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Abstract

This contribution addresses the synthesis of supervisory control for hybrid systems
Σ with discrete external signals. Such systems are in general neither l-complete nor
can they be represented by finite state machines. We find an l-complete approxima-
tion (abstraction) Σl for Σ, represent it by a finite state machine, and investigate
the control problem for the approximation. If a solution exists, we synthesize the
maximally permissive supervisor for Σl. We show that it also solves the control
problem for the hybrid system Σ. If no solution exists, approximation accuracy can
be increased by computing a k-complete abstraction Σk, k > l. This paper is entirely
set within the framework of Willems’ behavioural systems theory.

Key words: Hybrid systems, supervisory control, behavioural approach,
l-complete approximations.

1 Introduction

The topic of this paper is supervisory control of time invariant hybrid systems
with discrete external (input and output) signals. In general, the external
behaviour of such a system cannot be represented by a finite state machine.
To be able to apply supervisory control synthesis techniques, we therefore
introduce the strongest l-complete approximation as a discrete abstraction
for the hybrid system. This l-complete approximation can be represented by
a finite state machine. Similar to the procedure described in [21], Section
2.4.9, we choose a particularly simple state representation. Therefore, we can
explicitly characterize the state evolution law of the approximation in terms
of the underlying hybrid system.
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In a second step, we apply a slightly modified version of Ramadge’s and Won-
ham’s supervisory control theory [18,19] and check whether the control prob-
lem can be solved for the discrete abstraction: we ask whether the (l-complete)
approximation behaviour can be restricted to a set of “acceptable” trajecto-
ries or, in other words, be forced to “obey the specifications”. If this is the
case, the least restrictive suitable supervisor is determined. It is shown that
this supervisor also restricts the external behaviour of the hybrid system in
the desired fashion.

This paper is based on a previous workshop contribution by the authors [11].
In contrast to [11], however, not only the approximation step but also the
supervisor synthesis method is treated within the framework of Willems’ be-
havioural systems theory. In order to apply our method to practical problems,
we also interpret the major steps on the realization level.

Control related issues for hybrid systems have been treated in a number of
publications. In the context of the present contribution, approximation based
approaches as discussed in [2,6,8,10,17] are most relevant. Control synthesis
for linear hybrid systems, a class of systems that can be treated analytically,
is described in [20]. An overview of the general area of hybrid systems is given
by [7,3,1,4] and [5].

This paper is organized as follows: in Section 2, we recall basic definitions of
Willems’ behavioural approach and treat state machines within this frame-
work. In Section 3, we introduce l-complete approximations and discuss how
to realize them by finite past induced state machines. In Section 4, we ap-
ply these results to a general class of hybrid systems. Synthesis of supervisors
within the behavioural framework is treated in Section 5; supervisor synthesis
based on approximations is discussed in Section 6.

2 Behaviours and state machines

The purpose of this section is to collect basic facts and definitions of Willems’
behavioural approach and to investigate state machines within this framework.

Definition 1 (See [22], Def. II.1) A dynamical system Σ is a triple (T, W, B),
with T ⊆ R the time axis, W the signal space, and B ⊆ W T := {f | f : T →
W} the behaviour.

The behaviour is viewed as the set of all trajectories which are compatible with
the phenomena modelled by the system: trajectories w 6∈ B cannot occur. An
overview of the behavioural framework is given in [22] and [21]. Within this
paper, focus is on systems with discrete time axis T = N0.
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Definition 2 (See [22], Def. II.4) A dynamical system Σ = (N0, W, B) is
said to be complete if

w ∈ B ⇐⇒ w
∣

∣

∣

[t1,t2]
∈ B

∣

∣

∣

[t1,t2]
∀ t1, t2 ∈ N0 . (1)

Here, w|[t1,t2], t1 ≤ t2, is the restriction of the map w : N0 → W to the domain
[t1, t2]∩N0. To keep notation reasonably compact, w|[t1,t2] is treated as a finite
string of symbols without absolute time information, i.e. we do not distinguish
between w|[t1,t2] ∈ W [t1,t2] and (w(t1), . . . w(t2)) ∈ W t2−t1+1. Furthermore, w|∅
is defined to be the empty string w?, i.e. w? = w|∅ holds for every map w.

Whenever the signal space is clear from the context, a system is uniquely de-
termined by its behaviour; we therefore refer to a behaviour as being complete,
if it belongs to a complete system. This convention is also used with respect
to all properties defined in the sequel.

Throughout this paper, systems are assumed to be complete and realizable by
state machines:

Definition 3 Let the sets W , X, X0 ⊆ X, δ ⊆ X × W × X denote the
external signal space, the state space, the set of initial conditions and the
next state relation, respectively. The tuple P = (X, W, δ, X0) is called a state
machine. If |W | ∈ N and |X| ∈ N (both sets are finite), P is said to be a
finite state machine. The behaviour Bs := {(w, x)| (x(t), w(t), x(t + 1)) ∈
δ ∀ t ∈ N0, x(0) ∈ X0} is referred to as the induced full behaviour, and Σs :=
(N0, W × X, Bs) as the induced state space system. The external behaviour
Bex of Σs is defined to be the projection of Bs onto W N0, i. e. Bex := PW Bs :=
{w| ∃ x : (w, x) ∈ Bs}. Vice versa, a state machine P ′ with induced external
behaviour B′ is said to be a realization of the system Σ′ = (N0, W, B′). This
is denoted by Σ′ ∼= P ′.

We now introduce some basic terminology related to state machines:

Definition 4 Let Pa = (A, W, α, A0) and Pb = (B, W, β, B0) be state ma-
chines. Reachability: A state a1 ∈ A is said to be reachable, if there exists
a state a0 ∈ A0 and a sequence of transitions (elements in the next state
relation) from α connecting a0 with a1. The state machine Pa is said to be
reachable, if every state a1 ∈ A is reachable. Don’t care symbol “−”: We use
“(a, w, −) ∈ α” as an abbreviation for “(a, w, a′) ∈ α for some a′ ∈ A”;
in analogy, “(a, w, −) 6∈ α” means “(a, w, a′) 6∈ α for all a′ ∈ A”. Non-
blocking property: The state machine Pa is called nonblocking, if for ev-
ery reachable state a ∈ A, there exists w ∈ W such that (a, w, −) ∈ α.
Union: Pa ∪ Pb := (A ∪ B, W, α ∪ β, A0 ∪ B0). Parallel composition: Pa ‖
Pb := (A × B, W, λ, A0 × B0), where ((a, b), w, (a′, b′)) ∈ λ if and only if
(a, w, a′) ∈ α and (b, w, b′) ∈ β.
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If a state machine P realizing Σ is given, we can always construct a nonblock-
ing state machine P ′, Σ ∼= P ′, by repeatedly removing blocking states and
transitions that lead into blocking states. If the state space of P is finite, the
procedure is finite, and the state space of P ′ is also finite.

In the behavioural framework, connecting two systems Σa = (N0, W, Ba) and
Σb = (N0, W, Bb) amounts to intersecting their behaviours, i.e. the system
Σ∩ = (N0, W, Ba∩Bb) represents the situation where trajectories need to be
compatible with both the phenomena modelled by Σa and those modelled by
Σb. On the realization level, this corresponds to parallel composition: it is a
well known fact that Σa

∼= Pa, Σb
∼= Pb implies Σ∩

∼= Pa ‖ Pb. In a supervisory
control scenario, connecting plant and supervisor models the closed loop.

Definition 5 (See [21], Section 2.2.1) Let Bs be the full behaviour induced
by the state machine P = (X, W, δ, X0). Then, P is said to be past induced,
if t ∈ N0, (w′, x′), (w′′, x′′) ∈ Bs, w′|[0,t) = w′′|[0,t) implies x′(t) = x′′(t).

A past induced state machine is “instantaneously state observable”: for every
t ∈ N0, we can figure out x(t) by only investigating the past w|[0,t) of the
external signal. Thus, past inducedness is a crucial property for control related
tasks. In fact, past induced realizations of the plant model are the scenario
where Ramadge’s and Wonham’s supervisory control theory is set.

A state machine P is past induced, if and only if there exists a map p : ∪t∈N0

B|[0,t) → X such that

(w, x) ∈ Bs ⇐⇒ w ∈ B, x ∈ XN0 , x(t) = p(w|[0,t)) ∀ t ∈ N0 . (2)

p is referred to as the past induced state map. If the state machine P is past
induced and nonblocking, X0 contains at most one element. The parallel com-
position of two past induced state machines is also past induced:

Proposition 6 Let Pa = (A, W, α, A0) and Pb = (B, W, β, B0) be past
induced realizations of Σa = (N0, W, Ba) and Σb = (N0, W, Bb), respec-
tively. Then Pa ‖ Pb is also past induced. Let pa, pb and p denote the past
induced state maps of Pa, Pb and Pa ‖ Pb, respectively. Then p(w|[0,t)) =
(pa(w|[0,t)), pb(w|[0,t))) holds for all w ∈ Ba ∩ Bb, t ∈ N0.

In theory, any state machine P can be converted into a past induced state
machine without affecting its external behaviour. This, however, has to be
paid for by “state explosion”. Therefore, even for a finite P , this procedure is
in general not feasible. The approximation scheme suggested in the following
section addresses this problem.
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3 l-Complete approximations

In this section, we approximate a given system Σ with finite external signal
space W , |W | ∈ N, by an l-complete system Σl. The latter can then be realized
by a past induced finite state machine.

Definition 7 (See [22], Def. II.3) Let σt be the backwards t-shift, i.e. (σtf)(τ) :=
f(t+τ) for all τ ∈ N0, and σ := σ1. Then, a dynamical system Σ = (N0, W, B)
is said to be time invariant, if σB ⊆ B.

Note that systems realized by state machines with restricted initial conditions
are not necessarily time invariant. However, a system is time invariant, if it
is realized by a state machine P = (X, W, δ, X) (i.e. if the set of initial
conditions covers the entire state space).

Definition 8 (See [22], Def. II.4) Let l ∈ N. A time invariant dynamical
system Σ = (N0, W, B) is said to be l-complete, if

w ∈ B ⇐⇒ σtw
∣

∣

∣

[0,l]
∈ B

∣

∣

∣

[0,l]
∀ t ∈ N0 . (3)

Note that shifting is defined to be of higher priority than restricting: σtw|[0,l] =
(σtw)|[0,l].

An l-complete system can be represented by a difference equation with lag l.
Not all systems are l-complete, however. For a system Σ = (N0, W, B) without
this property, we now propose the notion of a “strongest l-complete approx-
imation”. Roughly speaking, this is a system evolving on the same time axis
N0 and within the same signal space W as the original system, and with the
smallest l-complete behaviour that covers the “original” behaviour B. For-
mally, this can be written as:

Definition 9 Let Σ = (N0, W, B) and Σl = (N0, W, Bl) be time invariant
dynamical systems, with l ∈ N. Σl is said to be a strongest l-complete approx-
imation induced by Σ if the following conditions hold:

(1) Bl ⊇ B, Bl is l-complete.
(2) B′

l ⊇ B, B′
l is l-complete =⇒ B′

l ⊇ Bl .

The motivation for Definition 9 is the following: we want to synthesize super-
visory control for Σ on the basis of the approximation Σl. Clearly, we need
condition (1) to hold; otherwise, B could contain unacceptable trajectories
which could not be predicted by Σl and hence not be suppressed by a control
strategy based on the approximation. It is also obvious that we want condi-
tion (2) to hold: the smaller Bl, the more accurate the approximation Σl, and
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the better the chances for a suitable supervisor to exist.

Proposition 10 Let Σ = (N0, W, B) be a time invariant dynamical system.
Choose an arbitrary l ∈ N. Then, the strongest l-complete approximation in-
duced by Σ, denoted by Σl = (N0, W, Bl), exists uniquely, and Bl is given
by:

Bl = {w| w ∈ W N0 , σtw
∣

∣

∣

[0,l]
∈ B

∣

∣

∣

[0,l]
∀ t ∈ N0}. (4)

PROOF. Uniqueness follows immediately from Definition 9. To prove exis-
tence, take Bl as defined by eq. (4) and check conditions (1) and (2). Σ is
time invariant, hence w ∈ B implies σtw|[0,l] ∈ B|[0,l] for all t ∈ N0, and
therefore Bl ⊇ B. l-completeness of Bl is obvious, hence condition (1) holds.
Now, take any l-complete B′

l that satisfies B′
l ⊇ B. Pick any w ∈ Bl; from

eq. (4), it follows immediately that σtw|[0,l] ∈ B|[0,l] ⊆ B′
l|[0,l] for all t ∈ N0.

B′
l being l-complete implies w ∈ B′

l. Hence, B′
l ⊇ Bl, and existence has been

proven. 2

Corollary 11 is an immediate consequence of equation (4):

Corollary 11 Let Σ = (N0, W, B) be a time invariant dynamical system and
Σl = (N0, W, Bl) the strongest l-complete approximation. Then,

(1) Bl|[0,l] = B|[0,l] ,
(2) Bl ⊇ Bl+1 ⊇ B ,
(3) Σl = Σ ⇐⇒ Σ is l-complete.

In order to construct a realization of Σl, we set up a suitable state space Zl

and a next state relation δl. The procedure is based on memorizing the last l

external signals (w(t− l), . . . w(t−1)) as state z(t) ∈ Zl at time t ≥ l, similar
to [21], Section 2.4.9. Since our time axis is N0 we need to take into account
the effect of shorter strings for t < l.

Zl :=
⋃

0≤r≤l

W r, W 0 := {w?} , (5)

where the empty string w? is interpreted as “no external signal present so far”.
The next state relation is given by:

δl :=
⋃

0≤r≤l

δr
l ⊆ Zl × W × Zl , (6)
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where

δ0
l := {(w?, w0, w0)| w0 ∈ B

∣

∣

∣

[0,0]
} , (7)

δr
l := {((w0, . . . wr−1), wr, (w0, . . . wr))| (w0, . . . wr) ∈ B

∣

∣

∣

[0,r]
} , 1 ≤ r < l ,

(8)

δl
l := {((w0, . . . wl−1), wl, (w1, . . . wl))| (w0, . . . wl) ∈ B

∣

∣

∣

[0,l]
} . (9)

Theorem 12 Let Σl be the strongest l-complete approximation induced by the
time invariant dynamical system Σ = (N0, W, B), B 6= ∅. Then, Σl is realized
by the nonblocking past induced finite state machine Pl := (Zl, W, δl, Z0),
defined by equations (5) – (9).

PROOF. Let Bs,l and Bex,l = PW Bs,l denote the full and the external be-
haviour induced by Pl. For w ∈ W N0 and t ∈ N0 let

p(w|[0,t)) :=



























w? if t = 0,

(w(0), . . . , w(t − 1)) if 0 < t < l,

(w(t − l), . . . , w(t − 1)) if t ≥ l.

(10)

From the definition of δl it follows by induction that (w, z) ∈ Bs,l if and
only if w ∈ Bex,l and z(t) = p(w|[0,t)) for all t ∈ N0. Hence, Pl is past in-
duced, and p serves as past induced state map. In order to prove Bl = Bex,l,
we first assume w ∈ Bex,l. Then z(t) := p(w|[0,t)), t ∈ N0, defines a state

trajectory z ∈ ZN0

l such that (w, z) ∈ Bs,l; hence, (z(t), w(t)) ∈ B|[0,l]

for all t ≥ l. From Corollary 11, part (1), and equation (10), it follows
that w|[t−l,t] = (z(t), w(t)) ∈ B|[0,l] = Bl|[0,l] for all t ≥ l. Since Bl is l-
complete, this implies w ∈ Bl. Vice versa, assume w ∈ Bl. It is obvious that
(p(w|[0,t)), w(t), p(w|[0,t])) ∈ δl for all t ∈ N0. Hence, z(t) := p(w|[0,t)), t ∈ N0,
defines a state trajectory such that (w, z) ∈ Bs,l and therefore w ∈ Bex,l. To
show that Pl is nonblocking, pick any reachable ζ ∈ Zl. As B is nonempty,
so is Bl. Hence, if ζ = w?, there exists a transition (ζ, −, −) ∈ δl. If ζ 6= w?,
by the definition of δl there exists r, 0 ≤ r < l such that ζ ∈ B|[0,r]. Hence,
there exists a trajectory w ∈ B such that ζ = w|[0,r]. This implies either
(ζ, w(r+1), w|[0,r+1]) ∈ δl or (ζ, w(r+1), w|[1,r+1]) ∈ δl. Thus, Pl is nonblock-
ing. 2

4 Hybrid systems

We now apply the results from above to a class of hybrid systems. It is char-
acterized by the fact that the external signal is finite (i.e. |W | ∈ N), while the
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state set X is a product of R
n and a finite set D. We still restrict systems to be

time invariant and discrete time. However, from our point of view, it does not
matter whether the time axis N0 is “clock time” (e. g. a regular sampling grid)
or “logic time”, enumerating the occurrence of events (where events could be
defined as certain continuous variables crossing certain threshold values).

Definition 13 Let W , |W | ∈ N, be an external signal space, X = R
n × D,

|D| ∈ N, a state space. Then, the state machine P = (X, W, δ, X0) is said to
be hybrid.

In the sequel, it will always be assumed that X0 = X, i.e. the initial conditions
are not restricted. This ensures time invariance of the external behaviour B

induced by P . Therefore, we can aim to approximate Σ = (N0, W, B) ∼= P

by its strongest l-complete approximation Σl = (N0, W, Bl).

Note that while the full behaviour Bs is 1-complete by definition, we cannot
expect B to be l-complete for any l ∈ N. Hence, some degree of model accuracy
will be lost when approximating B by Bl. On the other hand, we know from
the previous section that Bl can be realized by the finite state machine Pl and
is therefore amenable to methods from the field of DES theory.

We now discuss how to compute the next state relation δl for a given δ.

Definition 14 Let Σ = (N0, W, B) be a time invariant system realized by the
hybrid state machine P = (X, W, δ, X). Let Bs be the full behaviour induced
by P . Then, X (w̄|[0,l]) ⊆ X denotes the set of all states that are compatible
with w̄|[0,l] ∈ W l+1:

X (w̄
∣

∣

∣

[0,l]
) := {ξ| ∃ (w, x) ∈ Bs : x(l) = ξ, w

∣

∣

∣

[0,l]
= w̄

∣

∣

∣

[0,l]
} . (11)

If P is nonblocking, the sets of compatible states can be derived by the recur-
sive formula given in the following proposition.

Proposition 15 Let Σ = (N0, W, B) be a time invariant system realized
by a nonblocking state machine P = (X, W, δ, X). Then, in the notation of
Definition 14, for any trajectory w̄ ∈ W N0, the following holds:

X (w̄
∣

∣

∣

[0,0]
) = {ξ| ∃ ξ+ ∈ X : (ξ, w̄(0), ξ+) ∈ δ} , (12)

X (w̄
∣

∣

∣

[0,l+1]
) = {ξ| ∃ ξ− ∈ X (w̄

∣

∣

∣

[0,l]
) : (ξ−, w̄(l), ξ) ∈ δ} ∩ X (w̄(l + 1)) . (13)

PROOF. It is obvious that any ξ in one of the left hand side sets in (12) or
(13) satisfies the conditions stated on the respective right hand side. Hence
the left hand side sets are contained in the right hand side sets. To show the
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converse, pick any ξ from the right hand side set of equation (12). Let Bs

denote the full behaviour induced by P . As P is nonblocking, there exists
a trajectory (w, x) ∈ Bs, x(0) = ξ and w(0) = w̄(0); hence, ξ = x(0) ∈
X (w̄|[0,0]), yielding equation (12). Now, pick any ξ from the right hand side
set in equation (13). As ξ− ∈ X (w̄|[0,l]), we know a trajectory (w−, x−) ∈ Bs

to exist such that w−|[0,l] = w̄|[0,l] and x−(l) = ξ−. As ξ ∈ X (w̄(l + 1)), there
exists a trajectory (w+, x+) ∈ Bs such that x+(0) = ξ and w+(0) = w̄(l + 1).
We construct a trajectory (w, x) ∈ Bs by concatenating (w−, x−)|[0,l] and
(w+, x+): Let x(t) := x−(t), w(t) := w−(t) for all t ≤ l, and x(t) := x+(t −
l − 1), w(t) := w+(t − l − 1) for all t > l. This yields x(l + 1) = ξ and
w|[0,l+1] = w̄|[0,l+1], implying ξ ∈ X (w̄|[0,l+1]). Hence, it has been shown that
equation (13) holds. 2

From equation (13), it can be seen that X (w̄|[0,l+1]) is the intersection of the
set of all states which are reachable from X (w̄|[0,l]) within one time step and
the set of states compatible with the single external symbol w̄(l + 1). If we
can perform these operations repeatedly, we can compute all sets X ( · ) ⊆ X

compatible to strings up to length l. As we assume the external signal space W

to be a finite set, B|[0,l] is also finite. Furthermore, w̄|[0,l] ∈ B|[0,l] is equivalent
to X (w̄|[0,l]) 6= ∅. The next state relation δl is defined in terms of B|[0,l]. This
is obvious from equations (5) – (9). Thus, computing the sets of compatible
states for all strings of external signals up to length l leads to an explicit
representation of δl.

As an example, consider a hybrid system in strictly nonanticipating input
/state/output form:

W = U × Y , |U | ∈ N , |Y | ∈ N , (14)

f : X × U → X , g : X → Y , (15)

δ := {(ξ, (ν, µ), ξ′)| ξ′ = f(ξ, ν), µ = g(ξ)} . (16)

Note that P is nonblocking, but, in general, not past induced. Essentially,
these are the same assumptions as in [15]. Indeed, the strongest l-complete
approximation Σl induced by this hybrid system turns out to be equivalent –
up to a minor difference in the definition of z – to the “discrete abstraction
Al+1” defined in [15], or the “abstraction Al” in [16]. Furthermore, Σl is similar
to the “condensed model of order l” as proposed in [10], where the (more
restrictive) class of switched-integrator-systems is discussed. In our framework,
Proposition 15 yields for any u ∈ UN0 , y ∈ Y N0:

X ((u, y)
∣

∣

∣

[0,0]
) =g−1(y(0)) , (17)

X ((u, y)
∣

∣

∣

[0,l+1]
) =f(X ((u, y)

∣

∣

∣

[0,l]
), u(l)) ∩ g−1(y(l + 1)) . (18)
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Whenever one is able to repeatedly compute images under f( · , ν) for fixed
ν ∈ U , inverse images under g, and intersections of those, the above equations
can be used to compute the sets of compatible states and, hence, the next
state relation for the approximation.

However, f and g are often given in implicit form only. This, for example, is
the case when the discrete time axis is determined by continuous variables
crossing certain threshold values. In this situation, it is common to apply an
additional approximation step based on partitioning the continuous part of the
state space. Typically, this leads to a realization Pca with a large but finite state
space. Unfortunately, it is hardly ever past induced. Hence, in a second step,
we compute the strongest l-complete approximation Σl = (N0, W, Bl) ∼= Pl

for Pca. If Pca realizes a conservative approximation Σca = (N0, W, Bca) of
the hybrid system Σ, then B ⊆ Bca ⊆ Bl holds. In this case, Σl is still an
l-complete approximation of Σ, but not necessarily the strongest one.

Before using l-complete approximations Σl for the purposes of supervisory con-
trol synthesis, we summarize the proposed abstraction procedure: our starting
point is a hybrid state machine P = (X, W, δ, X). This induces the (full)
behaviour Bs and the (discrete) external behaviour B = PW Bs. First, choose
an l ∈ N and compute (or conservatively estimate) the sets of compatible
states X (w̄|[0,r]) for all strings w̄|[0,r], r ≤ l. This can be done by the recur-
sive formula stated in Proposition 15. Then, the (purely discrete) next state
relation δl is set up according to Theorem 12. Hence, Pl = (Zl, W, δl, Z0) is a
realization of an l-complete approximation Σl for Σ = (N0, W, B).

5 Supervisory control

A supervisor is a dynamical system Σsup = (N0, W, Bsup). Roughly speaking,
its task is to prevent the system Σ = (N0, W, B) from evolving on trajec-
tories which are deemed to be unacceptable – the supervisor is meant to
suitably restrict the behaviour B. When the supervisor Σsup and the sys-
tem Σ are connected, the closed loop is modelled by Σcl = (N0, W, Bcl),
where Bcl := B ∩Bsup. Characterizing the acceptable behaviour by a system
Σspec = (N0, W, Bspec), we ask for a supervisor such that Bcl ⊆ Bspec.

The mechanism of interaction is to stop w(t) from taking certain values in
W . However, in general, it will not be possible to disable all elements in W

independently. Throughout this paper, a unique product decomposition W =
U ×Y is considered, where U denotes the set of input signals, and Y the set of
output signals — by (u, y) = w ∈ W N0 we always refer to this decomposition;
i.e. we implicitly assume u = PU w ∈ UN0 , y = PY w ∈ Y N0, where PU and PY

denote the canonical projections from U×Y onto U and Y , respectively. While
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the trajectory evolves, the supervisor is only allowed to “disable” input signals
in an explicit manner. In turn, this may prevent certain output signals from
occurring, but the latter cannot be disabled individually: when preventing the
signal value (µ, ν) ∈ U × Y , this can only be done by preventing all external
signal values {(µ, ν̃)| ν̃ ∈ Y } simultaneously. Definition 16 formalizes the
desired mechanism of interaction.

Definition 16 The system Σsup = (N0, W, Bsup) is said to be an admissible
supervisor w.r.t. the system Σ = (N0, W, B) if w, w̃ ∈ B, t ∈ N0, w|[0,t] ∈
Bsup|[0,t], w̃|[0,t) = w|[0,t) and PU w̃(t) = PU w(t), implies that w|[0,t], w̃|[0,t] ∈
(B ∩ Bsup)|[0,t].

In other words: If w is a trajectory of B such that the string w|[0,t] is not
prevented by the supervisor Σsup, then w|[0,t] can be continued to a closed
loop trajectory. Then, any string w̃|[0,t] ∈ B|[0,t] which equals w|[0,t] up to the
last output symbol must also be allowed by Σsup.

Note that, according to Definition 16, the trivial system Σ∅ := (N0, W, ∅) is an
admissible supervisor w.r.t. any system Σ = (N0, W, B). This, however, leads
to an empty closed loop behaviour. Obviously, this is not desirable. On the
contrary, we want to maximize the closed loop behaviour while still meeting
the specifications, i.e. we want the supervisor to be maximally permissive. If
every admissible supervisor leads to an empty closed loop behaviour, this can
be interpreted as follows: “the only way to avoid violating the specifications
is not to run the system”.

To formalize this discussion, let C(Σ, Σspec) denote the set of all closed loop
behaviours Bcl := B ∩ Bsup, such that Σsup = (N0, W, Bsup) is an admissible
supervisor w.r.t. Σ and B ∩ Bsup ⊆ Bspec holds.

Proposition 17 Let A be some index set and Σα = (N0, W, Bα) be ad-
missible supervisors w.r.t. Σ = (N0, W, B) for all α ∈ A. Then, Σsup :=
(N0, W, ∪α∈ABα) is also an admissible supervisor w.r.t. Σ.

PROOF. Pick any w, w̃ ∈ B, t ∈ N0 such that w|[0,t] ∈ (∪α∈ABα)|[0,t],
w̃|[0,t) = w|[0,t) and PU w̃(t) = PU w(t). We need to show that w|[0,t], w̃|[0,t] ∈
(B ∩ (∪α∈ABα))|[0,t]. Observe that (∪α∈ABα)|[0,t] = ∪α∈A(Bα|[0,t]); hence,
w|[0,t] ∈ Bα|[0,t] for some α ∈ A. This implies w|[0,t], w̃|[0,t] ∈ (B ∩ Bα)|[0,t].
Therefore w|[0,t], w̃|[0,t] ∈ (B ∩ (∪α∈ABα))|[0,t]. 2

As B∩Bsup = B∩Bcl and Bcl ⊆ Bsup, an immediate consequence from Def-
inition 16 is that any closed loop behaviour Bcl ∈ C(Σ, Σspec) constitutes an
admissible supervisor Σsup = (N0, W, Bcl) w.r.t. Σ. Then, by the above propo-
sition, the union B+

cl of all closed loop behaviours in C(Σ, Σspec) is also an ad-
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missible supervisor Σ+
sup = (N0, W, B+

cl) w.r.t. Σ. Obviously, B+
cl ⊆ B∩Bspec;

hence, B+
cl ∈ C(Σ, Σspec) is the supremal element of C(Σ, Σspec) (w.r.t. the

partial order induced by “⊆”). Therefore, B+
cl can be seen as the least restric-

tive closed loop behaviour which can be achieved by an admissible supervisor
and which meets the specification. Obviously, an admissible supervisor giving
rise to the least restrictive closed loop behaviour B+

cl is given by Σ+
sup.

We now investigate the problem on the realization level.

Definition 18 Let P = (X, W, δ, X0) and Pspec = (Xspec, W, δspec, Xspec0
)

be state machines. Let P‖ := (Q, W, λ, Q0) := P ‖ Pspec. The transitions

(ξ, ω, ξ′) ∈ δ and (ξ̃, ω̃, ξ̃′) ∈ δ are called partners, if ξ = ξ̃ and PU ω =
PU ω̃. Let P̃‖ = (Q, W, λ̃, Q̃0) be a state machine such that (i) λ̃ ⊆ λ,

Q̃0 ⊆ Q0, and (ii) a transition ((ξ, ξspec), ω, (ξ′, ξ′spec)) ∈ λ can only be an

element in λ̃, if for every partner (ξ, ω̃, ξ̃′) of (ξ, ω, ξ′) there exists a transi-
tion ((ξ, ξspec), ω̃, (ξ̃′, −)) in λ̃. Then, P̃‖ is called a substructure of P ‖ Pspec

w.r.t. P .

Indeed, a system Σsup realized by a nonblocking substructure of P ‖ Pspec

w.r.t. P is an admissible supervisor w.r.t. Σ ∼= P enforcing the specifications:

Proposition 19 Let Σ = (N0, W, B) and Σspec = (N0, W, Bspec) be realized
by past induced state machines P = (X, W, δ, X0) and Pspec = (Xspec, W, δspec,
Xspec0

), respectively. Let Psup = (Q, W, δsup, Qsup0
) be a nonblocking substruc-

ture of P ‖ Pspec w.r.t. P . Then, Σsup = (N0, W, Bsup) ∼= Psup is an admis-
sible supervisor w.r.t. Σ. The closed loop behaviour meets the specifications:
Bcl := B ∩ Bsup ⊆ Bspec.

PROOF. Observe that Bsup ⊆ B ∩ Bspec, hence Bcl = Bsup ⊆ Bspec. Let
px and pspec denote the past induced state maps of P and Pspec, respectively.
Note that as P ‖ Pspec is past induced, so is Psup: the map (px, pspec) restricted
to the domain ∪t∈N0

Bsup|[0,t) serves as past induced state map of Psup. Now
pick any w, w̃ ∈ B, t ∈ N0 such that w|[0,t] ∈ Bsup|[0,t], w̃|[0,t) = w|[0,t) and
PU w̃(t) = PU w(t). As Bcl = Bsup, we have w|[0,t] ∈ (B ∩ Bsup)|[0,t]. Let ξ =
px(w|[0,t)), ξ′ = px(w|[0,t]), ξspec = pspec(w|[0,t)) and ξ′spec = pspec(w|[0,t]). Hence,

((ξ, ξspec), w(t), (ξ′, ξ′spec)) ∈ δsup. Let ξ̃′ = px(w̃|[0,t]) and observe the transi-

tions (ξ, w(t), ξ′) ∈ δ and (ξ, w̃(t), ξ̃′) ∈ δ to be partners. As Psup is a sub-
structure w.r.t. P , there exists a ξ̃′spec such that ((ξ, ξspec), w̃(t), (ξ̃′, ξ̃′spec)) ∈
δsup. As Psup is nonblocking, there exists a trajectory ŵ ∈ Bsup such that
ŵ|[0,t] = w̃|[0,t]; hence, w̃|[0,t] ∈ (B ∩ Bsup)|[0,t]. Thus, Σsup is an admissible
supervisor w.r.t. Σ. 2

This raises the question, whether every admissible supervisor Σsup meeting the
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specifications can be realized by a nonblocking substructure. This is not the
case. But we can always find an admissible supervisor Σ′

sup which is realized
by a nonblocking substructure and which is at least as permissive as Σsup.

Proposition 20 Let Σ = (N0, W, B) and Σspec = (N0, W, Bspec) be re-
alized by nonblocking past induced state machines P = (X, W, δ, X0) and
Pspec = (Xspec, W, δspec, Xspec0), respectively. Let Σsup = (N0, W, Bsup) be an
admissible supervisor w.r.t. Σ such that Bcl := B∩Bsup ⊆ Bspec. Then, there
exists a nonblocking past induced substructure of P ‖ Pspec w.r.t. P , denoted
by P ′

sup, such that Bcl ⊆ B′
cl := B ∩ B′

sup ⊆ Bspec, where B′
sup denotes the

external behaviour induced by P ′
sup.

PROOF. If Bcl = ∅, we choose the empty set as initial condition: P ′
sup =

(X×Xspec, W, ∅, ∅) is a nonblocking past induced substructure of P ‖ Psup. We
now construct a suitable P ′

sup for the case Bcl 6= ∅. Let P‖ := (Q, W, λ, Q0) :=
P ‖ Pspec, where Q = X × Xspec and Q0 = X0 × Xspec0

. As P and Pspec are
past induced, so is P‖; hence, |Q0| ≤ 1. As Bcl ⊆ B ∩ Bspec is nonempty,
Q0 = {ρ0}. Let p denote the past induced state map of P‖. Define the next
state relation δ′sup ⊆ Q × W × Q by

δ′sup := {(p(w|[0,t)), w(t), p(w|[0,t+1)))| w ∈ Bcl, t ∈ N0} (19)

and check P ′
sup := (Q, W, δ′sup, Q0) to be a nonblocking past induced sub-

structure of P ‖ Pspec w.r.t. P . As Bcl ⊆ B ∩ Bspec and P‖ is past induced,
we have δ′sup ⊆ λ; hence, B′

sup ⊆ B ∩ Bspec. On the other hand, it is obvious
that Bcl ⊆ B′

sup. Hence, Bcl ⊆ B′
sup = B′

cl ⊆ Bspec. As δ′sup ⊆ λ, P ′
sup is

past induced. To show that P ′
sup is nonblocking, pick any reachable ρ ∈ Q. As

Bcl is nonempty, so is B′
sup. Hence, if ρ = ρ0, there must exist a transition

(ρ, −, −) ∈ δ′sup. If ρ 6= ρ0, it follows from (19) that there exists w ∈ Bcl and
t ∈ N0 such that ρ = p(w|[0,t+1)); hence, (ρ, w(t + 1), p(w|[0,t+2)) ∈ δ′sup. Thus,
P ′

sup is nonblocking. Finally, we check that P ′
sup is a substructure of P ‖ Pspec

w.r.t. P : pick any transition ((ξ, ξspec), ω, (ξ′, ξ′spec)) ∈ δ′sup and any partner

(ξ, ω̃, ξ̃′) ∈ δ of (ξ, ω, ξ′) ∈ δ. By (19), there exists a w ∈ Bcl and a t ∈ N0

such that p(w|[0,t)) = (ξ, ξspec) and w(t) = ω. Let px denote the past induced
state map of P ; hence, ξ = px(w|[0,t)). As P is nonblocking, there exists a

w̃ ∈ B such that w̃|[0,t) = w|[0,t), w̃(t) = ω̃ and px(w̃|[0,t]) = ξ̃′. Clearly, w ∈ B,
w|[0,t] ∈ Bsup|[0,t] and PU w̃(t) = PUw(t). Then, as Σsup is an admissible super-

visor w.r.t. Σ, w̃|[0,t] ∈ Bcl|[0,t]. This implies ((ξ, ξspec), ω̃, (ξ̃′, −)) ∈ δ′sup. 2

It follows directly from the above propositions that only substructures of P ‖
Pspec w.r.t. P need to be considered when the least restrictive closed loop
behaviour is to be synthesized:
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Theorem 21 Let Σ = (N0, W, B) and Σspec = (N0, W, Bspec) be realized
by nonblocking past induced state machines P = (X, W, δ, X0) and Pspec =
(Xspec, W, δspec, Xspec0

), respectively. Denote the supremal element of C(Σ, Σspec)
by B+

cl. Then Σ+
sup = (N0, W, B+

cl) is an admissible supervisor w.r.t. Σ, and
Σ+

sup can be realized by a nonblocking past induced substructure of P ‖ Pspec

w.r.t. P , denoted by P +
sup. If both P and Pspec are finite, so is P +

sup.

The theorem is immediately inferred from Propositions 19 and 20. If P and
Pspec are finite, P +

sup can be synthesized by a fixed-point algorithm. An imple-
mentation coded in C++ has been reported in [14].

6 Supervisory control based on conservative approximations

Recall that the above algorithm for supervisory control can only be used if the
plant model Σ = (N0, W, B) is realized by a nonblocking finite past induced
state machine P = (X, W, δ, X0).

If the plant is time invariant, but fails to be either finite or nonblocking,
we suggest the following procedure: we first apply the approximation scheme
from Section 3 and realize an l-complete approximation of Σ by a nonblocking
finite past induced state machine Pca, Σca = (N0, W, Bca) ∼= Pca. In a second
step, we apply the results of Section 5 and synthesize a realization P +

sup of
the least restrictive closed loop behaviour B+

cl ∈ C(Σca, Σspec) meeting the
specifications. For this, we assume Σspec to be realized by a nonblocking finite
past induced state machine Pspec. The system Σ+

sup = (N0, W, B+
cl)

∼= P+
sup is

an admissible supervisor w.r.t. Σca, and Bca ∩ B+
cl = B+

cl ⊆ Bspec.

Now, we need to show two properties: (i) Σ+
sup is an admissible supervisor

w.r.t. the plant Σ; (ii) when connecting Σ+
sup to the plant Σ, the closed loop

will not exhibit any unacceptable behaviour. (ii) is obvious, because Bcl :=
B∩B+

cl ⊆ B ∩Bspec ⊆ Bspec. We claim that (i) is also true, if Σ exhibits the
input-output structure stated below:

Definition 22 (see [22], Def. VIII.1 and VIII.4) The system Σ = (N0, W, B),
W = U × Y , is said to be an I/- system if:

(1) the input is free, i.e. PU B = UN0 ;
(2) the output does not anticipate the input, i.e. for all t ∈ N0, (ũ, ỹ), (û, ŷ) ∈

B the following implication holds:

ũ
∣

∣

∣

[0,t]
= û

∣

∣

∣

[0,t]
=⇒ ∃ y ∈ Y N0 : y

∣

∣

∣

[0,t]
= ỹ

∣

∣

∣

[0,t]
, (û, y) ∈ B . (20)

Note that, unlike Willems’ I/O systems ([22], Def. VIII.3), an I/- system does
not require the output to process the input, i.e. we do not demand that the
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future of the output signal is uniquely determined by the input and the past
of the output ([22], Def. VIII.2). The hybrid systems introduced in Section 4
are I/- systems but, in general, not I/O systems in Willems’ sense.

Definition 23 A state machine P = (X, W, δ, X0) is said to be an I/S/-
machine, if for every reachable ξ ∈ X, µ ∈ U , there exists a ν ∈ Y such that
(ξ, (µ, ν), −) ∈ δ.

Note that I/S/- machines are nonblocking. The link between I/- systems and
I/S/- machines is provided by the following proposition.

Proposition 24 If P is an I/S/- machine, the induced system Σ is an I/-
system. Vice versa, Σ being an I/- system and P being a nonblocking past
induced realization implies that P is an I/S/- machine.

PROOF. Let Bs and B denote the full and the external behaviour induced
by P = (X, W, δ, X0). First, assume P to be an I/S/- machine. Obviously, the
input is free. To show that the output does not anticipate the input, focus on
t ∈ N0, (ũ, ỹ), (û, ŷ) ∈ B such that ũ|[0,t] = û|[0,t]. Pick x̃, x̂ ∈ XN0 such that
(ũ, ỹ, x̃), (û, ŷ, x̂) ∈ Bs. Clearly, x̃(t + 1) =: ξt+1 is reachable. Then, because
of the I/S/- property, we can successively pick ξτ+1 ∈ X, ντ ∈ Y, τ > t, such
that (ξτ , (û(τ), ντ ), ξτ+1) ∈ δ. Let y(τ) := ỹ(τ), x(τ) := x̃(τ) for all τ ≤ t

and y(τ) := ντ , x(τ) := ξτ for all τ > t. Observe that (û, y, x) ∈ Bs, hence
(û, y) ∈ B. Thus, Σ is an I/- system. Secondly, assume Σ to be an I/- system
and P to be a nonblocking past induced realization. Pick any reachable ξ ∈ X

and any µ ∈ U . As P is nonblocking, there exists t ∈ N0 and (ũ, ỹ, x̃) ∈ Bs

such that x̃(t) = ξ. Since the input is free, there exists (û, ŷ) ∈ B such that
û|[0,t) = ũ|[0,t) and û(t) = µ. Pick x̂ such that (û, ŷ, x̂) ∈ Bs. In the case
t = 0, ξ is the only element in X0 (this follows from P being past induced).
Hence, (ξ, (µ, ŷ(0)), −) ∈ δ. We now consider the case t > 0. As the output
is not anticipated by the input, there exists a y ∈ Y N0 such that y|[0,t) =
ỹ|[0,t), (û, y) ∈ B. Pick x such that (û, y, x) ∈ Bs. Since P is past induced,
x(t) = ξ holds; hence, (ξ, (µ, y(t)), x(t + 1)) ∈ δ. Therefore, P is an I/S/-
machine. 2

We can now prove the claim related to property (i):

Theorem 25 Let Σca = (N0, W, Bca) be a conservative approximation of Σ =
(N0, W, B), i.e. B ⊆ Bca; let Σsup = (N0, W, Bsup) be a complete admissible
supervisor w.r.t. Σca. If Σ is a complete I/- system, then Σsup is an admissible
supervisor w.r.t. Σ. If the closed loop behaviour Bca ∩Bsup is nonempty, so is
B ∩ Bsup.
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PROOF. We first prove the following claim:

w ∈ B, w
∣

∣

∣

[0,t]
∈ (Bca ∩ Bsup)

∣

∣

∣

[0,t]
=⇒ w

∣

∣

∣

[0,t]
∈ (B ∩ Bsup)

∣

∣

∣

[0,t]
. (21)

Pick any w ∈ B, t ∈ N0 such that the left hand side in 21 holds. We now
successively construct trajectories wk ∈ B, k ∈ N0, k ≥ t, starting with
wt := w, such that

wk

∣

∣

∣

[0,k]
∈ (Bca ∩ Bsup)

∣

∣

∣

[0,k]
, wk

∣

∣

∣

[0,k−1]
= wk−1

∣

∣

∣

[0,k−1]
(22)

holds for all k > t. Focus on an arbitrary k > t and assume (22) to hold for
some wk ∈ B. Then we can pick a w̃k ∈ Bca∩Bsup such that w̃k|[0,k] = wk|[0,k].
As B is an I/- system, there exists ŵk ∈ B ⊆ Bca such that ŵk|[0,k] = w̃k|[0,k]

and PU ŵk = PU w̃k. Observe that: w̃k ∈ Bca, w̃k|[0,k+1] ∈ (Bca ∩ Bsup)|[0,k+1],
ŵk ∈ Bca and PU ŵk(k+1) = PU w̃k(k+1). As Σsup is an admissible supervisor
w.r.t. Σca, the above properties imply ŵk|[0,k+1] ∈ (Bca ∩ Bsup)|[0,k+1]; hence,
wk+1 := ŵk satisfies equation (22). This completes the construction of the
series of trajectories (wk)k≥t, wk ∈ B. By the second part of (22), wl(k) =
wk(k) for all k, l ≥ k; hence, (wk)k≥t converges pointwise. Let w∞(t) :=
limk→∞ wk(t) for all t ∈ N0. Observe that w∞|[0,k] = wk|[0,k] for all k ≥ t. Thus
(22) implies w∞|[0,k] ∈ B|[0,k] and w∞|[0,k] ∈ Bsup|[0,k] for all k ≥ t; hence, as Σ
and Σsup are complete, w∞ ∈ B∩Bsup. Thus w|[0,t] = w∞|[0,t] can be continued
within B∩Bsup; hence, the claim (21) has been proven. In order to prove the
theorem, pick any w, w̃ ∈ B, t ∈ N0 such that w|[0,t] ∈ Bsup|[0,t], w̃|[0,t) =
w|[0,t) and PU w̃(t) = PU w(t). Then Σsup being an admissible supervisor w.r.t.
Σca and B ⊆ Bca implies w|[0,t], w̃|[0,t] ∈ (Bca ∩ Bsup)|[0,t]. Hence, by (21),
w|[0,t], w̃|[0,t] ∈ (B∩Bsup)|[0,t]. Thus Σsup is an admissible supervisor w.r.t. Σ.
Now assume Bca ∩Bsup to be nonempty. Again by (21), this implies B∩Bsup

to be nonempty too. 2

7 Conclusions

In this contribution, we use the framework provided by Willems’ behavioural
systems theory to suggest an approach for synthesizing supervisory control
for hybrid systems. We first determine an l-complete approximation Σl of the
hybrid system under consideration; this approximation can be represented
by a finite state machine. Hence, in a second step, tools from the theory of
discrete event systems (DES) can be used to solve the supervisory control
problem on the approximation level. It is then shown that the desired closed
loop properties are retained if the supervisor is connected to the underlying
hybrid system. If no solution exists for Σl, approximation accuracy can be
increased by computing a k-complete approximation Σk, k > l.
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