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Abstract

This note presents a method for synthesizing a static state feed-
back controller for multiple-input linear systems over discrete
sets. The method allows of a complete setting of the cyclic sub-
spaces of the closed loop system by specifying invariant poly-
nomials of the closed loop system. To this end, fundamentals
of finite field theory and basic elements of the polynomial ap-
proach are developed towards a means of analysis of the cyclic
behavior of the system, which, with regard to synthesis issues,
results in an algorithm for setting the invariant polynomials of
the system dynamics in the closed loop system. The basic ideas
are illustrated in an example.

1 Introduction

Modeling finite state automata in a discrete state space, we ad-
dress some theoretical issues of analysis and synthesis of linear
automata. Within the scope of analyzing the transient behavior
of finite state automata it is a well-known fact that the finite
state space splits into cyclic and acyclic subspaces [2]. How-
ever, even in the linear case it remained unclear which struc-
tural, algebraic properties are to represent this cyclic behav-
ior, due to a lack of sufficient criteria. Based on a particular
state space model over finite fields [3] another state space ap-
proach, first of all for the linear case, was made recently [7]. In
this approach, drawing benefit from some results of feedback
shift register theory [4] a complete analysis of the cyclic sub-
space by means of invariant polynomials was presented. Thus,
a straightforward step is to extend the setting by specifying a
state feedback so as to determine the cyclic structure of the
closed loop system, which is the focus of the paper. In addition
to this, the underlying discrete system theory is prepared in a
manner such that the reader who is familiar with the continuous
system theory is enabled to understand the main concepts.

This note is organized as follows: In Section 2 basic algebraic
concepts are recalled. Section 3 characterizes the notion of in-
variant polynomials. In Section 4 essential properties of Lin-

ear Modular Systems are discussed. The analysis for cyclic
subspaces is described in Section 5. Section 6 deals with the
synthesis of a static state feedback controller. The example in
Section 7 exposes the main steps of the method before conclu-
sions are drawn in Section 8.

2 Algebraic Preliminaries

For the purpose of a better understanding of the basic ideas
some unalterable algebraic fundamentals have to be developed.
A concise introduction to finite fields is given by [6].

2.1 Basic Properties of Finite Fields

Since a special type of field is dealt with some terminology is
recalled.

Definition 2.1 (Groups) A group is a set G together with a
binary operation ∗ such that

1. for all a,b ∈ G , a∗b ∈ G .

2. ∗ is associative, i. e. a∗(b∗c) = (a∗b)∗c for any a,b,c∈G .

3. There exists an identity element e such that for all a ∈ G ,
a∗ e = e∗a = a.

4. There exists an inverse element a−1 ∈ G for each a∈ G such
that a∗a−1 = a−1 ∗a = e.

Moreover, a group is commutative (or abelian) if for all a,b ∈
G , a ∗ b = b ∗ a. A group is called finite if the set G contains
finitely many elements.

Definition 2.2 (Field) A set F with the operations addition and
multiplication, + and · , is a field if

1. F is a commutative group wrt. addition.

2. F\{0} is a commutative group wrt. multiplication.

3. F is distributive wrt. addition and multiplication.

A field F with q elements, denoted by Fq, is called finite if it
contains finitely many elements.



Definition 2.3 (Galois-Field) The set of integral numbers
{0,1, . . . ,q− 1}, where q prime, with operations addition and
multiplication mod q, is a finite field called Galois-Field Fq.

The primality of q is decisive for the existence of a multiplica-
tive inverse element in general (otherwise zero divisors occur),
e. g. 2 · 3 mod6 = 0. In the sequel we will concentrate on
Galois-Fields only. Consequently, addition and multiplication
in Fq implicitly are understood modulo q.

Theorem 2.1 (Fermat’s Little Theorem) Let q ∈ Z be prime.
Then for all integers λ not divisible by q, q divides λq−1−1.

Corrolary 2.1 Every λ ∈ Fq satisfies λq = λ.

Hence, a polynomial p ∈ Fq[λ] over a finite field Fq, where
Fq[λ] denotes the ring of polynomials with coefficients in Fq,
can be identical to zero for arbitrary λ∈ Fq, whereas for a poly-
nomial p ∈ R[λ] over the field of real numbers R this holds if
and only if all coefficients are zero.

2.2 Polynomials over Finite Fields

2.2.1 Reducible and Irreducible Polynomials

Polynomials over the field of real numbers R generally can be
factorized (reduced) quadratically over R. This need not be the
case for finite fields Fq, which will be shown in the following.

Definition 2.4 (Monic Polynomial) A polynomial p(λ) =

∑d
i=0 ai λi with degree d is called monic if ad = 1.

Definition 2.5 (Irreducibe Polynomial) A non-constant poly-
nomial p∈F[λ] is called irreducible over F if whenever p(λ) =
g(λ)h(λ) in F[λ] then either g(λ) or h(λ) is a constant.

Theorem 2.2 (Unique Factorization Theorem) Any polyno-
mial p ∈ F[λ] can be written in the form

p = a p1
e1 · · · pk

ek , (1)

where a ∈ F, p1, . . . , pk are distinct monic irreducible polyno-
mials in F[λ], and e1, . . . ,ek are positive integers. Moreover,
this factorization is unique apart from the order of the factors.

Example: p(λ) = λ5 +λ2 +λ+1 = (λ3 +λ+1)(λ+1)2, p ∈
F2[λ], because λ3 +λ+1 and λ+1 are irreducible over F2.

2.2.2 Period of Polynomials

Definition 2.6 (Period of a Polynomial) Let p ∈ Fq[λ] be a
nonzero polynomial. If p(0) 6= 0, then the least positive integer
e for which p(λ) divides λe − 1 is called the period τp of the
polynomial p. If p(0) = 0, then p(λ) = λhg(λ), where h ∈ N

and g ∈ Fq[λ] with g(0) 6= 0, and τp is defined as τg.

In practice periods of polynomials do not have to be calculated.
They can be found in tabulars [6], or are internally tabulated in
computer algebra software like Maple or Mathematica.

3 Structural Properties of Matrices over Fq

3.1 Similarity of Matrices

The major properties of a matrix reside in structural invariants.
These are preserved under so-called similarity transforms. We
recall some basic terminology.

Definition 3.1 (Similarity of a Matrix) Matrices A1, A2 ∈
F

n×n are similar if for some invertible matrix T ∈ F
n×n

A1 = T−1A2T . (2)

Definition 3.2 (Rational Matrix) A matrix R(λ), the ele-
ments of which are fractions of polynomials over F[λ] is called
a rational matrix. If the denominator polynomial of each ele-
ment of R(λ) is equal to one the matrix is a polynomial matrix.

Definition 3.3 (Unimodular Matrix) If the determinant of a
polynomial matrix is a scalar in the underlying field F, the ma-
trix is called unimodular.

Theorem 3.1 (Smith Form of a Matrix) For any A ∈ F
n×n

there exist unimodular matrices U(λ) and V(λ) such that

U(λ)(λI−A)V(λ) = S(λ) (3)

with

S(λ) =







c1(λ) 0 · · · 0

0 c2(λ)
...

...
. . . 0

0 · · · 0 cn(λ)







, (4)

where the monic polynomials ci+1|ci, i = 1, . . . ,n−1.

Matrices A1 and A2 are similar iff they have the same Smith
form. Since the polynomials ci(λ) are preserved under similar-
ity transforms this gives rise to a further definition.

3.2 Invariant Polynomials

Definition 3.4 (Similarity Invariants) The monic polynomi-
als ci(λ), i = 1, . . . ,n referring to a S(λ) are the similarity in-
variants of A.

Note that the uppermost polynomial c1(λ) is the minimal poly-
nomial of the dynamics A. The product of all similarity invari-
ants is the characteristical polynomial det(λI−A) of A.

Definition 3.5 (Elementary Divisor Polynomials) The
unique irreducible factor polynomials p j(λ) of all the ci(λ),
i = 1, . . . ,n referring to the Smith Form S(λ) of A are called
elementary divisor polynomials of A.

3.3 Remark

In order to facilitate the synthesis procedure the Jordan Normal
Form of a matrix is not introduced here. This would have meant
to define eigenvalues, thus to calculate the eigenvalues of A
in some extension field Fqk ,k = 1,2, . . . of Fq, which is much
more cumbersome than for real numbers.



4 Linear Modular Systems over Fq

In the preceding chapters basic properties of finite fields have
been recapitulated and the relevance of polynomials over finite
fields has been demonstrated. In this chapter the notion of Lin-
ear Modular Systems is introduced as a representation of a class
of systems over finite fields and analogies to linear continuous
systems (over the field of real numbers R) are shown.

Linear Modular Systems over Fq (LMS(q)) can be expressed in
terms of the following matrix equation [4]

x[k +1] = Ax[k]+Bu[k] . (5)

The matrix A ∈ F
n×n
q is the dynamics of the system and B ∈

F
n×m
q is the input matrix, u[k] is the input vector and x[k] is the

state vector of the LMS(q).

4.1 A-Transform

As for linear continuous systems an image domain can be in-
troduced for the LMS(q).

Definition 4.1 The A-Transform for causal, discrete functions
f [k] over Fq is:

F(a) := A( f [k]) :=
∞

∑
k=0

f [k] ·a−k
. (6)

For completeness, relevant relations are shown in Table 1.

time function A-transformed function
∑ν αν · fν[k] ∑ν αν ·Fν(a)

f [k +1] a ·F(a)−a f [0]

Table 1: A - Transform for causal functions f[k]

Using (6) the state equation (5) can be transformed into the
A-Domain and a solution for the system state can be verified.

4.2 Solution of the State Equation

With Table 1 the A-Transform of (5) reads1

aX(a) = AX(a)+BU(a)+ax[0] . (7)

This representation directly leads to the computation of the A-
Transform of the system state

X(a) = (aI−A)−1(BU(a)+ax[0]) . (8)

The result can readily be used to determine the well-known
solution of the difference equation [1, 4]:

x[k] = Ak x[0]+
k−1

∑
i=0

Ak−1−i Bu[i], (9)

where the system state depends on the initial state x[0] and on
the history of the input vector u[k]. One more important prop-
erty of the system representation (8) is used in Section 6 to
prove one main result of this paper.

1Capital letters denote functions in the A-Domain.

4.3 l-controllability

In analogy to linear continuous systems an equivalent definition
of controllability can be given in the framework of LMS(q).

Definition 4.2 An LMS(q) of order n is l-controllable if for all
ordered pairs (x1,x2) the system can be driven from state x1

to state x2 in exactly l steps. An LMS(q) is controllable iff it is
l-controllable for some l.

In combination with (9) the following theorem emerges [1].

Theorem 4.1 An LMS(q) of order n is l-controllable iff
[B AB . . . Al−1B] has full rank n.

4.4 Controllability Companion Form

Using Theorem 4.1 the reduced controllability matrix L of an
LMS(q) is attainable by choosing n linearly independent co-
lumns from [B AB . . . Al−1B] with minimal powers of A [8]2

L = [b1, . . . ,Ac1−1 b1, . . . ,bm, . . . ,Acm−1bm] . (10)

The set of integers ci, i = 1, . . . ,m is called the set of controlla-
bility indices of the LMS(q). The following properties hold:

• the set of ci is unique,

• the set of ci is invariant wrt. similarity transformations,

• ∑m
i=1 ci = n,

• the list σi = ∑i
j=1 c j, i = 1, . . . ,m, decomposes the system

representation into structural subunits.

Given a controllable LMS(q) a characteristic companion form
of the state equations (5) can be found by executing similarity
transformations, using (10) and the set of ci. It is called the
controllability companion form (CCF) [8] and shall be marked
with the superscript c in the following sections:

xc[k +1] =








Ac
1,1 · · · Ac

1,m
Ac

2,1 · · · Ac
2,m...

. . .
...

Ac
m,1 · · · Ac

m,m








︸ ︷︷ ︸

Ac

xc[k]+

















0 0 0 · · · 0 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
1 x x · · · x x
0 0 0 · · · 0 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
0 1 x · · · x x
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
0 0 0 · · · 0 1

















︸ ︷︷ ︸

Bc

u[k],

Ac
i,i =









0 1 0 · · · 0
0 0 1 · · · 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 0 1
x x x x x









and Ac
i, j,i6= j =







0 0 0 · · · 0
0 0 0 · · · 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

x x x x x






.

For separating structural and informal properties of the system
in CCF the rows with undetermined entries x are represented in
two matrices:

Ac
σi

=








row σ1 of Ac

row σ2 of Ac

.

.

.
row σm of Ac







, Bc

σi
=








row σ1 of Bc

row σ2 of Bc

.

.

.
row σm of Bc








=








1 x x · · · x
0 1 x · · · x
.
.
.

. . .
.
.
.

0 0 0 · · · 1







.

These matrices will be needed in Section 6.4.2.
2The vectors bi, i = 1, . . . ,m are the column vectors of the input matrix B.



5 Cycle Sum of a Linear Modular System

Linear Modular systems typically show cyclic behavior. In the
autonomous case B = 0 any information needed to analyze for
cyclic subspaces is included in structural invariants of the dy-
namics A. For brevity the main theorem is recalled from [4, 7].

The state space decomposes in periodic and aperiodic sub-
spaces, which are constituted by the following definition.

Definition 5.1 (Period of States) The period of a state x[k] ∈
F

n
q is the least τ ∈ N such that x[k+τ] = x[k].

Generally, state spaces decompose in more than one cyclic sub-
space. Let their number be N. All occurring subspace cyclici-
ties can be written in a more convenient form by

Definition 5.2 (Cycle Sum) The cycle sum Σ is the formal sum
of cycle terms

Σ = ν1[τ1]uν2[τ2]u . . .uνN [τN ] , (11)

where νi is the number of cycles of length τi and the relation
νi[τ]uν j[τ] = (νi +ν j)[τ] is satisfied.

Definition 5.3 (Product of Cycle Terms) The product

ν1[τ1]ν2[τ2] = ν1ν2 gcd(τ1,τ2)[lcm(τ1,τ2)] (12)

is called cycle term product. The expressions gcd(τ1,τ2) and
lcm(τ1,τ2) are greatest common divisor and least common
multiple of τ1, τ2 respectively.

Theorem 5.1 (Superposition) The cycle sum Σ superposing e
cycle sums Σi can be calculated distributively by the product

Σ = Σ1Σ2 · · ·Σe . (13)

An adapted version of a theorem in [4, 7] can now be stated:

Theorem 5.2 (Cycle Sum of an autonomous LMS) Let S(λ)
be the Smith Form of the dynamics of an autonomous LMS(q),
P the set of factorized elementary divisor polynomials pi =
(pi,irr)

ei ∈ Fq[λ], where pi,irr is an irreducible basis polynomial
with pi,irr(0) 6= 0. Then each pi ∈ P contributes the cycle sum

Σi = 1[1]+
qdi −1

τ(i)
1

[τ(i)
1 ]+

q2di −qdi

τ(i)
2

[τ(i)
2 ]+ . . .+

qeidi −q(ei−1)di

τ(i)
ei

[τ(i)
ei ] , (14)

where di marks the degree of pi,irr and τ(i)
j denotes the period

of (pi,irr))
j. For the entire LMS(q) the cycle sum Σ follows by

superposition of all |P | cycle sums Σi.

Remark: As the stress is put on the synthesis of the cyclic
structure of the state space, the periodic states xτ themselves
are of minor relevance. Therefore their calculation is not con-
sidered here.

6 Synthesis

6.1 Main Objectives

In the previous section the cyclic properties of LMS(q) have
been examined. Now the question arises, if and how these
properties can be changed. Thus, the main objective of this
section is to find a constructive synthesis procedure for chang-
ing the cyclic properties of an LMS(q).

6.2 State Feedback

In Section 5 we have seen that the cyclic properties of LMS(q)
are directly related to the invariant polynomials3 of the dynam-
ics A. Furthermore, it is clear from the theory of linear contin-
uous systems that the invariant polynomials of an LMS(q) can
be changed by linear state feedback

u[k] = −Kx[k]+w[k] (15)

with the corresponding state equation

x[k +1] = (A−BK)x[k]+Bw[k]. (16)

In this context it is decisive that we must actually consider the
invariant polynomials, which is more restrictive than regarding
the characteristic polynomial of A−BK.

6.3 Structural Theorem

The following important theorem shows in which range the in-
variant polynomials of an LMS(q) can be changed.

Theorem 6.1 (Structural Theorem) Given a controllable
LMS(q) with controllability indices c1 ≥ . . . ≥ cm and de-
sired invariant polynomials ci,K(a), deg(c1,K(a)) ≥ . . . ≥
deg(cm,K(a)), there exists a constant matrix K with A−BK
with invariant polynomials ci,K(a) iff

k

∑
i=1

deg(ci,K(a)) ≥
k

∑
i=1

ci ∀k = 1,2, . . . ,m . (17)

Since the synthesis of linear state feedback in the “Time Do-
main” in general is not straight forward a new approach using
polynomial matrices shall be introduced.

6.4 A Frequency Domain for Finite Fields?

6.4.1 Transfer Function

Comparing (8) and (3) it is obvious that the cyclic properties
of the system state are described by the expression (aI−A)−1,
which is also contained in the system “transfer function”

X(a)|x[0]=0 = F(a)U(a) = (aI−A)−1BU(a). (18)

Thus in the next sections we concentrate on computing a linear
state feedback by using equation (18).

3Elementary divisor polynomials and invariant polynomials are equivalent.



6.4.2 Polynomial Matrix Fraction

At first some denotation, which will be used in the sequel, shall
be defined and two important theorems are recalled.

Definition 6.1 (Right Polynomial Matrix Fraction) A right
polynomial matrix fraction (RPMF) of a rational matrix R(a)
is an expression of the following form

R(a) = N(a)D−1(a) (19)

with denominator matrix D(a) and numerator matrix N(a).

Theorem 6.2 (Conservation) The product of an arbitrary
polynomial matrix R(a) and an unimodular polynomial matrix
U(a) has the same invariant polynomials as R(a).

As the transfer matrix in (18) is a rational matrix the known
results on rational matrices can be applied.

Theorem 6.3 (Existence) For each rational matrix R(a) there
is a right-prime polynomial matrix fraction.

This means that each transfer matrix can be represented like in
(19). In accordance with [8] a closed expression for the poly-
nomial matrix fraction for a system representation in CCF is

F(a) = S(a) [(Bc
σi

)−1(γγγ(a)−Ac
σi

Sc(a))]−1
, (20)

with

S(a) =
























1 0 · · · 0
a 0 · · · 0
.
.
.

.

.

.
. . .

.

.

.
ac1−1 0 · · · 0

0 1 · · · 0
.
.
.

.

.

.
. . .

.

.

.
0 ac2−1 · · · 0
.
.
.

.

.

.
. . .

.

.

.
0 0 · · · 1
.
.
.

.

.

.
. . .

.

.

.
0 0 · · · acp−1
























, γγγ(a) =







ac1 0 · · · 0
0 ac2 · · · 0
.
.
.

.

.

.
. . .

.

.

.
0 0 · · · acp






. (21)

This means that if the LMS(q) is given in CCF it is straight
forward to find a closed expression for the polynomial matrix
fraction of the system transfer matrix (18).

The same is valid for the system with state feedback matrix K
in (16). In this case the polynomial matrix fraction reads

F(a) = S(a) [(Bc
σi

)−1(γγγ(a)−

Ac
σi,K

︷ ︸︸ ︷

(Ac
σi
−Bc

σi
Kc) S(a))

︸ ︷︷ ︸

DK(a)

]−1
. (22)

This RPMF shows the following important properties:

• the numerator matrix S(a) of the RPMF is not changed by
linear state feedback.

• the denominator matrix DK(a) and the corresponding sys-
tem matrix have the same invariant polynomials.

• the controllability indices ci coincide with the column de-
grees4 of the denominator matrix.

4This is the highest polynomial degree in the corresponding column.

As the feedback matrix K can be uniquely determined if DK(a)
in (22) is known, it is evident that the problem of finding an ad-
equate state feedback to fit the given LMS(q) with desired in-
variant polynomials reduces to determining a denominator ma-
trix DK(a) with the following properties:

(i) the invariant polynomials of DK(a) must coincide with the
desired invariant polynomials ci,K(a).

(ii) the column degrees deg(coli) of DK(a) must coincide with
the controllability indices ci of the LMS(q) 5.

Since DK(a) = (Bc
σi

)−1D∗
K(a), it suffices to consider the ma-

trix D∗
K(a) because (Bc

σi
)−1 is unimodular and triangular and

thus DK(a) has the same invariant polynomials and the same
column degrees as DK(a).

6.5 Main Theorem

With the results from the previous sections the main theorem
for the synthesis of linear state feedback can be specified.

Theorem 6.4 Let a controllable LMS(q) be given in CCF,
let ci, i = 1, · · · ,m be the controllability indices, let
ci,K(a), i = 1, . . . ,m be desired invariant polynomials and let
D∗(a) = diag(ci,K(a)), i = 1, . . . ,m, let deg(c1,K(a)) ≥ ·· · ≥
deg(cm,K(a)) and ∑m

i=1 deg(ci,K(a)) = ∑m
i=1 ci = n. An algo-

rithm which admits to determine a feedback matrix K, if any, is
as follows:

1. Verify the structural theorem 6.1 for ci and ci,K(a). If (17)
holds go to 2, else the algorithm fails.

2. Examine D∗(a).

• if the column degrees of D∗(a) coincide with the ordered
list of controllability indices go to step 5.

• else detect the first column of D∗(a) which differs from
the ordered list of controllability indices, starting with
column 1. Denote this column colu. (deg(colu) > cu)

• Do the same beginning with column m. Denote the speci-
fied column cold . (deg(cold) < cd)

3. Adapt the column degrees of D∗(a) by applying elementary
operations6

• Multiply rowd by “a” and add the result to rowu

⇒ D∗(a) → D+(a)

• if deg(col+u ) = deg(colu)−1

– D+(a) → D++(a) and go to step 4.

• else

– Define: r := deg(colu)−deg(cold)−1

5For abbreviation, the i-th matrix columns and rows are denoted by coli and
rowi, i = 1, . . . ,m, respectively. The controllability indices ci are not changed
by linear state feedback.

6These are operations that are equivalent to multiplications with unimodular
matrices. As a consequence, doing this way the invariant polynomials of the
considered matrix are not changed.



– Multiply col+u with ar and subtract the result from col+d .
⇒ D+(a) → D++(a)

4. Generate the column pointer matrix Γ++ of D++(a)7

⇒ D∗(a) = (Γ++)−1 D++(a) and go to step 2

5. D∗
K(a) := D∗(a)

return D∗
K(a)

If the conditions from above are fulfilled, and D∗
K(a) is returned

by the algorithm, then D∗
K(a) can be generated by linear state

feedback.

In Section 6.4.2 it was argued that if the matrix DK(a) is known
it is straight forward to compute K. This is shown now:

DK(a) = (Bc
σi

)−1D∗
K(a)

= (Bc
σi

)−1(γγγ(a)−Ac
σi,K

Sc(a)) .

This leads to

Ac
σi,KSc(a) = γγγ(a)−Bc

σi
DK(a) (23)

and by comparison of coefficients the matrix Ac
σi,K

can be de-
termined. By equation (22) this directly provides

Kc = (Bc
σi

)−1(Ac
σi
−Ac

σi,K) . (24)

7 Example

For a short example consider the following LMS(2) in CCF

Ac =








0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
1 0 0 1 0







, Bc =








0 0
0 0
1 0
0 0
0 1







→

Ac
σi

=
[

0 0 0 0 0
1 0 0 1 0

]

Bc
σi

=
[

1 0
0 1

]

For analysis wrt. the autonomous case, u[k] = 0, first, the Smith
Form of the system dynamics Ac is determined, which yields
one system invariant 6= 1, that is c1(λ) = λ3(λ+1)2. Hence, the
only elementary divisor polynomial pi,irr(0) 6= 0 is the elemen-
tary divisor polynomial p1(λ) = (λ + 1)2 = λ2 + 1, the period
of which is τ1 = 2 (see Definition 2.6). Finally, by equations
(14), (11) the cycle sum for the autonomous system reads

Σ = 1[1]u
21 −1

1
[1]u

22 −21

2
[2] = 2[1]u1[2] .

For a synthesis the controlled system shall have the invariant
polynomials c1,K(a) = (a2 +a+1)(a+1)2 and c2,K(a) = a+1
(control objective: 4[1]u2[2]u4[3]u2[6]). The controllability
indices are c1 = 3 and c2 = 2. By Theorem 6.4 we compute

1→ ∑1
i=1 deg(ci,K(a)) = 4 ≥ ∑1

i=1 ci = 3
√

∑2
i=1 deg(ci,K(a)) = 5 ≥ ∑2

i=1 ci = 5
√

2→ D∗(a) =




a4 +a3 +a+1 0

0 a+1





3→ D+(a) =




a4 +a3 +a+1 a2 +a

0 a+1



 −→ D++(a) =




a+1 a2 +a

a3 +a2 a+1





4→ D∗(a) =




a3 +a2 a+1

a+1 a2 +a




2,5−→ D∗

K(a) =




a3 +a2 a+1

a+1 a2 +a





7The scalar column pointer matrix consists of elements in Fq that are the
coefficients of the highest degree monomials in a in each column of D++(a).

Now Kc can be computed. With equation (23) we have

Ac
σi,K








1 0
a 0
a2 0
0 1
0 a








=

[
a3 0
0 a2

]

︸ ︷︷ ︸

γγγ(a)

−
[

1 0
0 1

]

︸ ︷︷ ︸

BC
σi

[
a3 +a2 a+1
a+1 a2 +a

]

︸ ︷︷ ︸

D∗
K(a)

=

[
a2 a+1

a+1 a

]

and with (24) the feedback matrix KC, which fits the given sys-
tem with the desired invariant polynomials, can be calculated

Kc =
[

1 0
0 1

]−1([
0 0 0 0 0
1 0 0 1 0

]

−
[

0 0 1 1 1
1 1 0 0 1

])

=

[
0 0 1 1 1
0 1 0 1 1

]

.

8 Conclusion

In this paper we have considered Linear Modular Systems over
the Galois Field Fq. In the analytic part it has been shown
that the cyclic properties of this class of systems depend on the
invariant polynomials of the system dynamics. Beyond this,
an algorithm has been introduced that decides if there exists
a linear feedback which fits the system with desired invariant
polynomials and, if the decision is positive, computes an ap-
propriate feedback matrix.8 Further research will involve the
nonlinear case and the computation of the cyclic state vectors.
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