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Abstract: This paper addresses abstraction-based supervisory control for plant and specification be-
haviours that are not necessarily w-closed, i.e. plant behaviours that exhibit eventuality properties and
specifications that impose eventuality properties on the closed loop. Technically, the core idea is to
combine results from previous work on abstraction-based supervision of input-output behaviours with
results on supervisory control of w-languages. As our main result, we identify a controllability condition
for the plant, that ensures a nonblocking closed-loop behaviour with a controller that has been obtained

for a plant abstraction.
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1. INTRODUCTION

The perspective on abstraction-based supervisory control taken
in this paper is originally motivated by a class of hybrid control
problems, as discussed by, e.g., Cury et al. [1998], Koutsoukos
et al. [2000], Moor and Raisch [1999]. Given a plant model
with continuous and discrete dynamics, the cited literature
proposes methods to obtain a purely discrete plant abstraction
with a finite state space. A controller is then designed for the
plant abstraction, using variants of supervisory control theory,
[Ramadge and Wonham, 1987, 1989]. A crucial question in this
approach to hybrid systems is, whether the resulting controller
will enforce the desired closed-loop properties not only for
the plant abstraction but also for the actual hybrid plant. The
affirmative answers given by Cury et al. [1998], Koutsoukos
et al. [2000], Moor and Raisch [1999] have in common that
the abstraction must account for all possible behaviour of the
actual plant. In consequence, safety properties, that require the
closed loop not to attain critical configurations, are retained in
an abstraction-based design. In addition, the proposed methods
guarantee that the closed loop is locally nonblocking, in the
sense that at any instance of time controller and plant can agree
to execute one more transition. This is a prerequisite, but not
a sufficient condition, for a well defined closed-loop behaviour
on the infinite time axis. The latter is obtained by additional
structural conditions on plant and controller.

In this paper, we extend the results presented by Moor and
Raisch [1999] to address general liveness properties, i.e., prop-
erties that require desired configurations to be eventually at-
tained;, for a detailed classification of liveness properties in the
context of temporal logics, see [Baier and Kwiatkowska, 2000,
Manna and Pnueli, 1990]. Technically, liveness properties are
related to the notion of w-closedness: an w-language (language
of infinite words) is w-closed if it can be represented as the ad-
herence (infinite extension) of a prefix-closed *-language (lan-
guage of finite words). In particular, an w-closed language can
not express liveness properties. The structural conditions used
by Moor and Raisch [1999] to achieve a nonblocking closed-

loop behaviour include an w-closed plant behaviour and an w-
closed controller. Thus, in the setting of [Moor and Raisch,
1999], neither the plant can exhibit liveness properties, nor can
the specification require the controller to impose liveness prop-
erties on the closed loop. In this paper we drop the prerequisite
of an w-closed plant and allow for not w-closed controllers.

As in [Moor and Raisch, 1999], we use a specialized notion
of inputs and outputs motivated by behavioural systems theory
[Willems, 1991], where the plant must accept any input and the
output must not anticipate the input. However, for not neces-
sarily w-closed behaviours, these conditions turn out too weak
in that they fail to ensure a nonblocking closed loop. In this
paper, we develop additional requirements that are technically
related to the notion of w-controllability proposed by Thistle
and Wonham [1994a]. There, the supervisor must always be in
the position to resolve specified closed-loop liveness properties.
Our main result is that a particular variation of w-controllability
imposed on the plant itself ensures a nonblocking closed loop,
even when the controller has been designed for a plant abstrac-
tion. For illustration purposes, we use an academic example
with a countable infinite state set. However, our results are
immediately applicable to hybrid systems with discrete external
behaviour, e.g., in the setting of Moor and Raisch [1999].

This paper is organized as follows. Section 2 summarizes
notation and fundamental facts regarding *-languages and w-
languages. In Section 3, we recover results from Moor and
Raisch [1999] in standard DES notation and identify how it
relates to the supervision of w-languages presented in [Kumar
et al., 1992, Ramadge, 1989]. Extensions to not necessarily w-
closed languages are developed in Section 4, on the basis of
[Thistle and Wonham, 1994a,b], including our main result on
abstraction-based control in the presence of liveness properties.

2. PRELIMINARIES

Let X be a finite alphabet. The Kleene-closure ¥* is the set of
finite strings s = 0103+ 0y, n € N, 0; € Z, and the empty string



€€ X*, e¢X. The length of a string s € £* is denoted |s] € Ny,
with |e| = 0. A =-language over X is a subset L C X*.

If for two strings s,r € X* there exists t € ¥, t # €, such that
s =rt, we say r is a strict prefix of s, and write r < 5; r is a
prefix of s if r is a strict prefix of or equal to s and we write
r < 5. The prefix of s with length 1 € Ny, n < |s], is denoted s,

The prefix of a =-language L is defined by preL :={r|dse L:
r < s} € X*. A language L is prefix-closed if L = preL. The
prefix operator distributes over arbitrary unions of x-languages.
However, for the intersection of two *-languages L and H over
%, we have pre (LN H) C (preL) N (pre H). If equality holds, L
and H are said to be nonblocking. This is trivially the case for
HCL.

A =-language L is complete if for all s € L there exists o € £
such that so € pre L; see e.g. [Kumar et al., 1992]. Technically,
L = 0 is complete. Completeness of a *-language must not be
confused with behavioural completeness as defined by Willems
[1991].

Given two #-languages L and K C L over X and a set of
uncontrollable events £, C X, we say K is controllable w.r.t. L
if (pre K)Z, N(pre L) C pre K. By Ramadge and Wonham [1987,
1989], controllability is retained under arbitrary union: given a
family of controllable languages K, C L, a € A, then the union
K := Ugea K, is controllable, too.

The set of w-strings (countably infinite length strings) over
is denoted X% ;= {w|w = 010073+ , with o; € X for all i € N}.
An w-language over X is a subset L C X If for two strings
w e X¥, reX¥, there exists v € £“ such that w = rv, we say r is
a strict prefix of w and write r < w. The strict prefix of w with
length 1 € Ny is denoted w™ € X*. The prefix of an w-language
L C X% is defined pre L = {s|Aw € L : s < w} C X*. Note that,
the prefix of any w-language is complete. The prefix operator
distributes over arbitrary unions of w-languages. However, for
the intersection of two w-languages £ and H over X, we have

pre (LNH) C (pre L) N (pre H).

Two w-languages £ and H over ¥ are w-nonblocking if
pre(LNH) = (pre L) N (pre H). Two w-languages L and H
over X are locally nonblocking if (pre L) N (pre H) is complete.
Any two languages that are w-nonblocking are also locally
nonblocking. Note that for H C £ both nonblocking conditions
are trivially satisfied.

For a language L C X*, the adherence is defined adhL = {w €
XYY nelNgdreX*: Wy e L}; see e.g. [Boasson and Nivat,
1980]. If and only if a *-language L € X* is complete and prefix-
closed, we have preadh L = L; see [Kumar et al., 1992].

The w-closure of an w-language L is defined by cloL :=
adhpre £. This definition is equivalent to the fopological clo-
sure w.r.t. the topology induced by the metric d: Z% X X“ —
RE, with d(w,v) := (3) “min{n € N|w® # v} for w # v and
dw,w) = 0, respectively; see [Boasson and Nivat, 1980]. An
w-language £ is said to be w-closed if cloL = L, ie., if
adhpre £ = L. In the context of behavioural systems theory, w-
closedness is referred to as behavioural completeness; see, e.g.,
[Willems, 1991], Definition 11.4. The adherence of a prefix-
closed #-language is w-closed. Given two w-languages £ and
H, we say L is relatively w-closed w.r.t. H if £L=(cloL)n
H. The closure operator distributes over finite unions of w-
languages. However, for an arbitrary family of w-languages £,
a€ A, we have Ugeg clo L, Cclo(UgeaLy).

Provided that two w-languages £ and H are locally nonblock-
ing, clo(LNH) = (cloL) N (cloH) is equivalent to the two
languages to be w-nonblocking. In particular, for w-closed lan-
guages, the local nonblocking property is equivalent to the w-
nonblocking property.

3. ABSTRACTION-BASED CONTROLLER SYNTHESIS

Given a plant and a plant abstraction, we ask for conditions,
under which controller synthesis can be carried out based on
the abstraction while the resulting controller is guaranteed to
enforce desired closed-loop properties for the actual plant. In
our discussion, we model the plant, its abstraction and the
controller by w-languages and we require the closed loop to
satisfy a language inclusion specification. In this section, we
only address the local behaviour, which is characterized by the
prefixes of the respective languages, or, equivalently, by their w-
closure. As a structural liveness property, we require the closed
loop to be locally nonblocking.

In order to facilitate the comparison of solutions to different
control problems, we refer to the following formal definition:

Definition 1. A control problem is a tuple (X, X, £, &), where
Y is the overall alphabet, X, C X is the set of uncontrollable
events, L C X% is the plant behaviour and & C X is the
specification. A controller H C X% is locally admissible if

(i) (pre L)N(pre‘H) is controllable w.r.t. pre L ; and

(ii) £ and H are locally nonblocking.

A controller H C ¢ is a local solution if it is locally admissible
and if it locally enforces the specification:

(iii) (pre L)N(preH) C pre&. O

Our notion of a control problem and its solutions refers to the
plant and controller dynamics and, thereby, implicitly imposes
conditions on the closed-loop behaviour. This contrasts the
common approach taken in supervisory control theory, where
the controller is modelled by a supervisor map to implement a
causal feedback. However, at this stage, the difference is purely
cosmetic and we can recover the existence of a least restrictive
solution in analogy to the established theory.

Proposition 2. Given a control problem (Z, Z,, £, &), the set
of all local solutions is non-empty and forms a complete upper
semi-lattice w.r.t. set-inclusion. O

According to the above proposition, a control problem exhibits
a uniquely defined supremal solution, in the following denoted
H'". Since the language inclusion specification in Definition 1,
condition (iii), refers to the prefix only, and, thus, does not
impose a liveness property on the closed loop, H' turns out
w-closed.

Proposition 3. If H is a local solution to the control problem
(X, Zy, L, &), then so is cloH. In particular, the supremal local
solution H' is w-closed. O

As a consequence, for an w-closed plant £, the closed loop
under minimal restrictive control H' is w-nonblocking. In this
case, the intersection K7 := LNH" is an adequate model of the
infinite time closed-loop behaviour. The following proposition
generalizes this observation. It relates our notion of a solution to
a control problem to the infinite-time controllability condition
proposed by Ramadge [1989].

Proposition 4. Let (2, X, L, &) be a control problem where the
specification & is relatively closed w.r.t. L. If an w-closed local



solution H and the plant £ are w-nonblocking, then the closed-
loop K := LN H possesses the following properties:

(1) preX is controllable w.r.t. pre L ;

(i) K is relatively w-closed w.r.t. £ ; and

(iii) K< & .
Vice versa, for any w-language K, that satisfies conditions (i)—
(>iii), H = cloK is a local solution. O

In particular, if the plant £ and the specification & are w-
closed, the prerequisites of the above proposition can always be
satisfied by using the minimal restrictive solution . Referring
to [Ramadge, 1989], Proposition 3.1, properties (i) and (ii)
then guarantee the existence of a supervisor map f: X* = T,
I':={y CZ|X, Cv}toimplement a causal feedback that enforces
the closed-loop behaviour K" := £ N H'; see Figure 1. For
the case that the plant and the specification are realized by
Biichi automata, Kumar et al. [1992] propose algorithms for
the computation of a transition system that implements K'; for
a software implementation see e.g. libFAUDES [2006-2011].
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Fig. 1. Closed loop with supervisor map f

We now address the situation where the controller design is
based on a plant abstraction £’ that accounts for all possible
behaviour of the actual plant £. In our discussion, we express
the latter requirement by the inclusion £ C £’. The inclusion is
motivated by hybrid systems, e.g., in the setting of [Cury et al.,
1998] or [Moor and Raisch, 1999].

It is easily verified that any solution H to the control problem
(%, Xy, L, &) when used as a controller for the actual plant £,
also satisfies conditions (i) and (iii) of Definition 1:

((pre £) N (preH))E, N (pre £)

((pre LY N (pre H))HZy N (pre L) N (pre L)

(pre L) N (pre H) N (pre L)

(pre £) N (preH),

N N

and
(preLYyN(preH) < (pre L)N(preH) C pre&.

However, the nonblocking property of Definition 1, (ii), in
general will not be satisfied. In [Moor and Raisch, 1999], a
variation of input-output behaviours [Willems, 1991] is used
to ensure a structural liveness property. There, input and output
symbols alternate, the plant accepts any input signal and the
controller accepts any output signal. This notion of inputs and
outputs is motivated by sampled-data continuous systems and,
in contrast to Figure 1, leads to the closed-loop configuration
illustrated by Figure 2: rather than to apply a control pattern that
enables a set of events, the controller here applies a particular
input symbol in order to receive the next output symbol.
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Fig. 2. Input/output system interconnection

The following definition restates two conditions from Moor
and Raisch [1999] that, when imposed on plant and controller,
justify the above interpretation of a closed-loop configuration.

Definition 5. Let £ be an w-language over X with input sym-
bols U C X. Then

(a) L has alocally free input U, if
(VseX, uelU ' elU)|suepreL = sy’ eprel];
(b) L has a relatively locally free input U w.r.t. K C X¢, if
(VseX, ueU)sucpreK, sepreL = suepreL]. O

A system with behaviour £ that satisfies condition (a) will at
any instance of time either accept any input symbol or no input
symbol at all. In the situation of alternating input and output
symbols £ C (UY)?, £ = UUY, and if L is w-closed and non-
empty, condition (a) is equivalent to a free input and a non-
anticipating output; see [Willems, 1991], Definition VIIL.3,
conditions (1) and (2). We will impose condition (a) on the plant
behaviour. On the other hand, we require the controller H C
(UY) to exhibit a relatively locally free input Y w.r.t. the plant
L. In this setting, (b) amounts to a controllability condition
where Y is regarded the set of uncontrollable events. With both
conditions in place, we obtain a closed-loop behaviour with
alternating input and output symbols that are locally accepted
by the plant and the controller, respectively. As intended, the
closed loop turns out locally nonblocking.

Proposition 6. Let ¥ = UUY be an alphabet partitioned in
input symbols and output symbols U and Y, respectively, and
consider a plant £ C (UY)“ and a controller H C (UY)“. If L
has a locally free input U and if H has a relatively locally free
input Y w.r.t. £, then £ and H are locally nonblocking. O

Remark 7. The prerequisite £, H C (UY)“ ensures not only
that input symbols and output symbols alternate, but also that
the sequence starts with an input symbol. This choice was
made deliberately: a corresponding proposition holds when all
sequences start with an output symbol, i.e. £, H C(YU)®. O

The following theorem summarizes the results for abstraction-
based controller synthesis obtained in this section.

Theorem 8. Let £ = UUY be an alphabet partitioned in input
symbols and output symbols U and Y, respectively, and con-
sider a plant £ C (UY)“ with locally free input U and a plant
abstraction L' C (UY)“, £ C L’. Then any local solution H
of the control problem (Z, Y, £, &) is also a local solution of
&Y LS. mi

If in addition to the hypothesis of Theorem 8 the plant and the
specification are w-closed, the supremal local solution H' to
(X, Y, L, E) and L are w-nonblocking. In this case, the infinite
time behaviour of the closed loop is modelled by KT := LNH"
and satisfies the specification w.r.t. infinite time, i.e. KT C E.

We illustrate our results by means of an academic example.
Consider a vehicle on a path that can be controlled by input
events e for “move to the east” and w for “move to the
west”, respectively. A measurement facility distinguishes a
home position and issues output events H for “home”, E for
“east of home” or W for “west of home”. Thus, the relevant
alphabets are given by U = {e,w}, Y = {H,E, W}, £ = UUY.
The dynamics of the vehicle are modelled by the transition
system given in Figure 3, where we use an infinite state space
to represent an unbounded path. For now, we restrict the initial
state to the home position H®. The plant behaviour £ is the set of
infinite words generated by the transition system starting from
HO. In the absence of further acceptance conditions, the unique
initial state and the determinism of the transition system imply
that L is w-closed. By inspection, U is verified to be a locally
free input.



Since state space enumeration is not feasible for an infinite
state set, we can not directly apply computational methods
from supervisory control theory. Thus, we resort to a plant
abstraction with finite state set. The abstraction L', realized
by the transition system in Figure 4, has been obtained by
aggregating all states east of position E1 and all states west
of position W1. It corresponds to the so called /-complete
abstraction with / = 1, as proposed by Moor and Raisch [1999],
and, consequently, we have indeed £ C L.

Fig. 4. Plant abstraction £’

We want to design a controller that enforces the vehicle to regu-
larly visit east and west positions. At this stage, we circumvent
eventuality and use the more restrictive formal specification
Figure 5 and thereby require the vehicle to alternate between
the positions E1 and W1. A controller has been obtained by
applying the algorithms presented by Kumar et al. [1992] to
the abstraction £’; see Figure 6. According to Theorem 8, the
controller is also a local solution for the actual plant. By w-
closedness of plant and specification, the closed loop is w-
nonblocking and satisfies the specification w.r.t. infinite time.
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Fig. 5. Specification &, projected onto {H, E, W}

Fig. 6. Controller H

The example was intentionally chosen to demonstrate the lim-
itations that arise from restricting the discussion to w-closed
behaviours. In particular, the formal specification was overly
restrictive and we required the plant initial state to be known.
We will continue the example at the end of the following section
to illustrate our results on abstraction-based controller synthesis
for not necessarily w-closed behaviours.

4. NOT NECESSARILY CLOSED BEHAVIOURS

For w-closed behaviours, we used a variation of input-output
behaviours to establish nonblocking abstraction-based control.
In order to address situations where the plant and/or the spec-
ification fail to be w-closed, stronger conditions are required
that account for the liveness properties modelled by the plant
or enforced by the controller. Such conditions have been pro-
posed by Wittmann [2010], where the technical dicussion is
based on a particular union representation of not w-closed lan-
guages. In this section, we follow a different approach in that

we define the notion of w-admissibility as a variation of w-
controllability ! and thereby relate our results to the work of
Thistle and Wonham [1994a,b]. As it turns out, the union repre-
sentation from Wittmann [2010] is recovered by Proposition 13
below.

Definition 9. Given a control problem (X, %,, £, &), a con-
troller H C X% is w-admissible if for all s € (pre £) N (pre H)
there exists Vs € LN H with s € preV; and

(i) preV is controllable w.r.t. pre £ ; and
(i1) YV, is relatively w-closed w.r.t. L.

A controller H C X is an w-solution if it is w-admissible and
if it enforces the specification for infinite time:

(ili) LNHCE. O

Conditions (i) and (ii) imposed on V; conform with the notion
of infinite-time controllability proposed by Ramadge [1989]. In
particular, for each V,, there exists a supervisor map f: * — T,
to implement a causal feedback that enforces the closed-loop
behaviour V. By quantification over all prefixes s from the
local closed loop (pre £) N (pre H), the above definition requires
the persistent existence of a supervisor map that can take over
to run the plant for infinite time within £ N . This is essen-
tially the same requirement as imposed by w-controllability,
according to the definition of Thistle and Wonham [1994a].
Indeed, for the case of H C L, w-admissibility can be verified
to be equivalent to w-controllability. However, in the context of
abstraction-based control, we also need to address the situation
where H ¢ L.

By the following proposition, w-admissibility implies local ad-
missibility and an w-nonblocking closed loop. In particular, for
an w-solution H to a control problem (Z, Xy, £, &) the inter-
section L NH indeed is an adequate model of the closed-loop
configuration and this justifies the terminology of Definition 9,
part (iii).

Proposition 10. Given a control problem (%, %, £, &), let H
denote an w-admissible controller. Then H is locally admissi-
ble, £ and H are w-nonblocking and the closed loop K = LNH
is w-admissible. O

Recall that, for w-closed languages, local admissibility implies
w-nonblockingness. Under the same hypothesis and refering
to Definition 9, we can choose V, = LN H to observe w-
admissibility. Together with the above proposition we conclude
that w-admissibility and local admissibility are equivalent for
w-closed languages.

As with local admissibility, w-admissibility is retained under ar-
bitrary union. Thus, any control problem (X, X, £, &) exhibits
a supremal w-solution H" and, in turn, a supremal closed-loop
behaviour K" = LNH".

Proposition 11. Given a control problem (X, X, £, &), the set
of all w-solutions is non-empty and forms a complete upper
semi-lattice w.r.t. set-inclusion. O

The following proposition characterises the closed-loop be-
haviour under minimal restrictive control H" as the union
of all closed-loop behaviours of local solutions that are w-
nonblocking and enforce the specification on infinite time.

! The terminology w-controllability, as defined by Thistle and Wonham
[1994a], must not be confused with the requirements for infinite-time con-
trollability proposed in Ramadge [1989]. In the context of this paper, w-
controllability is always understood in the sense of Thistle and Wonham
[1994a].



Proposition 12. Given the control problem (X, Xy, £, ), de-
note the supremal w-solution H" with supremal closed-loop
behaviour K" = £LNH". Then

K'=U{K C &l
pre K is controllable w.r.t. pre £, and
K is relatively closed w.r.t. L}. O

By the above union representation, K™ is identical to the supre-
mal w-controllable sublanguage as characterized in [Thistle and
Wonham, 1994a], Corollary 5.4. In particular, one may use
the algorithms presented in [Thistle and Wonham, 1994a,b] to
compute a realisation of K" based on suitable realisations of
L and &. An experimental software implementation for Biichi
automata is available within libFAUDES [2006-2011].

For the purpose of abstraction-based control, consider an w-
solution H to the control problem (X, X, £, &) where L’ is an
abstraction of the actual plant £, i.e. LC L. By LNnHC L'N
H C &, the controller H enforces the specification for infinite
time when applied to the actual plant £, and we are left to estab-
lish conditions for w-admissibility. Motivated by Theorem 8 for
w-closed behaviours, we partition the overall alphabet in input
symbols and output symbols and require them to alternate, i.e.
¥ = UUY, L C (UY)?. To observe that one can not expect a
locally free input of the plant to be a sufficient condition for an
w-nonblocking closed-loop configuration, consider the transi-
tion system given in Figure 7. Here, we interpret the marked
states according to Biichi’s acceptance condition: an infinite
execution sequence is accepted if it passes infinitely often some
marked state. Clearly, the corresponding w-language £ has a lo-
cally free input U. Furthermore, £ can be verified to satisfy the
behavioural conditions for a free input and a non-anticipating
output; see [Willems, 1991], Definition VIII.3, conditions (1)
and (2). However, the system must eventually exit the states
A or B by the input symbol b or a, respectively, to reach a
marked state. Thus, £ exhibits a liveness property that restricts
the input on the infinite time axis in relation to the output. If
a controller design is based on an abstraction, e.g. £ :=clo £,
the synthesis procedure may not respect the liveness property
of the actual plant. For example, the controller H = a{Aa, Bb}*
is w-admissible to the abstraction £’, but conflicts with the
acceptance condition of the actual plant L.

Fig. 7. Eventuality property imposed on the input

To prevent this conflict situation, we require the plant to be al-
ways in the position to choose its outputs such that it satisfies its
own liveness properties and to do so independently of the future
inputs. This can be formally expressed as a controllability con-
dition where the input symbols are regarded the uncontrollable
events. In summary, we impose the following conditions on the
actual plant £:

Al L has alocally free input U ; and
A2 [ is an w-solution to the control problem (X, U, clo L, L).

Note that, for w-closed plant behaviours £, A2 is trivially
fulfilled, and in this sense the structural conditions Al and
A2 are a generalisation of the approach taken in the previous
section for w-closed plants.

Furthermore, if a plant £ satisfies A2, the corresponding formal
closed-loop behaviour amounts to (clo£) N L = L. Since, in
A2, L also plays the role of the specification, we must have
L =(cloL)nH" = K", where H" denotes the supremal w-
solution of (X, U, clo L, £). When £ is realized by a finite
transition system, A2 can be verified by essentially the same
procedures as those used for the computation of the supremal
w-solution.

The following proposition states an alternative characterization
of Al and A2. It turns out useful for the verification of Al and
A2 for infinite-state systems when eventuality properties are
encoded by an unknown initial state. This is the case for the
hybrid systems discussed in [Moor et al., 2002] as well as for
the example presented at the end of this section.

Proposition 13. Let £ be an w-language over X with input
symbols U C Z. Then L satisfies Al and A2 if and only if there
exists a family K, a € A, such that £ = U,e4K,;, where, for all
acA

(a) K, has alocally free input U, and
(b) K, is w-closed. |

Our main result is the following generalisation of Theorem 8
for not necessarily w-closed behaviours.

Theorem 14. Let T = UUY be an alphabet partitioned in input
symbols and output symbols U and Y, respectively. Let the
plant L € (UY)® satisfy the requirements Al and A2, and
consider a plant abstraction £’ C (UY)“, £ C L’. Then any w-
solution H to the control problem (%, Y, £, &) is also an w-
solution to (%, Y, L, &). O

We continue the example from Section 4, still referring to the
transition system in Figure 3 as our plant model. However, we
do not restrict the initial state to any particular value except that
an input event must be accepted. To observe that the resulting
plant behaviour £ is not w-closed, consider an infinite number
of w input symbols events to be applied and assume that the
first output symbol is E. Thus, the vehicle starts at some east
position and will eventually reach the home position. However,
the number of transitions required is unbounded and we have
(WE)* C pre £ while adh(wE)* ¢ £, and, hence, (WE)* € cloL
but (WE)“ ¢ L. This example illustrates that, even in the absence
of any particular acceptance condition, an unknown initial state
within an infinite range can lead to a not w-closed behaviour.
This may be regarded as an interpretation of how eventuality
properties are implemented by a physical plant.

Regarding conditions Al and A2, we represent L as the union
over all languages £, g € O, generated by the transition system
Figure 3, where the initial state is parametrized by ¢ and Q
denotes the overall state set. Determinism of the transition
system and the unique initial state imply that each £, is w-
closed. The free input U is verified by inspection, and, hence,
conditions Al and A2 are implied by Proposition 13.

To express liveness properties in the plant abstraction, we use
marked states and interpret the transition system w.r.t. Biichi’s
acceptance condition. The particular abstraction £’, Figure 8,
has been obtained by merging all east and west positions and by
choosing a marking that expresses the plant property that when
starting in a west position and driving continuously east, the
vehicle will eventually pass the home position. The abstraction
L’ does, however, not possess the original plant property that
driving two steps to the east and one to the west will also
eventually lead to the home position; i.e., we have L' C L.



Fig. 8. Plant abstraction £’ with liveness properties

In our specification, Figure 9, we require that an east posi-
tion is eventually followed by a west position and vice versa.
The below controller has been obtained based on the plant
abstraction £’ using the software implementation within lib-
FAUDES [2006-2011]. By Theorem 14, it also is an w-solution
to the control problem for the actual plant. In particular, £ and
H are w-nonblocking and K = LN H represents the closed-
loop behaviour. Regarding the respective transition systems, K
consists of all infinite strings that pass marked states of both,
plant and controller, infinitely often. Note that this contrasts
the common interpretation for x-languages, realized by finite
state automata, where marked states must be attained simulta-
neously.

Fig. 10. Controller H

In contrast to Section 3, the controller here allows the vehicle
to visit any position. It can, for example, move arbitrarily far to
the east by executing any finite sequence of eE events in state
C3. Since the respective states are not marked, it can, however,
not execute eE forever. Thus, when in state C3 the controller
must eventually move to the west. If it does so sufficiently long,
the according wE sequence will be eventually followed by wH
to attain state C4. This liveness property is expressed by the
plant abstraction and it is present in the actual plant. From C4,
the controller can reach a marked state C7 by a subsequent wi,
finally visiting a west position in compliance with the specifica-
tion. Regarding a physical implementation of the controller #,
we may refer to the union representation of Proposition 12 and
resolve eventuality properties of H by choosing one particular
component as basis of an implementation.

5. CONCLUSION

We identified conditions for abstraction-based controller syn-
thesis in the presence of liveness properties that guarantee a

well defined closed-loop behaviour on the infinite time axis.
Technically, the proposed conditions are built on the notion
of w-controllability, as introduced in [Thistle and Wonham,
1994a]. In order to guarantee an w-nonblocking closed loop,
the conditions are slightly stronger than free inputs and non-
anticipating outputs used in [Moor and Raisch, 1999]. The
perspective we take is motivated by the supervision of hybrid
systems and our results are directly applicable in the context
of e.g. [Moor and Raisch, 1999, Cury et al., 1998], provided
that a discrete event abstraction can be obtained. In ongoing
work, we address the computation of finite state abstractions
that maintain relevant liveness properties. The focus there is on
linear hybrid automata, where specific liveness properties can
be characterized by sets of continuous states that are invariant
under affine transformations obtained from reachability analy-
sis.
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