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Abstract

Switched linear systems exhibit a continuous state evolving
along the continuous flow of time according to linear time in-
variant differential equations. Furthermore, a discrete inter-
face to the environment is provided, acting on input signals
by switching between a finite number of differential equations
and generating output signals when the continuous state crosses
certain boundaries. We suggest a conservative approximation
scheme based on sampling, state partitioning and /-completion
realized by a finite past induced state machine. The control
problem is investigated on the approximation level. If a solu-
tion exists, it also solves the problem for the switched linear
system.

1 Introduction

In [m098a], we suggested an approach for synthesizing super-
visory control for a general class of hybrid systems. It is based
on the framework provided by Willems’ behavioural systems
theory (e. g. see [wi91]), and Ramadge’s and Wonham’s super-
visory control theory (e. g. [ram89]). While [mo98a] addresses
the theoretical aspects, the current contribution applies our ap-
proach to the more specific scenario of switched linear systems.
The continuous dynamics of a switched linear system is rep-
resented by a finite set of linear time invariant state space sys-
tems. A discrete input is used to switch between the linear sys-
tems. The input also selects a polyhedron serving as a boundary
for the state trajectory. An output signal is generated, whenever
the continuous state (evolving along continuous flow of time) is
about to cross the boundary of the polyhedron. We demand the
input to be constant as long as no output event occurs, since we
are going to close the loop by a discrete supervisor. Thus, while
a switched linear system internally involves continuous dynam-
ics, it induces a discrete external behaviour. A switched linear
system can be modelled by a hybrid automaton, but the latter,
in general, will not be linear (see Remark 1). Hence, neither
control synthesis nor closed loop analysis can be performed by
established methods (e. g. [tit94], [al93]): supervisory control
synthesis for switched linear systems is a non trivial problem.

This paper is organized as follows: in Section 2, we give
a definition of state machines, related terminology and some
basic properties. A detailed description of the switched lin-
ear system scenario is provided in Section 3. Section 4 de-
scribes a conservative past induced finite state approximation
based on sampling, partitioning, and [-completion as intro-
duced in [m098a]. In Section 5 we summarize the main re-
sult of [mo98a], synthesizing a supervisor solving the control
problem for a given switched linear system. Finally, Section 6
provides an example.

2 State machines

State machines are a common framework when modelling dis-
crete time dynamics; the purpose of this section is to collect
basic definitions for the reader’s convenience.

Definition 1. Letthesets W, X, Xo C X,0 C X x W x X de-
note the external signal space, the state space, the set of initial
conditions and the next state relation respectively. The tuple
P = (X, W, 4§, Xo)is called a state machine. If || € IN and
|X| € IN (both sets are finite), P is said to be a finite state ma-
chine. The behaviour B := {(w, x)| (z(t), w(t), z(t+ 1)) €
dVt e INg, x(0) € Xo} is referred to as the induced full be-
haviour. The external behaviour 8 induced by P is defined to
be the projection of B, onto WMo, that is B, := Pw B, :=
{w| Jz : (w,z) € B,}. A state machine P’ with induced
external behaviour B is said to be a realization of 8. This is
denoted by B =~ P’. O

The induced external behaviour B is the set of all trajec-
tories which are compatible with the state machine from the
environment point of view. As we use state machines to model
a phenomenon we want to control, the supervisor will form
the environment and relies only on B. Hence, the external be-
haviour 95 plays an important role in supervisor synthesis and
Willems® “behavioural approach” forms a natural framework
for our investigations; see [wi91] for an overview. However,
for the scope of this paper, we stick to the realization level as
far as possible: all behaviours we deal with will be realized by
state machines.

In the sequel, we introduce some rather basic terminology
related to state machines:

Definition2. Let P, = (4, W, o, Ay) and P, =



(B, W, 8, By) be state machines. Reachability: A state a; €
A is said to be reachable if there exists a state ag € Ag and a se-
quence of transitions (elements in the next state relation) from
« connecting ag with a;. The state machine P, is said to be
reachable if every state a; € A isreachable. Nonblocking: The
state machine P, is called nonblocking, if for every reachable
state ¢ € A there exists w € W, o’ € Asuchthat (a, w, a’) €
«. Parallel composition: P, || P, := (Ax B, W, A, Ay x By),
where ((a, b), w, (a’, b)) € Xifand only if (a, w, a') € «
and (b, w, b') € B. O

When a state machine P realizes the behaviour 93, a reach-
able state machine P’ realizing 8 can be constructed by re-
moving unreachable states and related transitions. In analogy,
a nonblocking reachable state machine P’ realizing % can be
constructed. If the state space of P is finite, both procedures
are finite, and the state spaces of P’ and P” are finite.

Definition 3. (See [wi89], section 2.2.1) Let P =
(X, W, 6, Xo) denote a state machine with induced
state behaviour B,. Then P is said to be past induced, if
t € INg, (w', 2'), (w", 2") € By, w'[jo,r) = w”|0,) implies
' (t) = 2" (t). O

Here, w)y, +,) denotes the restriction of the map w: Ny —
W to the domain [t1,t2) N INy. To keep notation reasonably
compact, w|g = w’|y by definition holds for all maps w, w’.

A past induced realization is “instantaneously state observ-
able”: at every moment ¢ € IN,, we can figure out the state
x(t) by investigating only past external signals w|jo 4. Thus,
past inducedness is a crucial property when investigating con-
trol related tasks: the synthesis method suggested in Section 5
relies on a past induced realization. A nonblocking realization
P is past induced if and only if (i) the set of initial conditions
Xo holds only one element and (ii) for any reachable state £ and
any external signal w there exists one unique state £’ such that
(&, w, &) € 6. Again, we build a nonblocking past induced
state machine Pt = (Q, W, A, Qo) from any given state
machine P without affecting the induced external behaviour.
Here, the construction can be done based on Q = 2% and

Qo = {Xo}; hence, if P is finite, P,,s: can be chosen to be
finite too. However, this is likely to result in a state space of a
size we cannot handle.

For the purpose of supervisory control, we need to distin-
guish between external signals which can be controlled (in-
puts) and such which cannot (outputs). To keep notation as
simple as possible, throughout this paper only one product de-
composition W = U x Y is considered, where U denotes
the set of input signals, and Y the set of output signals. By
(u, y) = w € WNo we always refer to this decomposition.

Definition 4. A state machine P = (X, W, §, Xo), W =
U x Y, is said to be an 1/S/- machine, if for every reachable
e X,pu e U,thereexistsarv € Y, £ € X such that

(& (w, v), &) €0 O

Note that 1/S/- machines are nonblocking. Unlike Willems’
I/S/O systems, we do not demand the output to process the in-
put (see [wi91], Def. VIII.2, IX.1).

3 Switched linear systems

In this section, a system class is introduced where the external
behaviour is discrete, while the internal dynamics are repre-
sented by a finite number of linear time invariant differential
equations:

peU:={1,...m}, @)
A(p) € R, B(u) €R", @)
C(n) € IR”X” D(u) € RP, ®)
(1) = f(a(7), p) := A(p) 2°(7) + B(p) ,  (4)
y(r) = ( “(r), p) i= D(p)2°(1) + C(u) .~ (5)

Here, a discrete input signal 1 € U implements selecting the
right hand side f( -, u) and the output map g( -, p). For any
given initial state (0) = 29 € IR™ and any constant . €
U, the differential equation (4) has a unique solution on the
continuous time axis IRg denoted by

@(-,xo,u):IRar—ﬂR". (6)

We now discuss how discrete output signals are generated. Let
an initial state zp € R(u) be given, where R(x) C IR™ denotes
the polyhedron defined as the set of states such that all compo-
nents of the continuous output are non-negative. Then, as soon
as the state hits the boundary of the polyhedron R(1) (denoted
by OR(u)), an output signal is generated. The situation is char-
acterized by a component of the continuous output being about
to become negative. The index of that component is taken as
the output signal y; € {1, ... p}. If this index is not deter-
mined uniquely (e. g. when the state hits a vertice of R(u)), an
arbitrary index of an output component becoming negative is
taken as y;. If either 2y happens not to be within R(u), or an
attractive equilibrium in R(u) prevents the state to hit OR(u)
for all future, this is treated as an “error”: applying the input
1 to such an initial state x is “forbidden”. Since we want to
form an 1/S/- machine, we introduce the dummy output 0 for
this situation. One of the control goals will be that the supervi-
sor disables this kind of forbidden inputs. Given zy € IR™ and
u € U, the generation of discrete output signals is formalized

by:

Y:={0,... p}, @)
R(p) = {&| g(§, ) > 0}, (8)
m1(20, p) = sup{7| (7', 2o, p) € R() VO < 7" < 7} (9)

and, if 0 < 7 (x, p) < 00

z1(z0, 1) := @(11(20, 1), o, 1), (10)
Yi(wo, p) = {il el g(w1(wo, p), p) =0}, (11)

or, if 74 (zo, 1) € {0, 0o}
x1(x0, 1) = o, Y1 (20, 1) := {0} . (12)



Here, e; is the i-th unit vector. By equations (6) to (12) an I/S/-
machine P := (R™, W, §, IR™) is defined, where

§:= {(an (ILL7 V)v zl(xo, ,LL))|

ZCQE]R,”, weU, VEYl(.To, /L)} (13)
Remark 1. The scenario fits in the framework of hybrid au-
tomata; see e. g. [al93]. Note that a hybrid automaton exhibit-
ing the above dynamics will in general be nonlinear: roughly
speaking, linearity of a hybrid automaton demands the contin-
uous next state relation to be expressed by linear inequalities
and affine maps. In our framework this would require 21 (-, p)
to be affine w. r. t. the first argument. This cannot be expected:
we do not even know an explicit representation of 71 (-, u),
since the latter involves nonlinear equations we cannot solve
analytically.

Remark 2. When discrete outputs are to be generated by the
continuous output y¢ crossing the boundary of certain polyhe-
dra, an affine transformation of the continuous output space IR?
can be used to adapt the situation to the above scenario. This
also includes the case where the continuous output components
are compared with threshold values.

4 Approximating
switched linear systems

As ¢ is not known in explicit form, we cannot directly synthe-
size a control scheme for P = (IR™, W, ¢, IR™). Thus, we
suggest to construct a conservative approximation, based on
partitioning the state space and sampling the continuous sub-
systems. To some extent, our method can be seen as an ap-
plication of [pu96]. However, the situation of switched linear
systems allows a large number of simplifications. These in turn
enable a representation which can be more or less immediately
converted into a computer program within a standard environ-
ment (e. g. “Mathematica” or “Matlab”).

In order to end up with a finite procedure, we assume for all
neU:

(A1) R(p) is bounded,

(A2) All eigenvalues of A(y) lie within the open left half
plane €, i. e. z, :== —A~'(u) B(u) is a globally at-
tractive equilibrium.

While (Al) is essential, (A2) is meant to facilitate implemen-
tation.

4.1 Choosing a suitable sampling rate

Sampling the differential equation at a sampling rate of 1/7" €
IR* foraninput u € U by

Jru(wo) := exp(A(p) T) o+

A(p) ™ (exp(A(pn) T) — 1) B(p) (14)

yields f7,(z0) = (r T, o, ) for all € INo. As we are
looking for a conservative approximation, we also need to con-
sider how the state evolves between the sampling instants. For
a given p > 0, a sampling rate 1/7 is choosen, such that for
allr € Ng, zp e R", p € U, 7, 0 < 7 < T, the following
implication holds:

f’;’,,u(xO) € R(:u’) =

||50(TT+T7 Lo, :u’) - f;,u(xo)HOO <p. (15)

A suitable T' can be constructed as follows: Denote the box
around a bounded subset R C IR™ with an “extra safety dis-
tance” p by:

S(R, p)={¢] inf lef (C=OI<pVi}.  (16)

Since f( -, p) is linear, we can compute the maximum deriva-
tive dinax(p) = max{[|f(&, pll| § € S(R(n), p)} by
checking the vertices of S(R(u), p). Observe dyqq (1) > 0
from (A2). Let dpor = max{dmas(pt)| © € U} and define
the sampling interval by

T := p/dmaz - A7)
We now prove by contradiction that (17) guarantees (15).
Therefore, assume the existence of some r, xy, p with
[ ,.(x0) € R(u), such that the right hand side of (15) does not
hold. Hence, there exists a minimal 7, 0 < 7 < T, such that
the norm in (15) equals p. As f7. ,(zo) € R(u), observe that
o(rT + 7, zo, ) € S(R(u), p) forall 7 < 7 and therefore
f(p(rT + 7, zo, 1), @)lloo < dmas forall 7 < 7. By inte-
grating f(o(rT + 7, xo, p), 1) over 0 < 7 < 7 one obtains
l(rT + 7, 20, ) — f;,u(z())”oc < Tdmaz < T dmaz = p.
This contradicts the assumption, hence (15) holds for the sam-
pling interval defined by (17).

4.2 Tracingthe state by sampling
Pick any Xy C IR™ and let

FT,H(XO) = fru(Xo N R(p) N R(p) . (18)
By equation (15), the following implication holds for every
state trajectory x(-) = (-, xg, ) with initial state zy € X,
andeveryt, rsuchthatr T <t < (r+1)T:

z(r) e R(p) V7 <t

In other words: starting at any initial state in X, as long as
the state evolves within R() and therefore may generate an
output event, we can conservatively estimate the state by the
boxes from (19). Vice versa, when S(F7. ,(Xo), p) happens
to be empty for some r, we conclude that no output events are
generated for any ¢ > r 7. Note that, if X, is a polyhedron,

computing the boxes S(F7. ,(Xo), p) is straightforward.



4.3 Partitioning the state space

The continuous state space IR™ is partitioned by a disjoint
union of polyhedra ¢;, j € IN, each of them bounded: IR" =
Ujemg;, ¢ Nq; = 0 forall i # j. As an example, con-
sider an equidistant rectangular grid. For all . € U, assume
J(w) == {jl ¢ N R(p) # 0} to be finite. Let J' := U e J (1),
qo = Ujgy q;, J == J" U {0}. The finite set J will form the
state space of the approximation: when the approximation is in
state j € J, this corresponds to the exact state being an element
of q;-

4.4 Approximating 0

We now ask the question: “when applying input u to the
state zyp € g;, results in output v, in which polyhedra might
the next state x; be found?” To answer this, pick any
(xo, (i, v), 1) € ¢ and jo, j1 € J such that zy € g,
x1 € gj,. Assume first that v # 0, hence o € R(u). The
output v determines the surface OR, (1) of R(u) which the
state trajectory is about to cross:

21 € OR, (1) = {€|€ € R(n), e, g(&, ) =0},
Then both of the following conditions hold:

(C1) min{e; C(u) (A(u) € + B(p))|
§€OR, (1) Ngy} <0,

(C2) 3r: S(Fr,(g5), p) NOR, (1) N g, # 0.

To prove (C1), observe that the set to be minimized consists of
the derivatives of all state trajectories when crossing the surface
OR, () atastate £ € OR, (i) Ng;,. If all such derivatives are
positive, no trajectory starting within R(u) can cross OR,, (u)N
¢;,, and the output v cannot occur. Hence, the minimum is
not positive. To prove the minimum to be negative, the same
conclusion can be drawn, taking into account that f( -, ) is
linear. (C2) can be inferred from (19): choose r such that » T' <
71 (w0, p) < (r+1)T; hence x1 € S(Fr,(g)0): p)-

While the implementation of a procedure to check (C1) is
based on the vertices of R, (u), (C2) demands more atten-
tion. By (A2), only a finite number of sampling steps are to
be considered. If =}, ¢ R(u), then there obviously exists an
r* € IN such that S(F7 ,(g5,), p) = 0 forall r > r*.
If =3, € R(u), focus on an invariant domain of attraction
G(pn) € S({z,}, p). Here, G(u) is an ellipsoid which can
be constructed by the Lyapunov method. Then there exists an
r+ € IN such that f7. ,(qj,) € G(p) forall » > r+, hence
S(FT,.(a0); p) € S{z};}, 2p) forall » > r*. Therefore,
(C2) implies
(CZ’) [U7'S7'+S(F%,;L(qj0)’ P) U S({IZ}, 2/))]

NOR,(u) N g, #0,
hence, (C2) can be conservatively investigated by a procedure
for checking (C2’).

We now treat the case v = 0. This implies at least one of the
following conditions to hold:

(C3) jo & J (1),

(20)

(C4) z;, € R(p)and V7 = S(FF ,(g5,), p) # 0.

A finite procedure for checking (C4) can be implemented in
analogy to the one for (C27).

The finite state machine P., := (J, W, d.4, J) is then de-
fined in terms of (C1) to (C4): let d = (jo, (1, v), j1) be a
transition in d., if and only if either

v#0,x;, ¢ R(p), (C1) and (C2),
or v#0,z; € R(p), (C1)and (C2'),
or v=0,jo=j1,and (C3)or(C4) .

Let B., = P,., be the behaviour realized by P,.,. Then,
by construction, 6., 2 B = P, i. e. B, is a conservative
approximation of 9. Obviously P,, is finite.

45 A past induced realization

Supervisor synthesis will be based on a nonblocking past in-
duced realization. Unfortunately, P., is not past induced. As
we want our partition to be reasonably fine, we expect a “large”
state space J. In examples for n = 3, a rectangular grid
with 10 relevant gridpoints per axis was used. This resulted
in |J] = 10%; computing d., caused no performance related
problems. On the other hand, turning a state machine of this
size into a past induced realization is in general not feasible.
For this reason, we apply another conservative approximation
scheme, namely “I-complete approximations”, where [ € IN
is seen as a design parameter. Formally, [-complete approxi-
mations convert any state machine P with finite external signal
space into a past induced nonblocking state machine P; with
finite state space. Denoting the induced external behaviours by
B and B; respectively, the crucial property of [-complete ap-
proximationsis that 8 C 9B, C B, holds forall I’ > [. Hence,
we expect the accurary of the approximation to increase when
the parameter [ is increased. See [mo98a] for a discussion of
I-complete approximations within the behavioural framework,
addressing a general class of hybrid systems. Since the con-
servative approximation P., is already finite, the computation
of a state machine P, ; = (Zi, W, dca,1, Zo) realizing the I-
complete approximation 8., ; of B, is straightforward (see
[mo98a], Proposition 2, Theorem 2). It has to be mentioned,
that increasing ! not only increases the accuracy, but also the
size of the realization state space Z;. Here, the worst case is
|Z)| = |W|'. However, since |.J| is expected to be “large”, this
is still better than the worst case 2!/ when trying to construct
an exact past induced realization.

5 Supervisory control

Roughly speaking, a supervisor’s task is to prevent the
switched linear system modelled by the state machine P from
evolving on trajectories which are deemed to be unacceptable
— the supervisor is meant to suitably restrict the behaviour
B = P. We first synthesize a supervisor for the approxima-
tion P.,,; of P by employing a modified version of Ramadge’s
and Wonham’s theory. Then, we observe that the supervisor
obtained for P, ; does indeed solve the problem for P. As a



similar solution procedure can be found in [rai98] and [mo98a],
this section is only intended to give rough overview.

Denote the acceptable behaviour by B,,.. and assume it
to be realized by a nonblocking past induced finite state ma-
chine Pypee = (Xspees W, Ospecs Xspecy)- First, we remove
all unacceptable trajectories by intersecting B.q,; and Bpec.
It is a well known fact that the parallel composition of two
realizations realizes the intersection of their behaviours, i. e.
B|| = %ca,lm%spec = ]DH = (Qv w, )‘a QO) = Pca,l H Pspec-
Clearly, %5 meets the specifications, but forming the parallel
composition does not take into account the input/output struc-
ture of I/S/- machines. Thus, we need to refine the mechanism
of interaction. While the trajectory evolves, the supervisor is
only allowed to “disable” input signals in an explicit manner.
In turn, this may prevent certain output signals from occuring,
but the latter cannot be disabled individually: when preventing
the signal (u, v) € U x Y, this can only be done by preventing
all external signals W,, := {(u, 7)| # € Y} simultaneously.
Definition 5 formalizes the desired mechanism of interaction.

Definition5.  Let di = (21, w1, 2;) € dcay and do =
(22, wa, 24) € dcq,. The transitions d; and dy are called part-
ners, if 21 = zo and wy,wy € W, for some p € U. P =
(Q, W, X\, Qo) is called a substructure of Py W. I. t. Py, if
A C A Qo € Qo, and atransition ((z, Zspec), w, (2', Thpee)) €
X can only be an element in \, if for every partner (z, w’, 2"’ of
(z,w, 2') there exists a transition ((z, Zspec), W', (2", T45pec))

in \. O

The results of [mo98a] can be summarized as follows: if
there is a nonblocking substructure of P, then the least re-
strictive nonblocking substructure, denoted by P, exists
uniquely. Assuming existence, Ps,, can be synthesized by a
fixed-point algorithm. This procedure has been coded in C++
with an object oriented architecture [oy98]. If no nonblocking
substructure of P exists, the supervisory control problem has
no solution for P, ;. This implies that either the approxima-
tion P, is too coarse, or the specifications are too strict (they
cannot be met no matter how accurate our approximation is)
and need to be relaxed. In the former case, we need to provide
a finer approximation. This can be done by choosing a finer
state partition or by increasing .

Let 9B, denote the behaviour realized by Ps,,,. Obviously,
Bsup IS a subset of B,,... Hence, when interconnecting P
and P, by parallel composition, the closed loop behaviour
B = B N By, is a subset of B,e.. Furthermore, it can
be seen that P || Ps,, is nonblocking and that P || Ps,, itself
is a substructure of P || Py, W.T. t. P. As P, and Py,
are past induced, so is P and all its substructures, hence P,
is past induced too. From an application point of view, this is
exactly what we are looking for: (i) the specifications are met;
(i) we do not run into a deadlock situation; (iii) when the input
w is disabled, all signals 17/, are disabled simultaneously; (iv)
we can trace the supervisors state without looking at the hidden
interna (e. g. continuous state variables) of P.

6 Example

We consider a thermal switched-server system consisting of
three plates and a radiator, as described in [fr98]. The radi-
ator can either be switched off or on, heating a single plate
depending on its position. A switching strategy has to be im-
plemented by a supervisor in order to keep the temperatures of
all plates in a specified range. In [fr98] a rule based switching
strategy is developed by intuition. A formal verification can be
found in [mo98b]. However, we feel that it is a good idea to il-
lustrate our supervisor synthesis method by an example where
some knowledge about the expected closed loop behaviour is
available.

The following parameters are assumed to be known: the ra-
diator and the environment temperatures 5, € IR and 8. € IR
respectively; the corresponding normalized heat transfer coef-
ficients ., o, € IR™T; the specified range of allowed temper-
atures [G—, B+] C IR; it is assumed that the initial tempera-
tures lie within (5o, 8+) C IR. The temperature z;( - ) of plate
1 € {1, 2, 3} is modelled either by equation (21) when it is
heated or by equation (22) when it is not heated:

£i(t) = o (Br — 2i(t)) + e (Be — 2i(t))
zz(t) =2 (ﬂe - xz(t)) :

(21)
(22)

Observe z;(t) = Bm == (ar Br + e Be)/(ar + a) to be a
stable equilibrium for a heated plate, and z,(t) = S, for one
which is not heated. We assume parameter values such that
ﬂe < ﬂ, < ﬁ() < ﬁ+ < ﬂm < ﬁr holds.

Whenever the temperature of plate vy, € {1, 2,3}
equals the thresholds v,.; € {00, B+}, the output signal
(Vidz, Voat) € Y = {1, 2,3} x {Bo, B+} Is generated. In
response, the supervisor may disable certain discrete input sig-
nals from u € U’ = {1, 2, 3, 4}, where px = 4 is interpreted
as “radiator off”, while 1, < 4 is interpreted as “radiator posi-
tioned at plate 1. If more than one input signal is enabled, se-
lection is instantaneous — either at random or by some higher
level control device. We look for a supervisor such that the
closed loop system exhibits the following properties:

(i) All temperatures are to be kept within [5_, 84].

(if) Once the reheating process of a plate has been started, it
has to be continued until the plate temperature reaches

B+

(iii) No reheating process must be started for a plate at a tem-
perature above 3.

High frequency chattering phenomena are avoided, since by
(ii) and (iii) the duration of any reheating process has a posi-
tive lower limit. When converting the scenario into a switched
linear system as defined in section 3, we observe: 8 relevant
boxes as output signal generating polyhedra R( - ); 7 outputs,
but less than 5 possible at each state; 32 inputs, but only 4 of
them not resulting immediately in an error output. We choose
a rectangular state partition, involving |.J| = 103 states in Pe.
The specification can be realized using the same state space as



Figure 2: Closed loop simulation

P.q,; when! > 2, avoiding the quite expensive parallel compo-
sition P,y || Pspec. Atl = 5, the state space of P, ; counts
130 x 103 states, and supervisor synthesis succeeds for the fol-
lowing parameter values: 5. = 0.1, 8, = 2.5, a. = 0.2,
ar = 1.0, 64 = 1.0, p = 0.8 and S = 0.3. Figure 1 is
a conservative approximation of reachable states of P || Pgy,
based on P.,; || Psup- Figure 2 shows a sample trajectory of
the closed loop system.

7 Conclusions

In this contribution, we suggest an approach for synthesizing
supervisory control for switched linear systems based on two
conservative approximation techniques. First, the switched lin-

ear system is approximated by sampling and state space parti-
tioning. This results in a finite state machine which, in general,
is not past induced. Second, applying I-completion as another
conservative approximation technique converts the former re-
sult in a past induced finite state machine. This enables slightly
modified tools from DES theory to solve the supervisory con-
trol problem on the approximation level. The desired closed
loop properties are retained if the supervisor is connected to
the underlying switched linear system. All involved algorithms
can be carried out by finite procedures.
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