
Hierarchical Discrete Event Systems with Inputs and Outputs

Sebastian Perk, Thomas Moor, Klaus Schmidt

Abstract— We propose a framework for the hierarchical
design of discrete event systems that addresses both safety and
liveness properties. Technically, we build on a notion of inputs
and outputs that is closely related to J.C. Willems’ behavioural
systems theory. We develop a structural admissibility condition
that allows for abstraction-based controller synthesis similar
to previous work on hybrid control systems. A key feature
of our framework is an alternation of subsystem composition
and controller synthesis that is expected to be computationally
efficient whenever the complexity of the safety specifications is
independent of the respective layer in the hierarchy.

I. INTRODUCTION

It is common engineering practice to organise complex
control systems in a hierarchical manner. For discrete event
systems, complexity typically stems from an overall plant
that is composed of a large number of subsystems with
some nontrivial interaction between subsystems and/or spec-
ified cooperative behaviour. In such a situation monolithic
controller synthesis procedures (e.g. [13]) that require an
explicit representation of an overall plant model face a
prohibitive computational cost since the overall number of
states depends exponentially in the number of subsystems.
Hierarchical approaches provide means to decompose the
overall control problem into a number of less complex prob-
lems, typically employing a hierarchy of plant abstractions.
One aim is to avoid explicit reference to the exact overall
plant model in the controller synthesis procedure.

In this contribution we propose to alternate subsystem
composition and controller synthesis in the design of hi-
erarchical control systems; see Fig. 1. Our approach ad-
dresses applications in which the synthesis of each low-
level controller requires a detailed plant model, but does
so only for a small number of subsystems. Thus, on the
lowest level of the hierarchy, we synthesise a large number
of controllers for a large number of groups of subsystems
with a small number of subsystems each. When proceeding
to the next level of the hierarchy, we use the specifications
of the preceeding level as an abstraction of the controlled
groups of subsystems. We then synthesise controllers for
groups of abstracted low-level control systems. The latter
have been designed independently, so constraints in inter-
connection of groups of subsystems (e.g. shared resources)
have not yet been considered. Our framework accounts for
such constraints by a hierarchy of environment models that
complements the hierarchy of controllers. The alternationof
system composition, controller synthesis and environment
interconnection is continued in a bottom-up fashion until

Lehrstuhl f̈ur Regelungstechnik, Universität Erlangen-N̈urnberg, D-91058
Erlangen, Germanysebastian.perk@rt.eei.uni-erlangen.de

a single top-level controller is synthesised to control an
abstract overall model.

Plant2Plant1 Plant3 Plant4 Plant5 Plant6

environment
hierarchy of

models

controllers
hierarchy of

Fig. 1. Hierachical control system

Technically, the paper presents a system theoretic frame-
work that allows for abstraction-based controller synthe-
sis in the presence of hierarchical system interconnection.
Abstraction-based synthesis has been studied extensively
in the context hybrid control systems; e.g. [1], [5], [10].
In this paper, we build on the core ideas of [10] and a
hierarchical extension [12], both stated within J.C. Willem’s
behavioural systems theory [16]. The results can, in prin-
ciple, directly be applied to discrete event systems, with
further extensions required for subsystem composition and
a two-sided controller- and environment hierarchy. However,
addressing discrete event systems, languages over unions of
alphabets (e.g. control eventsU and measurement eventsY
amount to6 = U ∪̇Y) offer a more concise representation
than behaviours (ω-languages) over Cartesian products of
signal spaces (e.g.6 = U × Y). This shows in particular
when one system (e.g. plant) is connected to two others
(e.g. controller, environment) and signals run on different
timescales. Therefore this paper presents results from [10],
[12] in a format adapted for discrete event systems and
extends those results to provide a framework for hierarchical
control system design according to the above approach.

A number of hierarchical concepts have been discussed
in the discrete event systems literature. In [2], [4], [17],
[18], authors develop hierarchical system architectures that
relate to our work in that each layer implements supervision
and measurement aggregation and thus provides an abstract
view on the layer below. There is also a strong conceptual
link to [3], [7], [9], [14] where the vertical (de)-composition

introduced by a hierarchical architecture is complementedby
a horizontal (de)-composition of modular or decentralised
supervision. In all references given, the preservation of
fundamental properties across levels of abstraction is a prime
concern. In this contribution and in contrast to the references,
relevant fundamental properties are derived from Willems’
notion of free inputs and non-anticipating outputs.

The paper is organised as follows. Section II recalls
basic notation and common operators on languages. Sec-
tion III provides a language version of free inputs and non-
anticipating outputs to define a class of I/O plants. We
derive a control problem that allows for abstraction-based
controller synthesis while preserving certain liveness and
safety properties in Section IV. This setting already accounts
for hierarchical controller design. Section V introduces an
additional horizontal composition of subsystems to build the
system architecture as proposed above.

II. PRELIMINARIES

Let 6 be a finite alphabet. The Kleene-closure6∗ is the
set of finite strings over6; i.e. 6∗ = {s|∃n ∈ N0, ∀ i < n :
σi ∈ 6, s = σ0σ1 · · ·σn} with the empty stringǫ ∈ 6∗. If for
two stringss,r ∈ 6∗ there existst ∈ 6∗, t 6= ǫ, such that
s = r t , we sayr is a strict prefix of s and write r < s; r
is a prefix of s if r is strict prefix of or equal tos and we
write r ≤ s. A prefix of s of length n ∈ N0 is denotedsn.
The natural projection po : 6∗ → 6∗

o, 6o ⊆ 6, is defined
iteratively: (1) let po(ǫ) := ǫ; (2) for s ∈ 6∗, σ ∈ 6, let
po(sσ) := po(s)σ if σ ∈ 6o, or po(sσ) := po(s) otherwise.
The set valued inverse ofpo is denotedp−1

o : 6∗
o → 26∗

.
A languageover6 is a subsetL⊆ 6∗. Theprefix-closure

of L ⊆ 6∗ is defined byL = {r |∃s ∈ L : r ≤ s} ⊆ 6∗.
A languageL is prefix-closedif L = L. A languageL is
completeif for all s∈L there existsσ ∈ 6 such thatsσ ∈L.
Technically, L = ∅ is complete. When extended to lan-
guages, the projection distributes over unions, and the inverse
projection distributes over unions and intersection. Prefix-
closure commutes with projection and inverse projection
and distributes over unions. Thesynchronous composition
of two languagesLi ⊆ 6∗

i , i ∈ {1,2}, is definedL1 ‖ L2 :=
p−1

1 (L1) ∩ p−1
2 (L2), where the projectionspi are defined

with domain(61 ∪62)
∗ and range6∗

i .
The set ofω-stringsover A ⊆ 6 is denotedAω = {s|∀ i ∈

N0 : σi ∈ A, s = σ0σ1σ2 · · · }. If for two strings w ∈ 6ω,
r ∈ 6∗, there existsv ∈ 6ω such thatw = r v, we sayr
is a strict prefix of w and write r < w. The strict prefix
of w with lengthn ∈ N0 is denotedwn. The prefix of an ω-
languageL⊆ 6ω is defined pr(L) = {r |∃s∈L : r < s} ⊆ 6∗.
For a languageL ⊆ 6∗ the limit is definedL∞ = {w ∈

6ω|∃(ni)i∈N0,ni+1 > ni : wni ∈L}. If and only if a language
L⊆ 6∗ is complete and prefix-closed, we have pr(L∞) =L;
see [6]. The natural projection forω-strings carries over from
finite strings. The range, however, is the union of finite and
ω-strings. In contrast, the set valued inverse projection maps
ω-strings toω-languages. For prefix-closed languagesL1 and
L2 we haveL1

∞ ‖ L2
∞ ⊆ (L1 ‖ L2)

∞.

III. I/O PLANTS

We develop a class of discrete event systems that interact
with an operator and an environment via input (control) and
output (measurement) events; see Fig. 4. To begin with,
a system consists of an alphabet (or signal space) and a
language over that alphabet.

Definition III.1. A systemis a tupleS = (6,L) with the
alphabet6 and the languageL ⊆ 6∗. �

We say the system complete ifL is complete, the system
is regular if L is regular, the system is prefix-closed ifL
is prefix-closed etc.Throughout this paper we consider
prefix-closed systems only.

The following notion of a plant-I/O port relates to
Willems’ I/O behaviours in that the input is free and the
output does not anticipate the input. In contrast to e.g. [16],
we do not require the output to process the input and thereby
account for non-deterministic external behaviour. In contrast
to the usual notion of controllable and uncontrollable events,
we require alternation of measurement eventsν ∈ Y and
control eventsµ ∈ U .

System

Y U W

Fig. 2. Plant-I/O port

Definition III.2. A pair (U,Y) is a plant-I/O port of the
system(6,L) if
(i) 6 = W∪̇U ∪̇Y, U 6= ∅ 6= Y;
(ii) L ⊆ (W∗(YU)∗)∗; and

(iii) (∀s ∈ 6∗Y, µ ∈ U) [s ∈ L ⇒ sµ ∈ L] . �

When the system issues some measurement eventν ∈ Y
on a plant-I/O port it will accept any control eventµ ∈ U
as an immediate successor. The following definition of a
controller-I/O port is complementary in the sense that it
requires the system to accept any measurement eventν ∈ Y
and to reply by some control eventµ ∈ U , after an optional
negotiation with some other system via the alphabetW.

System

Y U W

Fig. 3. Controller-I/O port

Definition III.3. A pair (U,Y) is acontroller-I/O port of the
system(6,L) if
(i) 6 = W∪̇U ∪̇Y, U 6= ∅ 6= Y;
(ii) L ⊆ (Y W∗U)∗; and

(iii) (∀s ∈ 6∗U ∪{ǫ}, ν ∈ Y) [s ∈ L ⇒ sν ∈ L] . �

An I/O plant is defined as a system equipped with two
distinguished plant-I/O ports. One port models the interaction
of the plant with an operator (or controller), the other port

models the interaction of the plant with the environment.
¿From the perspective of the operator, the plant models the
mechanism by which the environment can be manipulated.

operator

environment

YE

YP UP

UE

plantSPE

Fig. 4. I/O plant

Definition III.4. An I/O plant is a tuple SPE =

(UP,YP,UE,YE,LPE), where
(i) (6PE,LPE) is a system with6PE := 6P∪̇6E, 6P :=

UP∪̇YP, 6E := UE∪̇YE; and
(ii) (UP,YP) and(UE,YE) are plant-I/O ports of(6PE,LPE).

�

Remark.In this paper the relationship between systems,
alphabets and languages is consequently indicated by match-
ing subscripts; e.g. the systemSABC always refers to the
languageLABC over the alphabet6ABC. Furthermore,6ABC
denotes the disjoint union of6A , 6B and 6C, and when
inputs and outputs are relevant we use e.g.6A = UA∪̇YA .
Similarly, the natural projection to6∗

AB is denotedpAB ; the
natural projection toY∗

A is denotedpYA .
An I/O plant may be subject to constraints on the operator

and/or the environment; e.g. the operator must comply to
the operator’s guidelines and the environment only provides
a finite amount of resources. The separation of constraints
from the plant model facilitates a discussion of the plant in
a variety of different external configurations; e.g. we may
change the actual environment by connecting another plant,
or we may want to substitute the operator by a controller.

Definition III.5. A constraint is a tuple(U,Y,L) if
(i) (6,L) is a system with6 = U ∪̇Y ;
(ii) (U,Y) is a controller-I/O port of(6,L) ;

(iii) L is complete. �

We refer to the two extremal constraints(U,Y,L) with
L = (YU)∗ and L = ∅ as theminimal and themaximal
constraint, respectively. For faithful operation the plant must
satisfy certain safety and liveness properties. Working with
prefix-closed languages, only safety properties can be ex-
pressed as language inclusion. Regarding liveness we iden-
tify two properties adequate for our setting. The first one
requires the plant to persistently issue events, and the second
one requires that any infinite sequence of events must include
an infinite number of measurement events reported to the
operator.

Definition III.6. Let SPE = (UP,YP,UE,YE,LPE) be an I/O
plant and letSP = (UP,YP,LP) and SE = (UE,YE,LE) be
constraints. IfLP ‖ LPE ‖ LE is complete, thenSPE said to
be complete w.r.t. the constraintsSP and SE. If

(∀w ∈ (LP ‖ LPE ‖ LE)∞)[pYP(w) ∈ Yω
P] , (1)

then the plant said to beYP-live w.r.t. the constraintsSP and
SE. �

If LP, LPE, andLE are all nonempty, thenǫ ∈ LP ‖ LPE‖

LE, and completeness implies that(LP ‖ LPE ‖ LE)∞ is
nonempty. In this caseYP-liveness indeed requires an infinite
sequence of measurement eventsν ∈ YP to be generated.

Suppose the plant model and the environment constraint
are given. To establish an operator constraint that enforces
the above liveness conditions amounts to solving a controller
synthesis problem under partial observation [8]: control
events UP are regarded as controllable, all plant events
6P are observable, all other events are uncontrollable and
unobservable; related synthesis problems that also address
completeness are discussed in [10], [15], [6]. A least restric-
tive solution exists uniquely:

Proposition III.7. LetSPE= (UP,YP,UE,YE,LPE) be an I/O
plant andSE = (UE,YE,LE) a constraint. Furthermore, let
SPα = (UP,YP,LPα) be a family of constraints andLP :=
∪α∈ALPα. ThenSP = (UP,YP,LP) is a constraint. Moreover,
if for all α ∈ A the plantSPE is complete andYP-live w.r.t.
SE andSPα, thenSPE is also complete andYP-live w.r.t. the
constraintsSE andSP.

IV. I/O CONTROLLER SYNTHESIS

The task of the I/O controller is to assist the operator
in manipulating the environment; see Fig. 5. Control events
µ ∈ UC issued by the operator trigger certain tasks to be
performed by the controller and the plant. This eventually
results in an abstract measurement eventν ∈ YC issued by the
controller to indicate the status of the current task; e.g. suc-
cessful completion or failure. The controller performs both
control and measurement aggregation and thereby provides
the operator with an abstract view on the plant.

Formally, we define the I/O controller as a system with a
controller-I/O port to interact with the plant and a plant-I/O
port to interact with the operator.

controllerSCP

environment

operator

UEYE

YC UC

UPYP

plantSPE

Fig. 5. Closed loop of plant and controller

Definition IV.1. An I/O controller is a tuple SCP =

(UC,YC,UP,YP,LCP), where
(i) (6CP,LCP) is a system with6CP = 6C∪̇6P, 6C :=

UC∪̇YC, 6P := UP∪̇YP ;
(ii) (UC,YC) and (UP,YP) are a plant- and a controller-I/O

port for (6CP,LCP), respectively;

(iii) LCP ⊆ ((YPUP)∗(YPYCUCUP)∗)∗ ;
(iv) LCP is complete. �

When connecting a controllerSCP and a plantSPE we
obtain the system(6CPE,LCP ‖ LPE) to model the full
closed-loop behaviour. Throughout this paper, we assume
that the alphabets6C, 6P and 6E are disjoint, hence,
synchronisation of events happens only via the common
alphabet6P. Likewise, we obtain(6CE, pCE(LCP ‖ LPE))

to model theexternal closed-loop behaviourwhich can be
seen to be an I/O plant itself:

Proposition IV.2.Let SPE= (UP,YP,UE,YE,LPE) be an I/O
plant and letSCP = (UC,YC,UP,YP,LCP) be an I/O con-
troller. Then theexternal closed-loop systemSCE := SCP‖ex
SPE := (UC,YC,UE,YE,LCE) with LCE = pCE(LCP‖LPE) is
an I/O plant.

Note that the I/O structure itself is not sufficiently strong
to imply completeness for the full or external closed loop.
Hence the closed-loop system may run into adeadlock
situation, which is considered undesirable. More subtle isthe
fact that arbitrary length stringss ∈ (6P∪6E)∗ may occur
between each pair of control and measurement eventsµ ∈ UC
andν ∈ YC, which amounts to measurement aggregation. For
the considered prefix-closed languages this implies that the
closed-loop could also evolve on an infinite length string
s∈ (6P∪6E)ω. In the latter case the operator will not receive
any further measurement eventsν ∈ YC and, hence, can not
issue further control events. Thislivelock situation is also
considered undesirable. The following admissibility condi-
tion addresses both issues in that it implies completeness and
YC-liveness for the closed-loop system; see Proposition IV.4
and Theorem IV.5.

Definition IV.3. Let SPE = (UP,YP,UE,YE,LPE) be an I/O
plant and letSC = (UC,YC,LC), SP = (UP,YP,LP) andSE =

(UE,YE,LE) be constraints. Then, an I/O controllerSCP =

(UC,YC,UP,YP,LCP) is admissibleto the plantSPE w.r.t. the
constraintsSC, SP, andSE if
(i) pP(LC ‖ LCP ‖ LPE ‖ LE) ⊆ LP ;
(ii) LCP ‖ LPE is YC-live w.r.t. SC andSE . �

The following proposition derives completeness of the full
and the external closed-loop behaviour based on the above
condition (i). As a technical consequence the set(LC ‖LCP‖

LPE ‖ LE)∞ relevant to condition (ii) is non-empty.

Proposition IV.4.Let SCP= (UC,YC,UP,YP,LCP) be an I/O
controller, letSPE = (UP,YP,UE,YE,LPE) be an I/O plant,
and let SC = (UC,YC,LC), SP = (UP,YP,LP) and SE =

(UE,YE,LE) be constraints. IfSPE is complete w.r.t.SP
andSE, andSCP meets the admissibility condition (i), then
LC ‖LCP‖LPE‖LE is complete. If in additionSCP meets the
admissibility condition (ii), thenLC ‖ pCE(LCP ‖ LPE) ‖ LE
is complete.

As indicated above, the admissibility condition implies

that the external closed loopSCE is an I/O plant. Thus, in
a hierarchical control architecture, the closed-loop can serve
as a plant model for the design of the next layer of control
and measurement aggregation.

Theorem IV.5.Let the I/O plantSPE= (UP,YP,UE,YE,LPE)

be complete andYP-live w.r.t. the constraintsSP andSE, and
let SCP = (UC,YC,UP,YP,LCP) be admissible toSPE w.r.t.
the constraintsSC, SP, and SE. Then the external closed-
loop systemSCE = (UC,YC,UE,YE,LCE), LCE = pCE(LCP‖

LPE), is
(i) an I/O plant;
(ii) complete w.r.t.SC andSE;

(iii) YC-live w.r.t. SC andSE. �

We now are in the position to formally state the problem
of I/O controller synthesis.

Definition IV.6. An I/O controller synthesis problem
is a tuple (SPE,SC,SP,SE,SspecCE) where an SPE =

(UP,YP,UE,YE,LPE) is an I/O plant,SC = (UC,YC,LC),
SP = (UP,YP,LP) and SE = (UE,YE,LE) are constraints,
and SspecCE= (6CE,LspecCE) is a system referred to as
safety specification. A solution to the I/O controller synthesis
problemis an I/O controllerSCP= (UC,YC,UP,YP,LCP) that
is admissible toSPE w.r.t. SC, SP, andSE and that enforces
the safety specificationSspecCE on SPE, i.e. pCE(LCP ‖

LPE) ⊆ LspecCE. �

The above problem amounts to a controller synthesis
problem under partial observation; we again refer to [10],
[15], [6] where related problems are addressed. Note that the
trivial controller (with empty language) solves the synthesis
problem. Hence, the following theorem establishes unique
existence of a least restrictive solution.

Theorem IV.7. Given an I/O controller synthesis
problem (SPE,SC,SP,SE,SspecCE), let SCPα =

(UC,YC,UP,YP,LCPα), α ∈ A, denote a family of solutions.
ThenSCP = (UC,YC,UP,YP,LCP), LCP := ∪α∈ALCPα, also
solves the problem. �

Whilst considerably more general in scope, our framework
makes similar use of the I/O structure as [10] and thereby
allows for abstraction based controller synthesis; i.e. solu-
tions obtained for a plant abstraction are guaranteed to solve
the original problem. If the abstraction is of less complexity
(number of states) the computational effort for controller
synthesis is reduced accordingly.

Theorem IV.8. Given an I/O plant SPE =

(UP,YP,UE,YE,LPE), let S̃PE = (UP,YP,UE,YE, L̃PE)

be a plant abstraction, i.e.LPE ⊆ L̃PE. If the plant
SPE is complete andYP-live w.r.t. the constraintsSP
and SE and if SCP solves the I/O controller synthesis
problem (S̃PE,SC,SP,SE,SspecCE), then SCP also solves
(SPE,SC,SP,SE,SspecCE). �

On the downside of abstraction-based control, there is no
guarantee that there exists a non trivial solution for the plant
abstraction even if there does exist one for the original plant.
Hence the question, how to obtain a ”good” abstraction. In
a hierarchical control architecture where the plant itselfis
a closed-loop system we propose the safety specification of
the preceeding design step as a plant abstraction: we argue,
that for many engineering applications the specification rep-
resents those aspects of the preceeding design step that are
relevant for subsequent design. Consequently, we expect to
obtain a non-trivial solution based on that abstraction. This
line of thought has been further elaborated in the context of
hybrid systems [11], [12].

V. COMPOUND I/O PLANTS

Suppose we are provided two plant components in a
particular configuration that interact via shared resources.
We suggest to: 1) model the individual plants independently
(no shared events) with an environment constraint that al-
ways provides resources as requested; 2) formally obtain an
overall model by ashuffle productcomposition; 3) model the
interaction of the plant components by anenvironment model
that shares environment events with both plant components
and represents the limited amount of resources available. 4)
Synthesise a controller that enforces a subset of the original
environment constraint by only requesting resources when
available. See Fig. 6 for the proposed system architecture.

plantSPE1

6C

6L

6E2

6P26P1

6E1

controllerSCP

plantSPE2

environmentSEL

Fig. 6. Compound I/O plant with I/O controller

In our framework, step 1) leads to one I/O plant per
component and corresponding constraints; i.e. fori ∈ {1,2},
SPEi = (UPi ,YPi ,UEi ,YEi ,LPEi), SPi = (UPi ,YPi ,LPi) and
SEi = (UEi ,YEi ,LEi) where each the I/O plantSPEi is
complete andYPi -live w.r.t. the constraintsSPi and SEi .
Recall that by Theorem IV.5 the external closed-loop system
obtained by I/O controller synthesis exhibits the same prop-
erties. Thus, the following procedure applies uniformly to
elementary plant models and closed-loop systems. Recall that
at this stage both components are regarded as independent
entities with no synchronisation built in; technically, all
alphabets6Pi := UPi ∪̇YPi , 6Ei := UEi ∪̇YEi , i ∈ {1,2}, are
disjunct.

For step 2) we introduce theI/O shuffleoperation. It is
based on the usual shuffle product, but restricted by the
additional conditionLio on the ordering of input and output
events and extended by a well-defined error behaviourLerr.

The latter accounts for situations where a measurement event
from the one plant component is replied to by a control event
to the other plant component. A controller can be forced to
avoid the error behaviour via a safety specification.

Definition V.1.Given two I/O plants SPEi =

(UPi ,YPi ,UEi ,YEi ,LPEi), i ∈ {1,2}, the I/O shuffle
SPE = SPE1 ‖io SPE2 is defined as a tupleSPE =

(UP,YP,UE,YE,LPE), where:
(i) UP := UP1∪̇UP2, YP := YP1∪̇YP2, UE := UE1∪̇UE2, YE :=

YE1∪̇YE2 ;
(ii) L‖ := (LPE1‖ LPE2)∩Lio with

Lio := [(YP1UP1)∗(YE1UE1)∗(YP2UP2)∗(YE2UE2)∗]∗ ;
(iii) Lerr := ∪4

i=1Li with
L1 := (L‖YP1∩L‖)UP2((YPUP)∗(YEUE)∗)∗ ,
L2 := (L‖YP2∩L‖)UP1((YPUP)∗(YEUE)∗)∗ ,
L3 := (L‖YE1∩L‖)UE2((YPUP)∗(YEUE)∗)∗ ,
L4 := (L‖YE2∩L‖)UE1((YPUP)∗(YEUE)∗)∗ ;

(iv) LPE := LPE1‖io LPE2 := L‖ ∪Lerr . �

It is readily shown that the I/O shuffle indeed is a shuffle
composition in the sense that the behaviour of neither plant
is restricted:LPEi ⊆ LPE. Moreover, the I/O shuffle retains
the I/O structure of its arguments:

Proposition V.2.If SPEi , i ∈ {1,2} are I/O plants, so isSPE=

SPE1‖io SPE2. �

By the following proposition, constraints of the individual
plant can be lifted to the compound plant by the (standard)
shuffle product.

Proposition V.3.For i ∈ {1,2}, let SPEi = (UPi ,YPi ,

UEi ,YEi ,LPEi) be an I/O plant, that is complete andYPi -
live w.r.t. the constraintsSEi = (UEi ,YEi ,LEi) and SPi =

(UPi ,YPi ,LPi). Denote the compound constraintsSP =

(UP,YP,LP), SE = (UE,YE,LE) with LP := (LP1‖LP2)∩Lio
and LE := (LE1 ‖ LE2) ∩Lio. ThenSPE = SPE1 ‖io SPE2 is
complete andYP-live w.r.t. SP andSE. �

We proceed with step 3) in modelling the interaction via
sharing a common environment. Technically, we define the
environment modelto be of the same I/O structure as a
controller. The environment model must not be confused with
an environment constraint.

Definition V.4.An I/O environment is a tuple SEL =

(UE,YE,UL,YL,LEL), where:
(i) (6EL,LEL) is a system with6EL := UE∪̇YE∪̇UL∪̇YL ;
(ii) (UE,YE) and (UL,YL) are a controller- and a plant-I/O

port, respectively ;
(iii) LEL ⊆ ((YEUE)∗(YEYLULUE)∗)∗ ;
(iv) LEL is complete. �

Comparing the I/O structure of controller and environ-
ment, Proposition IV.2 carries over to the compound of plant
and environment by uniform substitution.

Proposition V.5.Let SPE = (UP,YP,UE,YE,LPE) be an I/O

plant and letSEL = (UE,YE,UL,YL,LEL) be an I/O environ-
ment. Then the external behaviourSPL = SPE ‖ex SEL is an
I/O plant. �

Also by uniform substitution we derive the following
version of the first part of Proposition IV.4.

Proposition V.6.Let SPE = (UP,YP,UE,YE,LPE) be an I/O
plant, let SEL = (UE,YE,UL,YL,LEL) be an I/O environ-
ment, and letSP = (UP,YP,LP), SE = (UE,YE,LE) be
constraints. IfSPE is complete w.r.t.SP and SE and if
pE(LEL ‖ LL) ⊆ LE, thenLP ‖ LPE ‖ LEL ‖ LL is complete.

�

Step 4) requires the original environment constraintSE to
be expressed by constraintsSP andSL in order to guarantee
liveness. The following theorem characterises suitable con-
straints. Typically,SL is given from an application context,
and the below condition is solved forSP.

Theorem V.7.For i ∈ {1,2}, let SPEi =

(UPi ,YPi ,UEi ,YEi ,LPEi) be an I/O plant, that is complete
and YPi -live w.r.t. the constraintsSEi = (UEi ,YEi ,LEi) and
SPi = (UPi ,YPi ,LPi). Let SEL = (UE,YE,UL,YL,LEL) be an
I/O environment and consider the compound systemSPL =

(UP,YP,UL,YL,LPL), LPL = pPL((LPE1 ‖io LPE2) ‖ LEL).
Let SP = (UP,YP,LP) andSL = (UL,YL,LL) be constraints
with
pE(LP ‖ (LPE1‖io LPE2) ‖ LEL ‖ LL) ⊆ (LE1 ‖ LE2)∩Lio ,
pP(LP ‖ (LPE1‖io LPE2) ‖ LEL ‖ LL) ⊆ (LP1 ‖ LP2)∩Lio .

ThenSPL is
(i) an I/O plant;
(ii) complete w.r.t.SP andSL ,

(iii) YP-live w.r.t. SP andSL . �

Thus, we end up with an I/O plant as discussed in
Section IV and, hence, can approach the control problem
accordingly. In particular, we can substitute the actual plant
modelsSPEi by an abstraction: due to monotonicity of the
applied language operations, this leads to an abstraction of
the compound plant and to a conservative constraintSP.

VI. CONCLUSIONS

In this contribution, we provide a system theoretic frame-
work to discuss an approach to hierarchical control system
design in which subsystem composition, controller synthesis
and plant abstraction alternate. Our framework is equipped
with a formal language version of Willems’ free inputs
and non-anticipating outputs. This is the key ingredient
that allows for abstraction-based controller synthesis under
preservation of safety- and liveness-properties.

To illustrate our expectations regarding computational
complexity, consider the system design depicted in Fig. 1.
Assume that we start withn = km I/O plant components and
that we can form groups ofk plant components or closed-
loop subsystems on each layer. Thus, we end up withm
layers. The complexity of the design of an I/O controller
for one group is expected to be polynomial in the number of

states and, hence, exponential ink. When proceeding through
the layers of the hierarchy, we use the safety specifications
of the preceeding layer as an abstraction of each controlled
group of subsystems. Thus, the exponential growth of the
state space observed during the preceeding level is of no
more relevance. On our way to the top level we need to
solve (1−n)/(1−k) I/O controller synthesis problems. Let
M denote an upper bound on the size of the state space of the
safety specifications, the lowest-level I/O plant components
and environment models. Then the computational complexity
of the synthesis of one controller is of orderMak for some
constanta. The overall complexity of the hierarchical design
is Mak(1−n)/(1−k) and henceexponentialis the number
k of components that form a group — but onlylinear in the
overall number of I/O plant components.

REFERENCES

[1] J.E.R. Cury, B.A. Krogh, and T. Niinomi. Synthesis of supervisory
controllers for hybrid systems based on approximating automata. IEEE
Transactions on Automatic Control, Special issue on hybridsystems,
43:564–568, 1998.

[2] A.E.C. da Cunha, J.E.R. Cury, and B.H. Krogh. An assume guarantee
reasoning for hierarchical coordination of discrete eventsystems.
Workshop on Discrete Event Systems, 2002.

[3] B. Gaudin and H. Marchand. Efficient computation of supervisors for
loosely synchronous discrete event systems: A state-based approach.
IFAC World Congress, 2005.

[4] P. Hubbard and P.E. Caines. Dynamical consistency in hierarchical su-
pervisory control.IEEE Transactions on Automatic Control, 47(1):37–
52, 2002.

[5] X. Koutsoukos, P.J. Antsaklis, J.A. Stiver, and M.D. Lemmon. Super-
visory control of hybrid systems.Proceedings of the IEEE, 88:1026–
1049, July 2000.

[6] R. Kumar, V. Garg, and S.I. Marcus. On supervisory controlof
sequential behaviors. IEEE Transactions on Automatic Control,
37:1978–1985, 1992.

[7] R.J. Leduc. Hierarchical interface based supervisory control. PhD the-
sis, Department of Electrical and Computer Engineering, University
of Toronto, 2002.

[8] F. Lin and W.M. Wonham. On observability of discrete-event systems.
IEEE Transactions on Automatic Control, 44:173–198, 1988.

[9] C. Ma. Nonblocking supervisory control of state tree structures.Ph.D.
Dissertation, Department of Electrical and Computer Engineering,
University of Toronto, 2004.

[10] T. Moor and J. Raisch. Supervisory control of hybrid systems within
a behavioural framework.Systems and Control Letters, 38:157–166,
1999.

[11] T. Moor and J. Raisch. Hierarchical hybrid control of a multiproduct
batch blant. InProc. 16th IFAC World Congress, Prague, 2005.

[12] T. Moor, J. Raisch, and J.M. Davoren. Admissibility criteria for
a hierarchical design of hybrid control systems. InProc. IFAC
Conference on the Analysis and Design of Hybrid Systems (ADHS’03),
pages 389–394, 2003.

[13] P.J. Ramadge and W.M. Wonham. The control of discrete event
systems.Proceedings of the IEEE, 77:81–98, 1989.

[14] K. Schmidt. Hierarchical control of decentralized discrete event
systems: Theory and application.PhD-thesis, Lehrstuhl für Regelung-
stechnik, Universiẗat Erlangen-N̈urnberg, 2005.

[15] J.G. Thistle and W.M. Wonham. Supevision of infinite behavior of
finite automata. SIAM J. Control and Optimization, 32:1098–113,
1994.

[16] J.C. Willems. Paradigms and puzzles in the theory of dynamic systems.
IEEE Transactions on Automatic Control, 36:258–294, 1991.

[17] K.C. Wong and W.M. Wonham. Hierarchical control of discrete-event
systems.Discrete Event Dynamic Systems: Theory and Applications,
1996.

[18] H. Zhong and W.M. Wonham. On the consistency of hierarchical su-
pervision in discrete-event systems.IEEE Transactions on Automatic
Control, 35:1125–1134, October 1990.

