
Technical Report

Lehrstruhl für Regelungstechnik

Friedrich-Alexander Universität Erlangen-Nürnberg

Cauerstraße 7, D-91058 Erlangen, Germany

Supervisory Control of Non-Terminating Processes:
an Interpretation of Liveness Properties

Thomas Moor, 2017-11-25 (2nd public revison1)

Abstract: This report discusses the control of non-terminating processes that are

representable as ω-languages. More specifically, I am interested in how technical

liveness properties identified for the model are interpreted w.r.t. the actual phe-

nomenon in closed-loop configuration with a physical implementation of a super-

visor. This report evolved through a number of stages, starting in late 2015. Its

initial purpose was to support a discussion of the relationship between supervi-

sory control and reactive synthesis. This topic was followed up in a cooperative

research project with Anne-Kathrin Schmuck and Rupak Majumda, MPI for Soft-

ware Systems, Kaiserslautern, Germany; see Schmuck et al. (2017). It was then

decided to file the present report independently for its potential value as a “gen-

tle introduction” to the supervision of ω-languages. The first public revision was

substantially improved by Anne’s feedback.

Keywords: discrete-event systems, supervisory control, ω-languages, sequential

behaviours, liveness properties

Introduction

For the common synthesis problem in supervisory control, we are given a plant

and an upper bound specification on the closed-loop behaviour. Then, the task

is to synthesise a controller that restricts the plant behaviour accordingly. We

1Fixed two annoying typos in technical formulae on 2018-10-22

consider the situation of non-terminating processes and represent the plant and the

specification as ω-languages L ⊆ Σω and E ⊆ Σω, respectively, where Σω denotes

the set of infinite length strings of symbols from some alphabet Σ. An ω-language

is topologically closed if it can be characterised in terms of its prefix. The absence

of this property is the main concern of this report: an ω-language that fails to

be topologically closed expresses liveness properties other than not to deadlock

with eventuality as the prototypical example. Regarding the synthesis problem, we

distinguish four specific cases depending on which of the parameters L and E are

assumed to be topologically closed.

(1) When the only liveness property to address is not to deadlock, the synthesis

problem can be solved by a variation of methods used for supervisory

control of ∗-languages. Technically, this corresponds to bothL and E being

closed. For this “basic case” we refer to Ramadge and Wonham (1987)

with the further development to prevent deadlocks by Ramadge (1989) and

by Kumar et al. (1992).

(2) When a language inclusion specification imposes additional liveness re-

quirements, the synthesis problem can be identified as a special case of

the study by Thistle and Wonham (1994a,b). Here, we assume L to be

closed, with no further restrictions regarding the closedness of E. The algo-

rithmic solution proposed in the given references substantially differs from

the methods commonly employed for ∗-languages. With L = Σω, reactive

synthesis in its basic form can be interpreted in this context.

(3) When the plant exhibits additional liveness properties which the supervisor

shall respect, the synthesis problem is interpreted in the context of results

reported by Ramadge (1989), with relevant aspects of the synthesis problem

addressed by Kumar et al. (1992) and by Moor et al. (2012). Technically,

this case is characterised by E to be relatively closed w.r.t.L, with no further

restrictions regarding the closedness of L. As with case (1), this case can

be addressed by a variation of methods used for ∗-languages.

(4) When the plant exhibits liveness properties that a supervisor may utilise in

order to enforce further liveness properties imposed by a language inclusion

specification, we again refer to Thistle and Wonham (1992, 1994a). Here,

neither L nor E are assumed to be closed or relatively closed. Technically,

this “most general case” subsumes the three previous cases.

Most technical results in this report are taken from the literature as cited above —

there is nothing really new. The purpose of the discussion is to review the implicit

requirements imposed on the phenomenon under control. The report is organised

in Sections 1 to 4, one for each of the above cases, and an additional Section 5 to

review liveness in the context of abstraction-based supervisory control. The latter

appears to be a natural setting for relevant applications in which the plant fails to be

topologically closed. The additional conditions imposed for abstraction-based syn-

thesis are closely related to those conditions, that I believe are also sensible when

encoding liveness properties of the plant as assumptions in an assume-guarantee

- 2 -

reasoning. A discussion of this conjecture was the initial motivation of this report

and it is followed up in all detail by Schmuck et al. (2017).

Preliminaries

We outline notation, operators and elementary properties regarding ∗-languages

and ω-languages as they are relevant to this report.

1: Finite strings and ∗-languages

Let Σ be a finite alphabet. The Kleene-closure Σ
∗ is the set of finite strings s =

σ1σ2 · · ·σn, n ≥ 1, σi ∈ Σ, and the empty string ǫ ∈ Σ
∗, ǫ < Σ. If for two strings

s, r ∈ Σ
∗ there exists t ∈ Σ

∗, such that s = rt, we say r is a prefix of s, and write

r ≤ s; r is a strict prefix of s, and we write r < s, if r ≤ s and r , s. A ∗-language

over Σ is a subset L ⊆ Σ
∗
.

2: Prefix and prefix-closure

The prefix of a ∗-language L is defined by pre L := {r| ∃ s ∈ L : r ≤ s} ⊆ Σ
∗.

The prefix operator distributes over arbitrary unions of ∗-languages. However,

for the intersection of two ∗-languages L and H over Σ, we have pre (L ∩ H) ⊆

(pre L) ∩ (pre H). If equality holds, L and H are said to be non-conflicting. This is

trivially the case for H ⊆ L. The prefix of a ∗-language is also referred as its prefix-

closure (or short closure). A language L ⊆ Σ
∗ is prefix-closed or (short closed)

if L = pre L. Prefix-closedness is retained under arbitrary union and arbitrary

intersection, i.e., for a family of closed ∗-languages, the intersection and the union

are closed, too. A language K is relatively prefix-closed w.r.t. L if K = (pre K) ∩ L.

Relative prefix-closedness w.r.t. a language L is retained under arbitrary union and

arbitrary intersection. The intersection (pre K) ∩ L is always relatively closed w.r.t.

L. If a language K is relatively closed w.r.t. a closed language, then K itself is

closed. Given three languages K, M, L ⊆ Σ
∗, such that K is relatively closed w.r.t.

M and M is relatively closed w.r.t. L, then K is relatively closed w.r.t. L.

3: Completeness and controllability

A ∗-language L is complete if for all s ∈ L there exists σ ∈ Σ such that sσ ∈ pre L;

see e.g. Kumar et al. (1992). Technically, L = ∅ is complete. Completeness is

retained under arbitrary union. Completeness of a ∗-language is also referred to

liveness and must not be confused with behavioural completeness as defined by

Willems (1991). In the context of control and unless otherwise noted, the alphabets

Σ, Σc and Σuc refer to the common partitioning Σ = Σc∪̇Σuc in controllable events

- 3 -

Σc and uncontrollable events Σuc, respectively. Given two ∗-languages L and K over

Σ, we say K is controllable w.r.t. L if (pre K)Σuc ∩ (pre L) ⊆ pre K. By Ramadge

and Wonham (1987, 1989), controllability is retained under arbitrary union.

4: Infinite strings and ω-languages

The set of ω-strings (countably infinite length strings) over Σ is denoted Σω :=

{w |w = σ1σ2σ3 · · · , with σi ∈ Σ for all i ∈ N}. An ω-language over Σ is a subset

L ⊆ Σ
ω. If for two strings w ∈ Σ

ω, r ∈ Σ
∗, there exists v ∈ Σ

ω such that w = rv,

we say r is a strict prefix of w and write r < w. The prefix of an ω-language

L ⊆ Σ
ω is defined preL = { s | ∃w ∈ L : s < w} ⊆ Σ

∗. Note that the prefix of any

ω-language is complete. The prefix operator distributes over arbitrary unions of

ω-languages. However, for the intersection of two ω-languages L and H over Σ,

we have pre (L ∩H) ⊆ (preL) ∩ (preH).

5: Limit and topological closure

For a language L ⊆ Σ
∗
, the limit is defined lim L = {w ∈ Σ

ω
|w has infinitely

many prefixes in L}. If and only if a ∗-language L ⊆ Σ
∗ is complete and prefix-

closed, we have pre lim L = L; see Kumar et al. (1992). Thus, we have preL =

pre lim preL for arbitrary languages L ⊆ Σω. The closure of an ω-language L

is defined by cloL := lim preL. This notion of a closure can indeed be induced

by a metric and therefore is also referred to as the topological closure. An ω-

language L is topologically closed (or short closed) if L = cloL. In the context

of behavioural systems theory, topological closedness is referred to as behavioural

completeness; see, e.g., Willems (1991), Definition II.4. The limit of a prefix-

closed ∗-language is closed. The topological closure operator distributes over

finite unions, however, for an arbitrary family of ω-languages La, a ∈ A, we have

∪a∈A cloLa ⊆ clo (∪a∈ALa); see also (Ramadge, 1989). Topological closedness is

retained under arbitrary intersection, but, and in contrast to prefix-closedness, it is

not retained under arbitrary union. Given two ω-languages K and L, we say K

is relatively closed w.r.t. L if K = (cloK) ∩ L. The intersection (cloK) ∩ L is

always relatively closed w.r.t. L. If a language K is relatively closed w.r.t. a closed

language, then K itself is closed. Given three languages K , M, L ⊆ Σ∗, such

that K is relatively closed w.r.t.M andM is relatively closed w.r.t. L, then K is

relatively closed w.r.t. L.

6: Non-conflicting ω-languages

Two ω-languages L andH over Σ are non-conflicting, if pre (L ∩H) = (preL) ∩

(preH). The two languagesL andH are locally non-conflicting if (preL)∩(preH)

is complete. Any two languages that are non-conflicting are also locally non-

conflicting. Note that for H ⊆ L both non-conflicting conditions are trivially

satisfied. Provided that two ω-languages L and H are locally non-conflicting,

clo (L ∩H) = (cloL) ∩ (cloH) is equivalent to the two languages to be non-

conflicting. In particular, both non-conflicting conditions are equivalent for closed

- 4 -

languages.

7: Automata

An automaton is a tuple G := (Q, Σ, δ, Qo, Qm) with Qm ⊆ Q, Qo ⊆ Q and the

transition relation δ ⊆ Q × Σ × Q. We write δ(q, σ) for the set of states that can

be reached from q ∈ Q by a transition labelled σ ∈ Σ, i.e., δ(q, σ) := { q′ ∈

Q | (q, σ, q′) ∈ δ }, with the common inductive extension to a string-valued second

argument s ∈ Σ
∗ by δ(q, ǫ) := {q} and δ(q, sσ) := δ(δ(q, s), σ). If |Qo| ≤ 1

and |(δ(q, s)| ≤ 1 for all q ∈ Q, σ ∈ Σ, then G is said to be deterministic. For

deterministic automata, we occasionally write δ(q, s) = q′, q′ ∈ Q, and δ(q, s)! as

short forms for δ(q, s) = {q′} and δ(q, s) , ∅, respectively.

With G, we associate the generated ∗-language L(G) := { s ∈ Σ∗ | δ(Qo, s) , ∅ }

and the accepted ∗-language Lm(G) := { s ∈ Σ∗ | δ(Qo, s) ∩ Qm , ∅ }. Languages

that are accepted by a finite automaton are referred to as regular. Given a ∗-

language L ⊆ Σ
∗, a minimal realisation can be constructed with the state set

Q = Σ
∗
/ [≡L] , where [≡L] ⊆ Σ∗ × Σ

∗ denotes the Nerode equivalence w.r.t. L

and is defined by s′ [≡L] s′′ if and only if (∀ t ∈ Σ
∗)[s′t ∈ L ⇔ s′′t ∈ L]. In

particular, L is regular if and only if [≡L] consists of finitely many equivalence

classes. Any finite automata can be converted to a deterministic finite automata

without affecting the associated languages. Regarding ω-languages, we reinterpret

G as Büchi automaton with associated generated ω-language B(G) := lim L(G)

and accepted ω-language Bm(G) consisting of all those infinite strings w ∈ B(G)

for which there exists a corresponding path through the graph δ which starts in Qo

and passes through Qm infinitely often. For deterministic automata, this amounts to

Bm(G) = lim Lm(G). The class of languages accepted by finite deterministic Büchi

automata is a strict subset of the class of languages accepted by finite but not-

necessarily deterministic Büchi automata. The latter are referred to as ω-regular

languages.

1 The Basic Case

Following the introduction given in Ramadge and Wonham (1989), we consider

phenomena that are characterised by distinguished internal configurations, possibly

represented as a finite state set. Transitions from one to another configuration occur

at discrete instances of physical time and are labelled with external events from

some alphabet Σ. It is assumed that an observation of the phenomenon over a finite

duration of physical time yields a finite string s ∈ Σ
∗, i.e., the physical timing is

regarded irrelevant and the string s is interpreted w.r.t. logic time. The set of all

strings the phenomenon can generate during an arbitrary finite duration of physical

time is referred to as the local behaviour Lloc ⊆ Σ
∗. Note that, in order to generate a

- 5 -

string s ∈ Lloc, all prefixes pre s must have been generated before. Hence, the local

behaviour is prefix closed. At this stage, we consider the discrete-event system Lloc

as a formal model of the phenomenon and we summarise our considerations as an

informal hypothesis that relates the phenomenon with model.

Hypothesis — the local behaviour as a model: during any finite

duration of physical time, the phenomenon generates not more

than a finite number of events; at any instance of physical time,

the phenomenon may only generate an event that together with

the event sequence generated so far forms a string from the local

behaviour.

Safety properties require “bad things not to happen”. In the proposed modelling

framework, safety properties can be conveniently expressed as an upper bound on

the local behaviour: with E ⊆ Σ
∗ the complement of the “bad things” we say that

the phenomenon exhibits the safety property E if the model satisfies the inclusion

Lloc ⊆ E. There are two paths to argue that E can be chosen prefix closed. First, the

verb “to happen” is understood to refer to an instance of time and if “a bad thing

ever happened” this will remain to be the case for all future. Thus, we may assume

that the complement of E is suffix closed,

(∀ s, t ∈ Σ
∗

)[s < E ⇒ st < E] , (1)

which is equivalent to E being prefix closed. Second, since the models under

consideration are prefix closed languages, the upper bound E in the inclusion

Lloc ⊆ E can be equivalently substituted by its supremal prefix closed subset.

Liveness properties require “good things to happen”. In addressing non-termi-

nating processes, the liveness property relevant for this section is not to deadlock.

In terms of the model, we require that Lloc is complete, i.e.,

(∀ s ∈ Lloc ∃σ ∈ Σ)[sσ ∈ pre Lloc] . (2)

In contrast to the situation of safety properties, the technical requirement imposed

on the model does not suffice to conclude a liveness property of the phenomenon.

The following hypothesis is justified by the term “non-terminating process”.

Hypothesis — non-terminating process: if, at any instance of

physical time, the local behaviour indicates that the event se-

quence generated so far can be extended by one more event, then

the phenomenon, for any configuration that is compatible with

the event sequence generated so far, will eventually generate one

more event.

Consequence — provided that the local behaviour is complete,

an infinite number of events will be generated during the elapse

of an infinite physical duration.

- 6 -

The notion of an infinite physical duration should be of no concern: while a

physical phenomenon is not expected to be operational for an infinite duration, an

infinite time axis is a common abstraction to reason about long term perspectives.

Regarding the clause on the internal configuration, common supervisory control

refers to a deterministic automaton realisation. Then, the above hypothesis requires

that some enabled transition will be executed eventually, where the persistent ex-

istence of enabled transitions is implied by the technical liveness requirement

imposed on the model. The latter implication does not hold for non-deterministic

realisations. Here, the above hypothesis needs to be accompanied by the tech-

nical requirement that for every reachable state there exists at least one enabled

transition.

Example: stack feeder, capacity 2, local behaviour. The deterministic automaton G

in the below Figure 1 realises the local behaviour Lloc = L(G) of a prototypical stack

feeder with capacity two. Its stack is initially loaded with two workpieces where

the lower one can be fed to its environment, say, a transport system or a processing

machine. Feeding is indicated by the event f. After feeding all workpieces, the stack

feeder becomes empty, immediately indicated by event e. The event r indicates a

reload to the full capacity from some unlimited supply of workpieces.

Figure 1: stack feeder, capacity 2, local behaviour

For supervisory control as proposed by Ramadge and Wonham (1987), the

alphabet is composed as a disjoint union Σ := Σc∪̇Σuc of controllable events Σc and

uncontrollable events Σuc, respectively. The phenomenon under control, now also

referred to as the plant, is equipped with an interface that allows an external agent

to disable any controllable event at any physical time. Assuming that the decision

of the agent is exclusively based on past events, the original literature models the

agent as a supervisor f : Σ∗ → Γ that maps past observations to control patterns

Γ := { γ |Σuc ⊆ γ ⊆ Σ }, i.e., f (s) denotes the set of events that the supervisor

enables after the observation of s ∈ Lloc and until the next event is generated.

For the purpose of this report, the supervisor f can be equivalently represented

by the language H := { sσ ∈ Σ∗ |σ ∈ f (s) } ∪ {ǫ} ⊆ Σ∗ to obtain f (s) = {σ ∈

Σ | sσ ∈ H }. With this representation, a language H ⊆ Σ
∗ corresponds to some

supervisor f if and only if H is closed and satisfies the universal controllability

condition (pre H)Σuc ⊆ pre H. Moreover, the local closed-loop behaviour amounts

to the intersection Kloc := Lloc ∩ H. Addressing non-terminating processes we

follow Ramadge (1989) and require the closed loop Kloc not to deadlock, i.e.,

to be complete. The technical conditions imposed on the supervisor so far are

summarised by the following notion of local admissibility.

Definition 1. Given an alphabet Σ with uncontrollable events Σuc, a language H

is a locally admissible controller for the closed local behaviour Lloc ⊆ Σ
∗ of a

non-terminating process, if

- 7 -

[H0] H is closed,

[H1] (pre H)Σuc ⊆ pre H, and

[H2] Lloc ∩ (pre H) is complete. �

To conclude from [H2] that the actual closed loop formed by an implementation

of the supervisor and the phenomenon indeed exhibits the desired liveness property,

we need to adapt our initial hypothesis regarding the phenomenon.

Hypothesis — supervised non-terminating process: whenever the

supervisor agrees to at least one event the phenomenon can gen-

erate in any configuration compatible with the event sequence

generated so far, then it will eventually generate one such event

Consequence — under locally admissible control, an infinite num-

ber of events will be generated during the elapse of an infinite

physical duration.

The achievable closed loop behaviours are characterised as follows.

Theorem 2. Consider an alphabet Σ with uncontrollable events Σuc. For the closed

local behaviour Lloc ⊆ Σ
∗ of a non-terminating process and a locally admissible

controller H ⊆ Σ
∗

let Kloc = Lloc ∩ H. Then

[K0] Kloc is closed,

[K1] Kloc is controllable w.r.t. Lloc,

[K2] Kloc is complete.

Moreover, if Lloc , ∅ , H, then Kloc , ∅. Vice versa, if Kloc ⊆ Lloc satisfies [K0]–

[K2], then there exists a locally admissible controller H such that Kloc = Lloc ∩ H.

Proof. The claim is essentially a special case of the common setup proposed by

Ramadge and Wonham (1987), with the further development to avoid deadlocks by

Ramadge (1989). For the purpose of this report, we refer to the facts that (i) closed

∗-languages do not conflict, and, (ii) a closed-loop behaviour is relatively closed

w.r.t. a closed language if and only if it is itself closed. Then, the claim is identified

a special case of Theorem 9 with a proof provided in Section 3. To this end, note

that if Kloc satisfies [K0]–[K2], then a corresponding admissible controller is given

by H := KlocΣ
∗
uc. �

For the common synthesis problem in this setting, we are given the local

plant behaviour Lloc ⊆ Σ
∗ and a safety property E ⊆ Σ

∗, to ask for an admissi-

ble controller H ⊆ Σ
∗ that restricts the plant behaviour accordingly, i.e., we require

- 8 -

Lloc ∩ H ⊆ E. The key observation here is that each of the properties [K0]–[K2] is

retained under arbitrary union. Without loss of generality, we assume that E ⊆ Lloc

and obtain the supremal achievable closed-loop language

K↑loc := sup{Kloc ⊆ E | Kloc satisfies [K0]–[K2] } (3)

with associated minimal restrictive controller H↑ := K↑locΣ
∗
uc that enforces the spec-

ification E. For regular parameters, a synthesis procedure is provided by Kumar

et al. (1992). Effectively, the computations amount to an iteration of the basic

synthesis algorithm outlined in Ramadge and Wonham (1987) with the successive

removal of deadlocking states.

Example: stack feeder, capacity 2, safety specification. Continuing the stack feeder

example, consider the situation where it is regarded unsafe to reload the stack

unless it is empty. This could be a constraint imposed by the supply only being

capable to deliver two work pieces at the time. The corresponding safety property

is generated by the automaton in Figure 2 on the left. For the purpose of control,

we regard r the only controllable event; i.e., the physical implementation allows the

controller to prevent a reload but it can not stop the environment from triggering

a feed. As it turns out, the formal safety specification E obtained by intersecting

the local plant behaviour Lloc with the safety property is controllable and complete.

It therefore matches the supremal achievable closed-loop behaviour, generated by

the automaton in Figure 2 on the right.

Figure 2: safety specification and local closed-loop behaviour of stack feeder cap. 2

Example: discussion continued regarding non-determinism: Lets assume that the

stack feeder is initially loaded with one or two workpieces and that a reload r adds

one or two workpieces to the stack. This leads to a non-deterministic representation

of the phenomenon as given in Figure 3. By the so called subset-construction we

can still represent the local behaviour by a deterministic automaton. However,

our assumption on how the phenomenon interacts with the controller are violated:

e.g., the string s = fer drives the representation either to state W1 or W2 and the

local behaviour suggests that the two successor events feed f and reload r may

occur next; if they are both regarded controllable, a controller may disable either

single one of them, leading to a deadlock if the actual phenomenon indeed holds

two workpieces W2 and only feed f can be executed. Determinisation by subset-

construction alone will not resolve this issue, however, the controller “not to know

the plant state” can be interpreted as partial observation: a formal determinisation

by the insertion of additional unobservable events to precede non-deterministic

transitions together with the technical requirement that control patterns must not

depend on unobservable events, i.e., H = p−1
o po H with the natural projection po

from Σ∗ to Σ∗o. Note that this is the “tame variant” of partial observation where all

controllable events are observable, i.e., Σc ⊆ Σo, and the achievable closed-loop

- 9 -

behaviours are characterised by prefix-normality as an additional property next to

[K0]–[K2]. Thus, for the purpose of controller synthesis, non-determinism and

partial observation are closely related.

Figure 3: stack feeder of capacity 2 with non-deterministic reload

Preparing the discussion in the subsequent section, we reformulate the synthe-

sis problem in terms of ω-languages. Since the relevant ∗-languages were assumed

complete and closed, they can be equivalently characterised by their topologi-

cally closed limits: for the local plant behaviour, let Lloc := lim Lloc to obtain

Lloc = preLloc and cloLloc = lim preLloc = Lloc. Here, we regard the discrete-

event system Lloc a formal model of the phenomenon. Likewise, we obtain the

topologically closed specification E := lim E and ask for a supervisor H ⊆ Σω

with admissibility conditions adapted as follows. 2

Definition 3. Given an alphabet Σ with uncontrollable events Σuc, a language

H ⊆ Σ
ω is a locally admissible controller for the closed local behaviour Lloc ⊆ Σ

ω

of a non-terminating process, if

[H0] H is closed,

[H1] (preH)Σuc ⊆ preH , and

[H2] Lloc andH are locally non-conflicting. �

If a controllerH ⊆ Σω satisfies the above admissibility criteria, then preH is

admissible to preLloc, too. Vice versa, if preH satisfies the admissibility criteria

stated for ∗-languages, thenH satisfies [H1] and [H2] of the admissibility criteria

stated for ω-languages. Thus, a topologically closed controller candidateH ⊆ Σω

is admissible if and only if its prefix is admissible to preLloc.

Theorem 4. Consider an alphabet Σ with uncontrollable events Σuc. For the closed

local behaviour Lloc ⊆ Σ
ω of a non-terminating process and a locally admissible

controllerH ⊆ Σω let Kloc = Lloc ∩H . Then

[K0] Kloc is closed,

[K1] preKloc is controllable w.r.t. preLloc,

Moreover, if Lloc , ∅ , H , then Kloc , ∅. Vice versa, if Kloc ⊆ Lloc satisfies

2The assumption that Lloc and E are complete is not restrictive. If Lloc did deadlock, we could

formally introduce a locking event to be generated after those strings s ∈ Lloc that deadlock; for

a subsequent controller synthesis the locking event would be regarded uncontrollable and a safety

specification would be put into place to forbid the locking event; then the supervisor will controll the

plant such that the deadlock is avoided in the closed-loop configuration. If E did deadlock, we could

substitute E with its supremal complete sublanguage.

- 10 -

[K0] and [K1], then there exists a locally admissible controllerH such that Kloc =

Lloc ∩H .

Proof. The claim is essentially covered by the results provided by Ramadge (1989)

and the further discussion by Kumar et al. (1992). For the purpose of this report,

we refer to the facts that (i) for closed ω-languages not to conflict is equivalent

with not to conflict locally, and, (ii) that a closed-loop behaviour is relatively closed

w.r.t. a closed language if and only if it is itself closed. Then, the claim is identified

a special case of Theorem 11 with a proof provided in Section 3. �

If we now look at the synthesis problem, we may consider the supremum of

all sublanguages Kloc ⊆ E ⊆ Lloc that satisfy the above conditions [K0] and [K1].

While in general topological closedness [K0] is not retained under arbitrary union,

it is the assumption of a topologically closed specification that allows to recover

the unique supremal closed-loop behaviour experienced from the perspective of

∗-languages.

Lemma 5. Consider an alphabet Σ with uncontrollable events Σuc, a closed local

behaviour Lloc ⊆ Σ
ω of a non-terminating process and a closed safety specification

E ⊆ Lloc. Then the supremum

K↑loc := sup{Kloc ⊆ E | Kloc satisfies [K0] and [K1] } (4)

itself satisfies [K0] and [K1], as identified in Theorem 4.

Proof. The claim is a special case of Proposition 3.2 reported by Ramadge (1989).

For the purpose of this report, we refer to the proof of Lemma 12, Section 3. �

Given an ω-language Kloc that satisfies conditions [K0] and [K1], its prefix

satisfies the respective conditions [K0]–[K2] for ∗-languages. Vice versa, if a ∗-

language satisfies [K0]–[K2], then its limit satisfies the respective conditions [K0]

and [K1] for ω-languages. In this sense, both synthesis problems are equivalent.

This was expected, since the second problem was constructed as a re-interpretation

of the first problem. Since the limit operator is monotone, we can compute the

supremal closed-loop behaviour as an ω-language by applying the algorithms de-

veloped for ∗-languages on the prefix of the input data Lloc ⊆ Σ
ω and E ⊆ Σω, both

assumed to be topologically closed and regular. Technically, this is done by inter-

preting deterministic Büchi automata with trivial acceptance condition as ordinary

automata that realise the input data preLloc and preE.

- 11 -

2 Synthesis of Liveness Properties

When we drop the requirement of the specification E to be topologically closed

it can be used to represent liveness properties. A prototypical example here is to

require that a processing machine after some events that indicate activity eventu-

ally issues an event to acknowledge that a particular task has been successfully

completed. In this section, we still consider the local behaviour Lloc as a model

of the process, which, as the limit of a prefix closed ∗-language, is topologically

closed. Thus, if the process can at all be controlled to eventually report success,

this can be achieved within a bounded amount of logic time. Here, eventuality is

seen as a useful tool to express generic requirements independent of a particular

plant at hand. We can think of the eventually-report-success specification as a

building block in a library of specifications which will be imposed together with

other requirements on a specific manufacturing process at hand. It is then left to

the synthesis procedure to figure whether at all and in which amount of logic time

the requirements can be resolved.

Looking at the development of the previous section, we maintain the assump-

tions imposed on the phenomenon and its interaction with the supervisor. In par-

ticular, we still refer to local admissibility, Definition 3, and the consequences

reported in Theorem 4. The only technical difference is a topologically not closed

specification, and, thus, Lemma 5 does not apply any longer and the supremum

K↑loc does not allow for an immediate extraction of an according supervisor. This

situation is a special case of the study conducted by Thistle and Wonham (1994a)

and we reproduce results relevant for our discussion here.

One key contribution of the cited literature is an alternative characterisation of

the supremum K↑loc based on the following notion of the controllability prefix.

Definition 6. Given an alphabet Σwith uncontrollable events Σuc, consider a closed

local behaviour Lloc ⊆ Σ
ω of a non-terminating process and a sublanguage K ⊆

Lloc. A string s ∈ preK is in the controllability prefix of K w.r.t. Lloc, if there

exists a subsetVs ⊆ K with s ∈ preVs such that

[C0] Vs is topologically closed, and

[C1] preVs is controllable w.r.t. pre (Lloc ∩ sΣ
ω

).

The controllability prefix ofK is denoted ctrlK . If the controllability prefix equals

the ordinary prefix, then K is said to be ω-controllable w.r.t. Lloc. 3
�

To further elaborate the above definition, lets assume that, at some instance

3The literature provides different incompatible definitions for ω-controllability. For the specific case

of a topologically closed plant, the definition reproduced here is equivalent to the definition proposed

by Thistle and Wonham (1994a). It is not equivalent to the definition provided by Ramadge (1989).

- 12 -

of physical time, the phenomenon has generated an event sequence s ∈ preLloc,

regardless whether with or without supervision. If s ∈ ctrlK , conditions [C0]

and [C1] by Theorem 4 are equivalent with the existence of a supervisor that can

control the hypothetical plant Lloc ∩ sΣ
ω to evolve withinVs ⊆ K . Here, the hypo-

thetical plant Lloc ∩ sΣ
ω is set up as the original plant model under the additional

hypothesis that, for whatever reason, the phenomenon starts by generating the

event sequence s. Thus, whenever a string from the controllability prefix has been

generated, a controller could take over to operate the plant compliant to eventuality

and liveness requirements expressed by K . Thistle and Wonham (1994a) interpret

the controllability prefix ctrlK as the winning configurations. In particular, if K is

non-empty and ω-controllable, the locally admissible controller corresponding to

Vs with s = ǫ can control the plant Lloc to satisfy K unconditionally.

Now consider a string from the controllability prefix s ∈ ctrlK and σ ∈ Σuc

such that sσ ∈ preLloc. LetVs denote the associated languageVs from the above

definition. Controllability [C1] implies that sσ ∈ preVs, and, thus sσ ∈ preK .

In particular, if K is ω-controllable, then preK is controllable. From a practical

perspective, ω-controllability of a candidate closed-loop behaviour K implies the

existence of a controller that operates the plant within preK with the persistent

option to activate a more restrictive controller that enforces K .

As it turns out, ω-controllability is not only retained under arbitrary union but

also leads to exactly the same supremum as the discussion in the previous section.

Theorem 7. Given an alphabet Σ with uncontrollable events Σuc, consider a closed

local behaviour Lloc ⊆ Σ
ω of a non-terminating process and a not-necessarily

closed specification E ⊆ Lloc. Then

K↑ := sup{K ⊆ E | K is ω-controllable w.r.t. Lloc } (5)

= sup{Kloc ⊆ E | Kloc satisfies [K0] and [K1] from Theorem 4 } (6)

itself is ω-controllable w.r.t Lloc.

Proof. This is a special case of the more general situation addressed by Proposi-

tion 5.2 and Corollary 5.4 in (Thistle and Wonham, 1994a). We reproduce a proof

later on in this report for general case; see Theorem 14. �

For regular input data, the synthesis procedure given by Thistle and Wonham

(1994b) computes a realisation ofK↑ by iterating on a deterministic automaton that

initially generates Lloc and accepts E with a Rabin acceptance condition. For easy

reference, an outline of the algorithm for the special case of deterministic Büchi

automata is given in the appendix of this report, including an indication on how to

obtain an admissible controller that enforces the specification.

Example: stack feeder, capacity 2, liveness specification. Lets assume that the

stack feeder, Figure 1, eventually needs some maintenance which can only be

performed when it is empty, i.e., we specify that regardless the past event sequence

- 13 -

the empty event e shall eventually occur. This is expressed independently of the

stack capacity by the ω-language E accepted by the automaton in Figure 4 on the

left. Regarding the reload r controllable, we obtain the supremal ω-controllable

sublanguage K↑ accepted by the automaton in Figure 4 on the right. Note that

K↑ is not topologically closed and can therefore not be implemented by a locally

admissible supervisor: for a physical implementation the liveness requirement to

eventually disable reload r to provoke the empty event e needs to be somehow

resolved. One possibility is to only enable reload as an immediate successor of the

empty event.

Figure 4: liveness specification and supremal controllable sublanguage

3 When the Plant Exhibits Liveness Properties

We turn to the situation where the plant possesses liveness properties other than not

to deadlock. More specifically, we revise the modelling framework summarised in

Section 1 to address plants that are representable as the limit of a not-necessarily

prefix closed ∗-language. Given the prefix closed and complete local behaviour

Lloc ⊆ Σ
∗ of a non-terminating process subject to the assumptions imposed earlier

in this report, let M ⊆ Σ
∗ denote the so called accepted behaviour. Then, Lloc is

said not to livelock w.r.t. M if every string from the local behaviour can be extended

to an accepted string, i.e., if

(∀ s ∈ Lloc ∃ t ∈ Σ
∗

)[st ∈ Lloc ∩ M] . (7)

For the sake of a concise notation, we will assume the local behaviour Lloc not to

livelock w.r.t. a given accepted behaviour M and let L := Lloc ∩ M. This amounts

to Lloc = pre L and, to this end, we can consider the discrete-event system L as a

formal model of the phenomenon. 4

As with deadlocks, the technical requirement (7) imposed on the plant model

does not suffice to conclude a liveness property of the underlying phenomenon.

This is addressed by another hypothesis regarding the non-terminating process.

4For the purpose of this report, where we are concerned with controller synthesis, the assumption of

the model not to livelock is not restrictive: if Lloc did livelock, the conflict could be formally resolved by

introducing an explicit locking event to be generated after those strings s ∈ Lloc that livelocks to attain

a formally accepted string; for a subsequent controller synthesis the locking event would be regarded

uncontrollable and a safety specification would be put into place to forbid the locking event.

- 14 -

Hypothesis — non-terminating process with accepted behaviour:

if, at any instance of physical time, the accepted behaviour indi-

cates that the event sequence generated so far can be extended to

an accepted string, then the phenomenon, for any configuration

that is compatible with the event sequence generated so far, will

eventually generate an accepted string.

Consequence — for a non-livelocking model, an unbounded

monotone sequence of accepted strings will be generated dur-

ing the elapse of an infinite physical duration.

With this hypothesis, the limit L := lim L corresponds to the set of infinite

signals that can be possibly generated during the elapse of infinite physical time.

Regarding the internal configuration, we again refer to a deterministic automaton

realisation. Then, the above assumption amounts to transitions being executed such

that an accepted configuration is eventually attained. This assumption goes further

than the one made in Section 1 to address not to deadlock: the phenomenon must

include some mechanism that decides which transitions are to be executed in order

to eventually reach a marked state.

Example: generic stack feeder with finite capacity. The generic stack feeder is

obtained as an abstraction of the specific stack feeder with some unknown but

finite capacity. Technically, we take the union over automata realisations for each

specific capacity, modelled in analogy to the capacity two example in Figure 1. This

leads to an infinite state set and to an unknown initial state. Both are addressed

by merging states according to a simulation relation, with the resulting abstraction

given in Figure 5. By construction, the model is a suitable basis for the verification

of properties that are stated as an upper bound on the behaviour, including liveness.

In particular, any sequence of successive feed events f will be eventually followed

by either r or e, and this is indeed the case for any specific instance of the generic

stack feeder 5. The question of whether the model is also a suitable basis for

controller synthesis is addressed further below; see also Section 5.

Figure 5: generic stack feeder with finite capacity

.

For the purpose of supervisory control we employ the same interface as moti-

vated in the previous sections, i.e., a supervisor represented as a closed language

to generate control patterns from the past event sequence as feed back to disable

controllable events. As an additional requirement, the supervisor shall not prevent

5Volksweisheit: “Jedes Gefäß das leckt ist irgendwann einmal leer”.

- 15 -

the plant from attaining an accepted state and we adapt the admissibility criteria

from Section 1 accordingly; see below condition [H3].

Definition 8. Given an alphabet Σ with uncontrollable events Σuc, a language H is

an admissible controller for the accepted behaviour L ⊆ Σ
∗ of a non-terminating

process, if it is a locally admissible controller for Lloc := pre L and if in addition

[H3] L and H are non-conflicting, i.e., pre (L ∩ H) = (pre L) ∩ (pre H). �

Admissibility as defined above technically matches the original setting pro-

posed by Ramadge and Wonham (1987) with the further development for non-

terminating processes by Ramadge (1989). In particular, we recover exactly the

same characterisation of achievable closed-loop behaviours as originally identified

by Ramadge (1989).

Theorem 9. Consider an alphabet Σ with uncontrollable events Σuc. For the ac-

cepted behaviour L ⊆ Σ
∗ of a non-terminating process an admissible controller

H ⊆ Σ
∗ let K = L ∩ H. Then

[K0’] K is relatively prefix-closed w.r.t. L,

[K1] K is controllable w.r.t. L,

[K2] K is complete.

Moreover, if L , ∅ , H, then K , ∅. Vice versa, if K ⊆ L satisfies [K0’], [K1] and

[K2], then there exists an admissible controller H such that K = L ∩ H.

Proof. Although the claim is essentially covered by the results from Ramadge

(1989), we provide a direct proof for documentation purposes. We begin with

“[H*]⇒[K*]”. Referring to closedness [H0], K is defined by an intersection of a

prefixed closed language with L. This implies relative closedness [K0’]. Refer-

ring to [H3], we observe pre K = (pre L) ∩ (pre H) and conclude completeness

[K2] by completeness [H2]. Referring first to [H1] and then to [H3], we obtain

((pre K)Σuc) ∩ (pre L) ⊆ (HΣuc) ∩ (pre L) ⊆ H ∩ (pre L) = pre (L ∩ H) = pre K,

which amounts to controllability [K1]. The reverse direction “[K*]⇒[H*]” is es-

tablished constructively with the candidate H := (pre K)Σ∗uc, to immediately imply

closedness [H0] and controllability [H1]. By relative closedness [K0], we have

K ⊆ L to establish pre K ⊆ (pre L) ∩ H. For the converse inclusion, pick an ar-

bitrary s ∈ (pre L) ∩ H. By the choice of the candidate H, we can rewrite s = rt

with r ∈ pre K and t ∈ Σ
∗
uc. If t = ǫ, we conclude s ∈ pre K. Otherwise, let

σ ≤ t denote the first symbol of t. Referring to controllability [K1], we obtain

rσ ∈ pre K. Repreating this argument for the remaining symbols of t, this implies

s = rt ∈ pre K. Since s was chosen arbitrarily, we conclude

pre K = (pre L) ∩ (pre H) . (8)

With Eq. (8), completeness [H2] is implied by [K2]. Again referring to Eq. (8),

now together with [K0], we obtain K = (pre K) ∩ L = (pre L) ∩ H ∩ L = L ∩ H,

which by Eq. (8) also establishes [H3]. �

- 16 -

All closed-loop properties [K0’], [K1] and [K2] are retained under arbitrary

union. For a given upper bound E ⊆ L, the supremal achievable closed-loop

behaviour K↑ ⊆ E exists uniquely and can be used to extract a minimal restrictive

controller H↑ := (pre K↑)Σ∗uc. By [K0’], we can replace E by its supremal relatively

closed sublanguage without to affect the solutions of the synthesis problem. In

other words, the objective to restrict L to satisfy E can be equivalently expressed by

a closed upper bound imposed on the local behaviour Lloc := pre L. Thus, although

L and E are not closed, the overall situation can still be interpreted as the synthesis

of safety properties as opposed to the synthesis of liveness propertries.

In analogy to the basic case, Section 1, we derive the equivalent synthesis

problem for ω-languages.

Definition 10. Given an alphabet Σ with uncontrollable events Σuc, a language

H ⊆ Σ
ω is an admissible controller for the not-necessarily closed model L ⊆ Σω

of a non-terminating process, if

[H0] H is closed,

[H1] (preH)Σuc ⊆ preH , and

[H2’] L andH are non-conflicting. �

Note that the stronger condition [H2’] implies local non-conflictingness [H2].

Theorem 11. Consider an alphabet Σ with uncontrollable events Σuc. For the not-

necessarily closed model L ⊆ Σω of a non-terminating process with admissible

controllerH ⊆ Σω let K = L ∩H . Then

[K0’] K is relatively topologically closed w.r.t. L.

[K1] preK is controllable w.r.t. preL,

Moreover, if L , ∅ , H , then K , ∅. Vice versa, if K satisfies [K0’] and [K1],

then there exists a locally admissible controllerH such that K = L ∩H .

Proof. The claim is covered by the results from (Ramadge, 1989). For a direct

proof of “[H*]⇒[K*]”, recall that the intersection of a topologically closed lan-

guage with another language is relatively topologically closed to obtain [K0’]

by [H0]. Regarding [K1], we first observe that preK = pre (L ∩H) = (preL) ∩

(preH), where the last equality is by [H2’]. Then, by [H1], we obtain ((preK)Σuc)∩

(preL) ⊆ ((preH)Σuc) ∩ (preL) ⊆ (preH) ∩ (preL) = preK to conclude [K1].

The reverse direction “[K*]⇒[H*]” is established constructively with the candi-

date H := lim ((preK)Σ
∗
uc), to immediately imply [H0] and [H1]. Note also that

preK ⊆ (preL) ∩ (preH). To establish the preliminary result

preK = (preL) ∩ (preH) , (9)

pick an arbitrary s ∈ (preL) ∩ (preH). By the choice of the candidate H , we

can rewrite s = rt with r ∈ preK and t ∈ Σ
∗
uc. If t = ǫ, we conclude s ∈ preK .

- 17 -

Otherwise, let σ ≤ t denote the first symbol of t. Referring to controllability [K1],

we obtain rσ ∈ preK and repeating this argument for the remaining symbols

of t this implies s = rt ∈ preK . Since s was arbitrary, we conclude (preL) ∩

(preH) ⊆ preK and, hence, conclude the proof of Eq. (9). Taking limits we

obtaine cloK ⊆ (cloL) ∩ (cloH). For the converse inclusion, pick any w from

the righthandsside to observe pre w ⊆ (preL) ∩ (preH), and, by Eq. (9), w =

lim pre w ⊆ lim preK = cloK , and we conclude

cloK = (cloL) ∩ (cloH) . (10)

Referring to relative topologically closedness [K0’] we obtain K = (cloK) ∩ L =

(cloL) ∩ (cloH) ∩ L = L ∩H . This also implies [H2’]. �

Given an achievable closed-loop behaviour as language K ⊆ L ⊆ Σ
∗, the limit

K = lim K is verified to satisfy the above conditions for L = lim L. Vice versa, if

an ω-language K satisfies the above conditions for L = lim L, then (preK) ∩ L

is an achievable closed-loop behaviour for L. Therefore, the two perspectives are

identified as effectively equivalent for plants that can be represented as the limit of

a ∗-language. Regarding the synthesis problem for a given specification E = lim E,

recall that we may assume E to be relatively prefix closed w.r.t. L without affecting

the supremal closed-loop behaviour in the ∗-language setting. For the respective ω-

languages, this implies that E is relatively topologically closed w.r.t. L. Under this

condition the supremal solution to the synthesis problem in terms of ω-languages

is known to uniquely exist.

Lemma 12. Consider an alphabet Σ with uncontrollable events Σuc, a not necessar-

ily closed model L ⊆ Σω of a non-terminating process and a specification E ⊆ L

that is relatively closed w.r.t. L. Then the supremum

K↑ := sup{K ⊆ E | K satisfies [K0’] and [K1] } (11)

itself satisfies [K0’] and [K1], as identified in Theorem 11.

Proof. The claim amounts to Proposition 3.2 from (Ramadge, 1989). We provide a

self contained proof for documentation purposes. The supremum K↑ itself is well

defined and we consider the relatively closed supersetM := (cloK↑)∩L. Note that

the above construction does not affect the prefix, i.e., preM = preK↑. In particular,

M satisfies [K0] and [K1]. Moreover, from K↑ ⊆ E we obtain by monotonicity

M ⊆ (cloE) ∩ L and, by relative closedness, M ⊆ E. Then, supremality of K↑

implies M ⊆ K↑. The converse inclusion holds by construction of M and we

conclude equality K↑ =M. �

We are now in the position to interpret the liveness properties of the closed-loop

configuration. For the local closed-loop behaviour Kloc := (pre L) ∩ (pre H), we

refer to the discussion in Section 1. The additional condition [H3] amounts to

Kloc = pre K and, therefore Kloc does not livelock w.r.t. the accepted behaviour

- 18 -

K. Thus, we may consider K an adequate model of the closed-loop configura-

tion. Here, the same line of thought as for the model L of the non-terminating

process is applicable. However, the initial hypothesis regarding liveness of the

non-terminating process does not automatically imply that during infinite time an

unbounded sequence of accepted strings will be generated in a physical imple-

mentation of the closed-loop configuration. This is because the non-terminating

process may decide in advance to generate events in a way that imposes restrictions

on controllable events that must be eventually enabled to attain an accepted string.

At the same time the controller may implement a particular control strategy that is

incompatible with the a-priory choice taken by the plant. Without referring to ad-

ditional technical requirements, this issue can only be resolved by assuming some

sort of cooperation. Note the fundamental difference to the situation reviewed in

the previous Section 2, where we can extract a closed controller that will resolve

liveness requirements imposed by the specification for a closed plant.

Example: need for cooperation. The liveness properties encoded in the automaton

Figure 6 require the controller to eventually enable a after A or b after B, i.e., the

controller is meant to eventually agree with the plant by enabling the lower case

event that matches the respective upper case predecessor. Now consider a controller

that never enables a, e.g., because a safety specification regards a as unsafe. To

attain an accepted string, the plant must eventually generate B. However, to even-

tually generate B is not a liveness property encoded in the plant model. Moreover,

an alternative controller designed for some other specification may disable b just

when the plant decided to generate B. If, on the other hand, the plant knows the

control strategy, it can cooperate and eventually generate either A or B as required.

An alternative approach to resolve this issue is to require the controller to cooperate.

However, the ability of the controller to cooperate is not implied by the technical

admissibility conditions under consideration so far.

Figure 6: liveness properties that suggest cooperative supervision.

Hypothesis — cooperative supervision of a non-terminating pro-

cess with accepted behaviour: if there is the persistent option

for the model and the supervisor to agree on how to attain an

accepted string, then the phenomenon and the implementation of

the supervisor will eventually do so.

Consequence — under admissible control, an unbounded mono-

tone sequence of accepted strings will be generated during the

elapse of an infinite physical duration.

- 19 -

Example: generic stack feeder with finite capacity and safety specification. The

abstract model of the stack feeder from Figure 5 is also suitable for the synthesis of

supervisors that enforce safety properties, however, care must be taken regarding

liveness. Even if the interface to the actual phenomenon supports that the events

f and r are controllable, the controller must not disable both events in state W<n

because this will deadlock an actual stack feeder that could be in state W1. In

other words, the generic stack feeder as a model of some particular stack feeder

does not comply with the hypothesis used in this section: the model when in

state W<n indicates the ability to generate e but the actual phenomenon may be

in a configuration in which it can not agree to generate e. For the particular

example there are two options to circumvent this issue. First, we can consider

f as uncontrollable, interpreting the feed as initiated by the plant. Then, for the

safety specification not to reload unless the stack is empty the supremal closed-loop

behaviour is obtained from the plant behaviour by disabling r in state W<n. The

corresponding controller is not only admissible to the generic stack feeder, but also

to any particular instance. Second, considering both events f and r controllable, we

can refine the generic stack feeder to include the original states W1 and W0 with an

additional unobservable transition from W<n to W1; Figure 7. Then, a supervisor

designed for partial observation can not distinguish the states W<n and W1 and,

hence, will in neither state disable f and r simultaneously. Both strategies are based

on further inspection of how the specific instance of a stack feeder relates to its

abstraction, the generic stack feeder. We come back to this point in Section 5.

Figure 7: generic stack feeder with finite capacity and unobservable event uo.

4 The General Case

For the most general situation reviewed in this report we consider a plant that ex-

hibits liveness properties and allow for the specification to impose further liveness

conditions on the closed-loop behaviour. A comprehensive study of this situa-

tion has been presented by Thistle and Wonham (1992, 1994a,b) and we have

already recovered the main results for a closed plant, Section 2, as a systematic

consequence of the basic case, Section 1, by dropping the requirement of a closed

specification. The general case considered in the present section can be obtained

similarly, but now starting with the setting of the previous section where the plant

is not necessarily closed and by dropping the requirement of a relatively closed

specification.

- 20 -

Technically, we still insist in admissibility, Definition 10, and thus are bound to

the consequences reported in Theorem 11, i.e., the closed loop is relatively closed

[K0’] with a controllable prefix [K1]. However, dropping the requirement of a

relatively closed specification, Lemma 12 does not apply any longer and the supre-

mum over all achievable closed loop behaviours K↑ itself may not be achievable

because for ω-languages relative closedness is not retained under arbitrary union.

As with the special case of a closed plant, an alternative characterisation of K↑

provides additional insight to the situation at hand. To this end, we extend the scope

of Definition 6 to define a notion of ω-controllability for not necessarily closed

plants.

Definition 13. Given an alphabet Σ with uncontrollable events Σuc, consider the

behaviour L ⊆ Σω of a non-terminating process and a sublanguage K ⊆ L. A

string s ∈ preK is in the controllability prefix of K w.r.t. L, if there exists a subset

Vs ⊆ K with s ∈ preVs such that

[C0’] Vs is relatively topologically closed w.r.t. L, and

[C1] preVs is controllable w.r.t. pre (L ∩ sΣ
ω).

The controllability prefix ofK is denoted ctrlK . If the controllability prefix equals

the ordinary prefix, then K is said to be ω-controllable w.r.t. L. �

Except for relative closedness in [C0’], this definition literally matches Defi-

nition 6, Section 2, stated for closed plant behaviours. Since relative closedness

w.r.t. a closed behaviour is equivalent to closedness, the above definition is techni-

cally consistent with the variant Definition 6. It also has the same interpretation:

once a string within the controllability prefix is attained, we refer to Vs ⊆ K as

a closed-loop candidate for the future behaviour. Then, [C0’] and [C1] match the

closed-loop characterisation by [K0’] and [K1] and there exists a controller that

implementsVs from s onwards. In particular, this resolves any additional liveness

properties expressed by K . Again, ω-controllability implies a controllable prefix.

Thus, if K is ω-controllable, then there exists a controller that operates the plant

within cloK with the persistent option to activate a more restrictive controller that

enforces K .

The following theorem summarises the main result from (Thistle and Wonham,

1994a), Section 5, for the purpose of this report.

Theorem 14. Given an alphabet Σ with uncontrollable events Σuc, consider the

behaviour L ⊆ Σω of a non-terminating process and a specification E ⊆ L. Then

K↑ := sup{K ⊆ E | K is ω-controllable w.r.t. L } (12)

= sup{K ⊆ E | K satisfies [K0’] and [K1] from Theorem 11 } (13)

itself is ω-controllable w.r.t L.

Proof. The claim follows as an immediate consequences from Proposition 5.2 and

Corollary 5.4 in (Thistle and Wonham, 1994a). The original literature provides a

- 21 -

proof via various propositions that explicitly address further aspects of the situation

at hand. We give a concise direct proof for documentation purposes. Consider a

family (Ka)a∈A of ω-controllable languages and denote the union K := ∪a∈AKa.

To establish ω-controllability of K , pick an arbitrary s ∈ preK . Since the prefix

operator and union commutes, we can pick a ∈ A such that s ∈ preKa. By ω-

controllability of Ka we have s ∈ ctrlKa and chooseVs ⊆ Ka with s ∈ preVs and

according to requirements [C0’] and [C1]. In particular, we haveVs ⊆ K and can

use the same language to Vs establish s ∈ ctrlK . Since s was chosen arbitrarily,

we obtain preK = ctrlK to conclude that the union K is also ω-controllable. For

the equality of the two suprema, pick any K that satisfies [K0’] and [K1] from

Theorem 11. By the uniform choice ofVs = K we satisfy [C0’] and [C1] for any

s ∈ preK . Therefore, K is ω-controllable. This implies that the second supremum

(13) is a subset of the first supremum (12). To establish the converse inclusion, pick

an arbitrary infinite string w from the supremum (12). It remains to show that there

exists a closed-loop behaviour K that satisfies [K0’] and [K1] and that includes w.

We do so by construction. For each prefix s < w, denoteVs ⊆ K the language that

satisfies s ∈ preVs, [C0’] and [C1]. Let

Ks := {v ∈ Vs| ∃σ ∈ Σ : sσ < v and sσ ≮ w } (14)

and consider the candidate K := (∪s<wKs) ∪ {w}. Clearly, we have w ∈ K and

are left to establish relative closedness [K0’] and controllability [K1]. Observe

that by our construction the latter union is disjoint and that, for v ∈ K , v , w we

have v ∈ Kr, where r < v is the maximal prefix with r < w. Thus, any monotone

unbounded sequence in preK has either the limit w or all prefixes in exactly one

component preKs. This can be used to establish relative closedness [K0’]. Pick any

v ∈ (cloK) ∩ L; if v = w we trivially have v ∈ K ; else, pick s such pre v ⊆ preKs.

This implies v ∈ cloKs; hence v ∈ (cloKs) ∩ L = Ks ⊆ K . This concludes the

proof of [K0’] and we turn to controllability [K1]. Pick s ∈ preK and σ ∈ Σuc

with sσ ∈ preL. If sσ < w, then w ∈ K implies sσ ∈ pre K. If sσ ≮ w, we pick

the maximal prefix r < sσ with r < w. Observe that s ∈ preKr ⊆ preVr, and, by

controllability [C1] of preVr, sσ ∈ preVr. The latter together with r < sσ implies

sσ ∈ preKr. This concludes the proof of controllability of [K1]. �

A procedure for the computation of the controllability prefix for regular input

data is given in Thistle and Wonham (1992), Section 8., with subsequent transfor-

mations to obtain the supremal ω-controllable sublanguage K↑. It is based on a

realisation ofL and E by a single deterministic automaton with a Büchi acceptance

condition to represent L and a Rabin acceptance condition for E. For illustration

purposes, we give a concise outline in the appendix of this report, restricted to

the special case where both L and E are represented by one deterministic Büchi

automata each.

Example: generic stack feeder with finite capacity and liveness specification. We

refer to the abstract model of the stack feeder from Figure 5 with r the only con-

trollable event and ask for an admissible supervisor that eventually empties the

stack; see Figure 8 on the left for a realisation of the specification. The abstract

- 22 -

Figure 8: liveness specification and supremal ω-controllable sublanguage.

stack feeder model includes the information that when the reload is disabled, the

stack well indeed become eventually empty. This is relevant for the synthesis task

at hand: if we used the closure of the behaviour of the generic stack feeder as

a model, no supervisor would be be found. The supremal ω-controllable sublan-

guage for the given input data as realised by the automaton in Figure 8 on the

right. This matches the plant model expect that the marking in the initial state has

been removed. The interpretation is that an admissible controller must eventually

disable the reload r to enforce that after a finite number of further feed events f the

stack indeed become empty. As before, one option to achieve this is by disabling r

after the first feed, however, one could also do so after an arbitrary finite number

of feeds.

Example: technical example to discriminate the two variants. For the purpose of

illustration, we introduce the variation of the generic stack feeder given in Figure 9

with the additional capability to emit an arbitrary finite number of empty events

e when in state E until the reload r will occur. This can be motivated by periodic

sensor readings and an unspecified finite physical time for the reload mechanism to

become ready for operation. Regarding the reload r conrollable, the generic plant

model L now requires that r must be enabled eventually. However, a controller

designed for the local behaviourLloc := cloLmay insist in not to do so and control

the substitute plant to exhibit an infinite sequence of e events. This violates the

assumptionA = L and therefore formally satisfies any implied guarantee. Clearly,

such a controller is not admissible to L and, hence, is guaranteed to not be the

outcome when applying the methods from this section directly to the generic plant

L.

Figure 9: variation of the generic stack feeder

.

- 23 -

5 Abstraction Based Synthesis

In our review of the situation in which the plant exhibits liveness properties other

than not to deadlock, Section 3, we imposed the hypothesis that the phenomenon

will somehow generate an unbounded monotone sequence of strings accepted by

the model. Thinking of a physical implementation as a transition system, there

must be some additional mechanism that actually decides on which transitions

are taken and this decision must somehow resolve the requirement to eventually

attain accepted strings, with hybrid systems as a prominent example; see Henzinger

(1996); Tabuada (2009). For the closed-loop configuration, we imposed the ad-

ditional hypothesis that the decision mechanism will cooperate with any control

strategy and that it therefore is sufficient to require that a supervisor leaves the per-

sistent chance to attain an accepted string; see also the technical condition [H3] for

∗-languages and [H2’] for ω-languages, respectively. However, cooperation may in

this form not be a satisfactory concept for an application at hand. Considering the

generic stack feeder, one may encounter situations in which an abstract plant model

effectively decides by the choice of a particular instance how to resolve liveness

properties befor any events are generated and, thus, leaving no degrees of freedom

for cooperative behaviour. Rather than a persistent chance to resolve liveness, this

suggests to require the controller to have no chance to conflict, regardless how the

plant attempts to attain accepted strings.

To avoid the need for cooperation we may impose an alternative hypothesis

on the non-terminating process and discuss corresponding formal properties of the

model.

Hypothesis — supervised non-terminating process with accepted

behaviour: any a-priory choice of events to be generated by the

phenomenon that is consistent with the accepted behaviour, must

not restrict the future applicability of control patterns in order to

attain an accepted string.

Consequence — under admissible control, an unbounded mono-

tone sequence of accepted strings will be generated during the

elapse of an infinite physical duration.

The following lemma directly addresses the situation in which the plant re-

solves all liveness properties by an a-priory choice of events to generate. Here, the

phenomenon can be represented as a closed language and controller synthesis can

be based on a not necessarily closed abstraction; see also Bai and Moor (2017),

which also addresses a converse implication.

Lemma 15. Given a plant behaviour L and an abstraction L′, L ⊆ L′, subject to

the consistency conditions

- 24 -

[C1] consistent admissible control patterns that do not deadlock,

(∀ s ∈ preL)[(sΣuc) ∩ preL = ∅ ⇒ (sΣ) ∩ preL = (sΣ) ∩ preL′] ,

[C2] absence of liveness properties other than not to deadlock,

L is closed,

then admissibility of a controllerH to the abstraction L′ implies admissibility of

H to the actual plant L.

Proof. The only admissibility condition that depends on the plant behaviour is

[H2’]. Pick an arbitrary s ∈ (preL) ∩ (preH). If there exists an event σ ∈ Σuc

such that sσ ∈ preL we obtain sσ ∈ preH by controllability [H1]. Else, we

have (sΣuc) ∩ preL = ∅ and appeal to [C1] to obtain (sΣ) ∩ preL = (sΣ) ∩ preL′.

By non-conflictingness [H2’] with the abstraction L′ we can again choose σ ∈ Σ

such that sσ ∈ (preL) ∩ (preH). To this end, we have extended an arbitrary

string from the local closed-loop behaviour by one more event. Thus, L and H

are locally non-conflicting and H is locally admissible to L. Referring to [C2]

and [H0] both languages are closed. Thus, non-conflictingness is implied by local

non-conflictingness. �

Condition [C1] requires that, whenever the actual plant L suggests that at least

one controllable event has to be enabled, this is also the case for the abstraction

L′ and that whatever control pattern the controller may choose, not to deadlock

the abstraction implies not to deadlock the actual plant. By closedness [C2], a

non-conflicting closed-loop configuration is obtained.

Example: generic stack feeder with finite capacity. We interpret the model from

Figure 5 as abstraction L′ of all particular instance Ln with capacity n ∈ N; i.e.,

∪n∈NLn ⊆ L
′. Clearly, if we pick a particular instance Ln we have Ln ⊆ L

′ and Ln

is closed [C2]. If in addition r is the only controllable event, [C1] is satisfied. Then,

any controller designed to be admissible to the abstraction L′ is also admissible to

any particular stack feeder Ln. If, on the other hand, r and f are controllable, then

[C1] is violated.

The following weaker requirement [A2] is proposed by Moor et al. (2011) to

replace closedness [C2] in the context of alternating inputs and outputs.

Lemma 16. Given a plant behaviour L and an abstraction L′, L ⊆ L′ ⊆ (UY)ω,

subject to the alternating-input-output conditions

[A1] locally free input,

(∀ s ∈ preL, µ, µ′ ∈ U)[sµ ∈ preL ⇒ sµ′ ∈ preL] ,

[A2] strong non-anticipation,

L is ω-controllable w.r.t. cloL with Y taking the role of

the uncontrollable (!) events.

- 25 -

then admissibility of a controllerH to the abstraction L′ implies admissibility of

H to the actual plant L.

Proof. The claim is from (Moor et al., 2011), Proposition 13, however, stated there

without a proof. Although the author advertises a technical report that provides a

proof, we reproduce it here for easy reference. The only admissibility condition that

depends on the plant behaviour is [H2’]. Pick an arbitrary s ∈ (preL) ∩ (preH).

According to Theorem 7 and condition [A2] L can be represented as a union

L = ∪a∈ALa, where the components La are closed and have an controllable prefix

with U regarded uncontrollable. In particular, the locally free input of L implies

that each union component has also a locally free input. Since the prefix operator

distributes over arbitrary unions, we can pick an a ∈ A with s ∈ preLa. Now

assume that we have extended s by t ∈ Σ
∗ such that st ∈ (preLa)∩ (preH). If there

exists an event ν ∈ Y such that stν ∈ preLa we obtain stν ∈ preH by controllability

[H1]. Else, we must have stµ ∈ preLa ⊆ preL′ for some µ ∈ U, and, referring

to L′ ⊆ (UY)ω, stY ∩ preL = ∅. Since L′ and H are non-conflicting [H2’] this

implies stµ′ ∈ preH for some µ′ ∈ U. Together with the locally free input this

implies stµ ∈ preLa. Thus, for both cases, we have extended the string st by one

more event within (preLa)∩(preH). Applying this argument iteratively, we obtain

an infinite extension w such that sw ∈ (cloLa)∩ (cloH). Since both languages are

closed, we conclude sw ∈ La ∩H ⊆ L
′ ∩H . �

We first comment for the case that L is additionally closed and recover the

previous Lemma 15 as a special case. Condition [A1] together with the alternation

of input events U with output events Y correspond to a free input and a non-

anticipating output as originally proposed by Willems (1991), while [A3] is trivially

satisfied for closed plants L. Alternation can be introduced to the common setting

by interpreting the choice of the control pattern as input, i.e., U = Γ, and the

execution of a transition by the phenomenon as output, i.e., Y = Σ. Then, the

locally free input [A1] requires that any control pattern can be applied after any

output event. If for particular strings s ∈ preL ∩ (UY)∗ certain control patterns

γ ∈ Γ would deadlock the phenomenon, these deadlocks are to be made explicit

by a distinguished error event in order to formally satisfy [A1]. Referring to

the inclusion requirement L ⊆ L′, the distinguished error event must show in

the abstraction L′. In other words: the abstraction must hold the information of

which control patterns are applicable to which generated strings without risking a

deadlock. This effectively amounts to the above condition [C1].

For not-necessarily closed behaviours, [A2] requires the plant to be able to

satisfy its own liveness properties by a strategic choice of transitions that does

not impose a constraint on the infinite future of applicable input events. This

is a somewhat subtle condition that is slightly stronger than a non-anticipating

output proposed by Willems (1991). Effectively, it puts the plant in the position to

uniformly cooperate with any controller. The example provided for the need for

cooperation in Section 3 fails to satisfy [A3].

- 26 -

The converse implication may seem provocative but it is also of interest. The

assumptions in the following lemma are rather restrictive — I hope to be able to

identify variants with weaker assumptions in due course.

Lemma 17. Given a generic plant L′ that is consistent with the union construct

over a family of specific closed plant behavioursLa, a ∈ A in the sense of ∪a∈ALa ⊆

L′ and tight in the sense of cloL′ = clo∪a∈ALa. Then any controllerH that fails

to be admissible to L′ also fails to be admissible to at least one component La.

Proof. If H violates either [H0] or [H1], it is not admissible regardless the plant

under consideration. Else H must violate [H2’], i.e., there exists s ∈ (preL′) ∩

(preH) such that any extension w with sw ∈ H is not in preL′, and, thus, neither

in any La. However, tightness implies preL′ = ∪a∈A preLa. Therefore, we can

choose a ∈ A such that s ∈ (preLa) ∩ (preH). This established a conflict between

La andH . �

Conclusion

In the context of a model based controller design, the plant model can be seen

to formally represent assumptions justified by the phenomenon under consider-

ation, and the controller can utilise these assumptions to provide the guarantee

that prescribed closed-loop objectives are indeed achieved. In this sense, the plant

supports the controller in meeting the design objectives. However, the plant also

imposes restrictions on what is regarded an admissible controller. Controllability

is one such restriction and it is well understood. Liveness properties possessed

by the plant deserve a more detailed discussion to identify their consequences for

the admissibility of a controller. The common setting for supervisory control is to

persistently maintain the option that relevant liveness properties can be resolved

eventually. Depending on the application at hand this may not be sufficient. In this

report, I propose to interpret the situation of liveness properties represented by a

not-topologically-closed plant as the result of model abstraction introduced when

recovering generic properties for a class of plants, i.e., I make explicit that the plant

is an assumption n the phenomenon and not the phenomenon itself. Technically, the

abstraction is (a superset of) the union of infinitely many closed behaviours which,

for automata realisations, amounts to an unknown initial condition to encode how

liveness properties are resolved for each specific plant under consideration. This

setting motivates additional technical conditions that allow for abstraction-based

synthesis, i.e., conditions by which admissibility to the actual plant is implied by

admissibility to the abstraction. To this end, the conjecture is that technical condi-

tions in support of abstraction-based supervisory control should be essentially the

same as those discussed in the context of reactive synthesis with a formal assume-

guarantee approach — and this conjecture is followed up in Schmuck et al. (2017),

- 27 -

leaving the present report as a somewhat biased introduction to the supervision of

sequential behaviours with particular focus on liveness properties.

References

X. Bai and T. Moor. Consistent abstractions for the supervision of sequential

behaviours. In IEEE Proceedings of the 56nd Conference on Decision and

Control, CDC2017, pages 565–571, 2017.

T. A. Henzinger. The theory of hybrid automata. In Proceedings of the 11th

Annual IEEE Symposium on Logic in Computer Science (LICS’96), pages 278–

292. IEEE Computer Society Press, 1996.

R. Kumar, V. Garg, and S. I. Marcus. On supervisory control of sequential behav-

iors. IEEE Transactions on Automatic Control, 37:1978–1985, 1992.

libFAUDES. Software library for discrete event systems. http://www.rt.eei.

uni-erlangen.de/FGdes/faudes. Accessed: 2017-07-15.

T. Moor, K. Schmidt, and Th. Wittmann. Abstraction-based control for not neces-

sarily closed behaviours. Proceedings of the 18th IFAC World Congress, pages

6988–6993, 2011.

T. Moor, Ch. Baier, T.-S. Yoo, F. Lin, and S. Lafortune. On the computation of

supremal sublanguages relevant to supervisory control. Workshop on Discrete

Event Systems (WODES), pages 175–180, 2012.

P. J. Ramadge. Some tractable supervisory control problems for discrete-event

systems modeled by büchi automata. IEEE Transactions on Automatic Control,

34:10–19, 1989.

P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event

processes. SIAM J. Control and Optimization, 25:206–230, 1987.

P. J. Ramadge and W. M. Wonham. The control of discrete event systems. Pro-

ceedings of the IEEE, 77:81–98, 1989.

A.-K. Schmuck, T. Moor, and R. Majumdar. On the relation between reactive

synthesis and supervisory control of non-terminating processes. Technical report,

Max-Planck-Institut für Softwaresysteme, Kaiserslautern, Germany, 2017.

P. Tabuada. Verification and Control of Hybrid Systems: A Symbolic Approach.

Springer-Verlag, 2009.

J. G. Thistle and W. M. Wonham. Control of omega-automata, church’s problem,

and the emptiness problem for tree omega-automata. Proceedings of the 5th

Workshop on Computer Science Logic, pages 367–382, 1992.

- 28 -

J. G. Thistle and W. M. Wonham. Supervision of infinite behavior of discrete event

systems. SIAM J. Control and Optimization, 32:1098–1113, 1994a.

J. G. Thistle and W. M. Wonham. Control of infinite behavior of finite automata.

SIAM J. Control and Optimization, 32:1075–1097, 1994b.

J. C. Willems. Paradigms and puzzles in the theory of dynamic systems. IEEE

Transactions on Automatic Control, 36:258–294, 1991.

Appendix: Synthesis Algorithms

We outline the algorithms presented by Thistle and Wonham (1992, 1994b) to

compute the supremal ω-controllable sublanguage for the special case that the

input data is provided by deterministic Büchi automata; see also libFAUDES for a

freely available software implementation.

1: Closed plant behaviours

We begin with a closed plant behaviour, i.e., the situation of Section 2, and effec-

tively assume that Lloc = lim Lloc and E = lim E ⊆ Lloc for regular languages

Lloc ⊆ Σ
∗, Lloc = pre Lloc and E ⊆ Σ

∗, which in turn are accepted by one automaton

each. For technical reasons, we assume that the specification automaton generates

the full language Σ∗, which is not restrictive. In particular, we can construct a

product G := (Q, Σ, δ, Qo, QE) of both automata to generate Lloc and to accept E.

The key observation is that if for any two finite strings s′ and s′′ with s′ [≡L] s′′

and s′ [≡E] s′′ one is in the controllability prefix, then so is the other. Thus, we can

represent the controllability prefix ctrlE as a set of states Qctrl ⊆ Q.

The algorithm to obtain the set Qctrl ⊆ Q is stated as a two-level nested fixpoint

iteration built on the one-step backward controlled reachability operator θ that

maps a set of target states T ⊆ Q to its predecessor as follows:

θ(T) := { q ∈ Q |

(∃σ ∈ Σ : ∅ , δ(q, σ) ⊆ T) and (∀ σ ∈ Σuc : δ(q, σ) ⊆ T) } . (15)

Thus, q ∈ θ(T) corresponds to the existence of a control pattern that, when applied

to q, enforces that some transition will be executed with successor state within the

target T . By iterating this operator, one can identify all those states, that can be

forced to enter the target by any finite number of transitions: the star-step backward

controlled reachability operator p is defined by the following iteration.

1: procedure p(T)

2: Tit ← ∅

3: repeat

- 29 -

4: Tit ← Tit ∪ θ(Tit ∪ T)

5: until Tit attains a fixpoint

6: return Tit

7: end procedure

Technically, the above pseudo-code computes the smallest fixpoint of the monotone

operator θ(· ∪ T). A framework for the discussion of fixpoints of monotone

operators on sets is provided by the so called µ-calculus. A concise introduction is

given in (Thistle and Wonham, 1994a). The above iteration is represented by the

µ-calculus formula

p(T) := µTit . θ(Tit ∪ T) , (16)

where “µTit . ” reads the smallest fixpoint of the expression after the “ . ” interpreted

as an operator with argument “Tit”. In this appendix, we use µ-calculus formulae

as a short form to represent iterations.

If we restrict the original target T by p(T) and apply p again, we obtain states

p(T ∩ p(T)) that can be controlled to the restricted target T ∩ p(T), i.e., we have

reached a target state that can once again be controlled to reach the target. Repeat-

ing this argument to iteratively restrict the target until a fixpoint is attained, we

obtain the set of states that can be controlled to reach the target infinitely often.

The corresponding operator C is defined by the below pseudo-code.

1: procedure C(T)

2: Rit ← Q

3: repeat

4: Rit ← Rit ∩ p(Rit ∩ T)

5: until Rit attains a fixpoint

6: return Rit

7: end procedure

Again, the iteration can be stated as a µ-calculus formula:

C(T) := νRit . p(Rit ∩ T) , (17)

= νRit . µTit . θ(Tit ∪ (T ∩ Rit)) , (18)

where “ν” reads “largest fixpoint” and C(T) is indeed the largest fixpoint of the

monotone operator p(· ∩ T).

Applying this formula to the set of accepted states we obtain a state-set repre-

sentation of the controllability prefix, i.e., with Qctrl := C(QE) we have s ∈ ctrlE

if and only if δ(Q0, s) ∈ Qctrl. In other words, if we use Qctrl as marked states, we

obtain an automaton that accepts ctrlE. Once the controllability prefix ctrlE is

established, the supremum K↑ is obtained as the intersection of E with the limit of

the supremal closed and controllable subset of ctrlE and there are various options

to extract a specific admissible controller H that enforces E. For example, one

can record the control patterns found in the above iteration to obtain a controller

that chooses the shortest path to reach a marked state. Alternatively, one may start

with any closed subset K of K↑ to observe that the infimal closed and controllable

- 30 -

superset lies within ctrlK↑ and, thus, K can be established as lower bound spec-

ification. An option that is not considered in the cited literature is to aim for an

implementation of K↑ itself as not-topologically closed supervisor — this could

be of interest in the context of cooperative supervision.

2: Not-necessarily closed plant behaviours

We now turn to the case of a not-necessarily closed plant behaviour L, i.e., the

situation of Section 4, and we restrict the presentation to the case where bothL and

E ⊆ L are represented by one deterministic Büchi automaton each, i.e., L = lim L

and E = lim E for regular languages L and E. Similar to the situation with a closed

plant, we can construct a product automaton G := (Q, Σ, δ, Qo, QE) that generates

the local plant behaviour preL and such that we can choose marked states QE to

accept E. Regarding L, we retrieve an additional set of marked states QL such

that L = lim {s | δ(Q0, s) ∩ QL , ∅ }. If for any two finite strings s′ and s′′ with

s′ [≡L] s′′ and s′ [≡E] s′′ one is in the controllability prefix, then so is the other.

Thus, the controllability prefix can again be represented as a set of states Qctrl ⊆ Q.

As in the situation of a closed plant, the computation of Qctrl can be based on

an iteration of a backward reachability operator. Here, we need to consider that

the liveness properties of the plant can be utilised when satisfying the specification:

if, e.g., an unmarked state q < QL has an uncontrollable selfloop, the procedure

can trust the plant to eventually exit this loop; if in addition a transition to a target

state q′ ∈ T ⊆ Q is possible, the procedure shall identify q as a state that can be

controlled to reach T . This line of thought extends to unmarked strictly connected

components. To account for such situations, the one-step backward controlled

reachability operator θ from Section 2 is replaced by a strategically designed

additional iteration.

The conditional one-step backward controlled reachability operator θ′ maps a

set of target states T ⊆ Q w.r.t. a constraint D ⊆ Q to its predecessor as follows:

θ′(T, D) := { q ∈ Q |

(∃σ ∈ Σ : ∅ , δ(q, σ) ⊆ T) and (∀ σ ∈ Σuc : δ(q, σ) ⊆ T ∪ D) } . (19)

Thus, q ∈ θ(T) corresponds to the existence of a control pattern under which the

target T is reachable with the guarantee that the target is indeed attained under

the assumption that the domain constraint D is violated. The intention is to apply

a domain constraint that is disjoint to QL, so we know that it will be eventually

violated by the plant. More precisely, we consider the following fixpoint for a given

target T ⊆ Q and a constraint D ⊆ Q (think of D = Q for the first reading):

θ′′(T, D) := µTit . θ
′((Tit − QL) ∪ T, D − QL) . (20)

From the first argument to θ′ we conclude for all q ∈ θ′′(T, D) that there exists a

path to the target without passing a marking QL in between. Regardless the choice

of D, we conclude by the second argument to θ′ that, under suitable control, from

- 31 -

any q ∈ θ′′(T, D) a marking can only be reached by entering or passing the target.

Regarding the parameter D, any state in q ∈ θ′′(T, D) can be controlled to exit D

only via a marking. This is not sufficient for our purposes: if D is a strict superset

of θ′′(T, D), the system may leave θ′′(T, D) by an uncontrollable event without

having passed T . This is prevented by the choice of D that satisfies D = θ′′(T, D)

with the largest fixpoint of θ′′(T, ·) as the natural candidate:

θ′′′(T) := νDit . µTit . θ
′((Tit − QL) ∪ T, Dit − QL) . (21)

Summarising the construction so far, θ′′′(T) is the set of states that can be

controlled such that a marking QL can only be reached by entering or passing T . In

particular, θ′′′(QE) are those states, that can be controlled such that passing a plant

marking once implies that a specification marking was passed. Likewise, states

in θ′′′(θ′′′(QE)) can be controlled such that passing a plant marking twice implies

that a specification marking must have been passed. This argument is extended for

higher powers of θ′′′: the fixpoint iteration

p′(T) := µTit . θ
′′′(Tit ∪ T) . (22)

yield the states controllable to enter or pass the target T once under the assumption

that the plant marking is passed sufficiently often. If we happen to have P(T) = T ,

then the local plant behaviour can be controlled such that closed-loop trajectories

that satisfy the plant liveness properties are guaranteed to pass the target T infinitely

often. Thus, we are looking for the largest restriction of T that is a fixpoint of P.

This amounts to

C′(T) := νRit . p
′(Rit ∩ T) . (23)

Finally, using the specification marking QE as a target, the controllability prefix is

obtained by Qctrl = C′(QE) and one continuous exactly as in the situation of a closed

plant, i.e., one computes the supremal closed and controllable sublanguage of ctrlE,

takes the limit and intersects with E to obtain K↑. In particular, representability by

deterministic Büchi automata is retained andK↑ is the limit of a regular ∗-language.

Again, one possibility to obtain a controller is to record the control patterns found

in the above iteration when evaluating θ′.

	The Basic Case
	Synthesis of Liveness Properties
	When the Plant Exhibits Liveness Properties
	The General Case
	Abstraction Based Synthesis

