of Composed Systems.
American Control Conferen¢2000.

G. Rsoy. Anwendung und Erweiterung dezentraler Konzepte in deefugory
Control Theory fur ereignisdiskrete Systenigiplomarbeit, Lehrstuhl fiir Regelung-
stechnik, Universitat Erlangen-Ntrnberg002.

S. AGGEN. Design, Implementation and Validation of Supervisory Coinfor an
Automated Manufacturing SystenDiplomarbeit, Lehrstuhl fiir Regelungstechnik,
Universitat Erlangen-Nurnberd005.

B. GAUDIN AND H. MARCHAND. Modular Supervisory Control of a Class of Con-
current Discrete Event Systemalorkshop on Discrete Event Syste@&04.

B. GAUDIN AND H. MARCHAND. Efficient Computation of Supervisors for
loosely synchronous Discrete Event Systems: A State-Bapgdoach.IFAC World
Congress2005.

B. GAUDIN AND H. MARCHAND. Safety Control of Hierarchical Synchronous Dis-
crete Event Systems: A State-Based Approdddditteranean Conference on Control
and Automation2005.

P. @HARI. A Linguistic Framework for Controlled Hierarchical DESlaster The-
sis, Department of Electrical and Computer EngineeringMdrsity of Torontp1998.

P. @HARI. Fair Supervisory Control of Discrete Event Syster®hD thesis, De-
partment of Electrical and Computer Engineering, Universit Torontg 2003.

P. HUBBARD AND P.E. GAINES. Dynamical Consistency in Hierarchical Supervisory
Control. IEEE Transactions on Automatic Contrdi7(1):37-52, 2002.

J. HOopcROFT An nlogn-Algorithm for Minimizing the States in a Finite Automaton.
In Z. Kohavi, editor, The theory of machines and computatidicademic Prespages
189-196, 1971.

J.E. HOPCROFT ANDJ.D. ULLMAN . Introduction to Automata Theory, Languages
and ComputationAddison-Wesley, Reading979.

S. JANG, V. CHANDRA, AND R. KUMAR. Decentralized Control of Discrete Event
Systems with Multiple Local Specializationamerican Control Conferen¢@001.

S. JANG AND R. KUMAR. Decentralized Control of Discrete-Event Systems with
Specializations to Local Control and Concurrent SystetSEE Transactions on
Systems, Man and Cyberneti@9(5):653-660, 2002.

135

[KS97]

[KvS03]

[KvS04]

[Led02]

[LLWO1]

[LW9O]

[LW97]

[LWO2]

[LWLO1]

[Magg]

[Ma04]

[MGO02]

R. KUMAR AND M.A. SHAYMAN . Centralized and Decentralized Supervisory Con-
trol of Nondeterministic Systems under Partial Observat8iAM Journal on Control
and Optimization35(2):363-383, 1997.

J. KOMENDA AND J. H. VAN SCHUPPEN Decentralized Control with Coalgebra.
European Control Conferenc003.

J. KOMENDA AND J. H.VAN ScHUPPEN Supremal Normal Sublanguages of Large
Distributed Discrete-Event Systemalorkshop on Discrete Event Syste2304.

R.J. LEDUC. Hierarchical Interface Based Supervisory ContRitD thesis, Depart-
ment of Electrical and Computer Engineering, University afohta 2002.

R.J. LEDUC, M. LAWFORD, AND W.M. WONHAM. Hierarchical Interface-based
Supervisory Control: AIP Exampldllerton Conference on Communication, Control
and Computationpages 396-305, 2001.

F. LIN AND W.M. WONHAM. Decentralized Control and Coordination of Discrete-
Event Systems with Partial ObservatiolEEE Transactions on Automatic Contyol
35(12):1330-1337, 1990.

S-H. LEE AND K.C. WoONG. Decentralised Control of Concurrent Discrete-Event
Systems with Non-prefix Closed Local SpecificatiofSEE Conference on Decision
and Contro| pages 2958-2963, December 1997.

S-H. LEE AND K.C. WoONG. Structural Decentralised Control of Concurrent DES.
European Journal of ContrpB5:1125-1134, October 2002.

R.J. LEDUC, W.M. WONHAM, AND M. LAWFORD. Hierarchical Interface-based
Supervisory Control: Parallel Casgllerton Conference on Communication, Control
and Computationpages 386-395, 2001.

C. MA. A Computational Approach to Top-down Hierarchical Supsww Control
of Discrete Event SystemdMaster thesis, Department of Electrical and Computer
Engineering, University of Torontd 999.

C. MA. Nonblocking Supervisory Control of State Tree Structurs.D. Disser-
tation, Department of Electrical and Computer Engineeribgiversity of Torontp
2004.

H. MARCHAND AND B. GAUDIN. Supervisory Control Problems of Hierarchical
Finite State MachinesEEE Conference on Decision and Contrpages 1199-1204,
2002.

136

REFERENCES

[MRDO3]

[MSO05]

[MWO03]

[Ner58]

[Per04]

[Pu00]

[QCO0]

[RK91]

[RLO2]

[Rut99]

[Rw87a]

[RW87b]

[RW89]

T. MOOR, J. RaiscH, AND J.M. DAVOREN. Admissibility Criteria for a Hierarchical
Design of Hybrid Control Systems. [@onference on Analysis and Design of Hybrid
Systemgspages 389-394, 2003.

T. MOOR AND K. SCcHMIDT. Hierarchical Control from a Behavioral Perspective. In
International Conference on Methods and Models in Automeadiod Robotics2005.

C. MA AND W.M. WONHAM. Control of State Tree StructuredMediterranean
Conference on Control and Automatjd003.

A. NERODE Linear Automaton TransformationsProceedings AMS9:541-544,
1958.

S. ERK. Hierarchical Design of Discrete Event Controllers: An Amtted Manu-
facturing System Case Studpiplomarbeit, Lehrstuhl fir Regelungstechnik, Univer-
sitat Erlangen-Nurnberg2004.

K.Q. Ru. Modeling and Control of Discrete Event Systems with Hienaral Ab-
straction.Master Thesis, Department of Electrical and Computer Enrgyimg, Uni-
versity of Torontp2000.

M.H.DE QUERIOZ AND J.E.R. RY. Modular Supervisory Control of Large Scale
Discrete Event System¥Vorkshop on Discrete Event Syste2300.

S.I. MARCUS R. KUMAR, V. GARG. On Controllability and Normality of Discrete
Event Dynamical System&ystem and Control Letters7:157-168, 1991.

K. ROHLOFF AND S. LAFORTUNE. On the Computational Complexity of the Verifi-
cation of Modular Discrete-Event System&EE Conference on Decision and Con-
trol, 2002.

J.J.M.M RITTEN. Coalgebra, Concurrency, and Contrdlechnical Report SEN-
R9921, Centrum voor Wiskunde en Informatit@99.

P.J. RMADGE AND W.M. WONHAM. Modular Feedback Logic for Discrete Event
Systems SIAM Journal of Control and Optimizatip25:1202-1218, 1987.

P.J. RMADGE AND W.M. WONHAM. Supervisory Control of a Class of Discrete
Event ProcesseSIAM Journal of Control and Optimizatio25:206—230, 1987.

P.J. RRMADGE AND W.M. WONHAM. The Control of Discrete Event Systeni&o-
ceedings IEEE, Special Issue Discrete Event Dynamic Sgst@n81-98, 1989.

137

[RWO5]

[SMPO5]

[SPMO5]

[SRMO4]

[TCO02]

[Wan95]

[WHO1]

[Won97]

[Won04]

[WR87]

[WRS8]

[WWO6]

[YLOO]

[YLOZ]

K. RUDIE AND J.C. WILLEMS. The Computational Complexity of Decentral-
ized Discrete-Event Control ProblemdEEE Transactions on Automatic Control
40(7):1313-1318, 1995.

K. SCHMIDT, T. MOOR, AND S. PERK. A Hierarchical Architecture for Nonblock-
ing Control of Discrete Event System&/editerranean Conference on Control and
Automation 2005.

K. SCHMIDT, S. FERK, AND T. MoOOR. Nonblocking Hierarchical Control of De-
centralized System3$FAC World Congress2005.

K. SCHMIDT, J. REGER, AND T. MOOR. Hierarchical Control of Structural Decen-
tralized DES.Workshop on Discrete Event Syste2(304.

C.C. TorrICO AND J.E.R. QRY. Hierarchical Supervisory Control of Discrete
Event Systems Based on State AggregatléAC World Congress2002.

B. WANG. Top-down Design for RW Supervisory Control Theorylaster thesis,
Department of Electrical and Computer Engineering, Uniutgrsf Torontq 1995.

Y. WILLNER AND M. HEYMANN. Supervisory Control of Concurrent Discrete-Event
Systemslnternational Journal of Contrql54(5):1143-1169, 1991.

K. WoNG. On the Complexity of Projections of Discrete-Event Systemschni-
cal Report 9705, Systems Control Group, Department of Béattand Computer
Engineering, University of Torontd997.

W.M WoNHAM. Notes on Control of Discrete Event Systerdepartment of Elec-
trical Engineering, University of Toron{@004.

W.M. WONHAM AND P.J. RRMADGE. On the Supremal Controllable Sublanguage
of a Given LanguageSIAM Journal of Control and Optimizatip25:637-659, 1987.

W.M. WONHAM AND P.J. RRMADGE. Modular Supervisory Control of Discrete
Event SystemsMathematics of Control, Signals and Systefir{4):13-30, 1988.

K.C. WoNG AND W.M. WONHAM. Hierarchical Control of Discrete-Event Systems.
Discrete Event Dynamic Systems: Theory and Applicatib®36.

T. YOO AND S. LAFORTUNE. A Generalized Framework for Decentralized Supervi-
sory Control of Discrete Event System&orkshop on Discrete Event Syste2(300.

T. YOO AND S. LAFORTUNE. A Generalized Architecture for Decentralized Super-
visory Control of Discrete Event Systemiscrete Event Dynamic Systems: Theory
and Applications2002.

138 REFERENCES

[Yoo02] TAE-SIC YOO. Monitoring and Control of Centralized and DecentralizectiBly-
Observed Discrete-Event Systen®hD thesis, The University of Michiga002.

[2C94] R.M. ZILLER AND E.R. QURY. On the Supremadly-closed and the Supremig-
closed and.—controllable Sublanguages of a Given Langua@éth International
Conference on Analysis and Optimization of Systems - Des&re¢nt System$994.

[Zho92] H. ZHoNG. Hierarchical Control of Discrete Event SysterR8D Thesis, Department
of Electrical and Computer Engineering, University of Tamri992.

[ZW90] H. ZHONG AND W.M. WONHAM. On the Consistency of Hierarchical Supervision
in Discrete-Event SystemiEEE Transactions on Automatic Conty@5:1125-1134,
October 1990.

[ZWO01] Z.H. ZHANG AND W.M. WoNHAM. STCT: An Efficient Algorithm for Supervi-
sory Control Design.Symposium on Supervisory Control of Discrete Event Systems
(SCODES2001), Pari2001.

Lebenslauf

Zur Person:

Klaus Schmidt

geboren am 13.08.1976 in Furth
verheiratet

Schulbildung:

1983-1987 Grundschule in Feilitzsch
1987-1996 Schillergymnasium in Hof
Juni 1996 Abschluss mit Abitur

Wehrdienst:

1996-1997 Grundwehrdienst beim Nachschubbataillon 4 iid&Ye

Studium:
1997-2002 Studium der Elektrotechnik an der Friedrichxateler-Universitat
Erlangen-Nurnberg
1999 Tutor am Lehrstuhl fir allgemeine und theoretisché&tEdechnik
Juli 2000 Aufnahme in die Studienstiftung des Deutschehkea®ol
Nov. 2000 Hilfswissenschaftler am Lehrstuhl fur Werkstater Elektrotechnik
Aug. 2001 Praktikum bei Infineon Technologies in Minchen
Mérz 2002 Studienabschluss Dipl.-Ing.
Juli 2002 Preis des VDE fur die beste Diplomarbeit in der Etgkchnik
Hochschultatigkeit:
seit 2002 Wissenschattlicher Assistent am Lehrstuhl fireRegystechnik

der Universitat Erlangen-Nirnberg
2002-2003 Mitglied in der Studienkommission Elektrotekhn
2003-2004 einjahriger Gastaufenthalt an der Carnegie Meéllmversity
in Pittsburgh

140 REFERENCES

