
On the Computation of Supremal Sublanguages
Relevant to Supervisory Control

Thomas Moor ∗ Christine Baier ∗ Tae-Sic Yoo ∗∗ Feng Lin ∗∗∗
Stéphane Lafortune ∗∗∗∗

∗Lehrstuhl für Regelungstechnik, Universität Erlangen-Nürnberg
(e-mail: lrt@rt.eei.uni-erlangen.de)

∗∗ Idaho National Laboratory, Idaho Falls
(e-mail: tae-sic.yoo@inl.gov)

∗∗∗Dept. of Electrical and Computer Engineering,
Wayne State University, Detroit, and

School of Electronics and Information Engineering,
Tongji University, Shanghai

(e-mail: flin@ece.eng.wayne.edu)
∗∗∗∗Dept. of Electrical Engineering and Computer Science,

The University of Michigan
(e-mail: stephane@eecs.umich.edu)

Abstract: Given a specification language, this paper discusses an iterative procedure for the computation
of the supremal sublanguage, that possesses a conjunction of certain closed-loop properties, including
controllability, normality and completeness. The iteration is stated in terms of (i) supremal sublanguage
operators for each individual property, (ii) prefix-closures, and, (iii) language intersections. Within the
iteration, the individual supremal sublanguage operators are only applied on prefix-closed languages,
while the overall specification is not required to be prefix-closed. Our main result establishes finite
convergence, provided that all parameters are regular.

Keywords: discrete event systems, supervisory control, supremal sublanguages

1. INTRODUCTION

Within the context of supervisory control theory, as initially
proposed by Ramadge and Wonham [1987, 1989] and since
then intensively studied, supremal sublanguages that possess
certain desired closed-loop properties play a key role: the
respective properties are used to characterize the achievable
closed-loop behaviour, and a maximally permissive supervisor
can be stated in terms of the respective supremal sublanguage.
Thus, for practical reasons, there is an interest in algorithms for
the computation of the respective supremal sublanguage.

The closed-loop properties addressed in the literature include
controllability [Ramadge and Wonham, 1987, 1989], normality
[Brandt et al., 1990, Cho and Marcus, 1989] and completeness
(also known as liveness) [Kumar et al., 1992]. However, not ev-
ery combination is well studied. To the best of our knowledge,
no procedure has been reported so far, that computes the supre-
mal controllable and normal and complete sublanguage. The
latter is relevant for the supervision of sequential behaviours
under partial observation; see also Kumar et al. [1992].

When restricting attention to the case of prefix-closed specifi-
cations, the problem of computing the supremal sublanguage is
expected to be less difficult. For example, Brandt et al. [1990]
establish an elegant formula to compute the controllable and
normal sublanguage of a prefix-closed specification. In con-
trast, the algorithm for the not necessarily prefix-closed case
presented in [Cho and Marcus, 1989] is quite involved. This is
one motivation for the iterative scheme by Yoo et al. [2002].
While addressing the not necessarily prefix-closed case, the

proposed iteration is stated in terms of supremal sublanguages
of prefix-closed specifications. Together with the formula from
[Brandt et al., 1990], one obtains an overall procedure in terms
of regular expressions and projections, which is straightforward
to implement; see e.g. UMDES-LIB or libFAUDES.

In this paper, we further develop the approach proposed by
Yoo et al. [2002], to address more general conjunctions of
closed-loop properties, including controllability, normality and
completeness. It is organized as follows. Section 3 formally
defines the class of closed-loop properties under consideration
and states elementary consequences for the respective supre-
mal sublanguages. Section 4 characterizes the supremal sublan-
guage as the supremal fixpoint of an operator stated in terms of
sublanguages supremal w.r.t. individual closed-loop properties
for the prefix-closed case. This leads to an iterative procedure,
which, in Section 5, is shown to terminate. In Section 6, we
apply our result to practically solve a synthesis problem for a
class of sequential behaviours under partial observation.

2. PRELIMINARIES

Let Σ be a finite alphabet. The Kleene-closure Σ∗ is the set of
finite strings s =σ1σ2 · · ·σn, n ∈�, σi ∈ Σ, and the empty string
ε ∈ Σ∗, ε < Σ. If for two strings s,r ∈ Σ∗ there exists t ∈ Σ∗ such
that s = rt, we say r is a prefix of s, and write r ≤ s; if in addition
r , s, we say r is a strict prefix of s and write r < s. A ∗-language
(or short a language) over Σ is a subset L ⊆ Σ∗.

The prefix of a language L ⊆ Σ∗ is defined by pre L := {r ∈
Σ∗ |∃ s ∈ L : r ≤ s}. The prefix operator is also referred to

as the prefix-closure, and, a language L is prefix-closed (or
short closed) if L = pre L. The prefix operator distributes over
arbitrary unions of languages. However, for the intersection of
two languages L and H, we have pre(L∩H) ⊆ pre(L)∩pre(H).
If equality holds, L and H are said to be nonconflicting. Given
two languages L and K, we say K is relatively closed w.r.t. L if
K = pre(K)∩L. The intersection pre(K)∩L is always relatively
closed w.r.t. L. If a language K is relatively closed w.r.t. a closed
language, then K itself is closed. Given three languages K,
E, L ⊆ Σ∗, such that K is relatively closed w.r.t. E and E is
relatively closed w.r.t. L, then K is relatively closed w.r.t. L.

The natural projection po : Σ∗ → Σ∗o, Σo ⊆ Σ, is defined itera-
tively: (1) let po(ε) := ε; (2) for s ∈ Σ∗, σ ∈ Σ, let po(sσ) :=
po(s)σ if σ ∈ Σo, or, if σ < Σo, let po(sσ) := po(s). The set-
valued inverse p−1

o of po is defined by p−1
o (r) := {s ∈ Σ∗ | po(s) =

r } for r ∈ Σ∗o. When extended to languages, the projection dis-
tributes over unions, and the inverse projection distributes over
unions and intersections. The prefix operator commutes with
projection and inverse projection.

Given two languages L, K ⊆ Σ∗, and a set of uncontrollable
events Σuc ⊆ Σ, we say K is controllable w.r.t. L, if K ⊆ pre L and
pre(K)Σuc ∩ pre(L) ⊆ pre K; see e.g. [Ramadge and Wonham,
1987]. Alternative definitions do not explicitly insist in K ⊆
pre L; e.g. Cassandras and Lafortune [2008]. However, when
discussing closed-loop behaviours K ⊆ L, the additional con-
straint is obviously fulfilled. With Σo ⊆ Σ the set of observable
events, we say K is normal w.r.t. L, if pre K = p−1

o po pre(K) ∩
pre(L). In analogy to controllability, this variant of normality
is defined in terms of the prefix of K as in e.g. Cassandras
and Lafortune [2008] and in contrast to e.g. Lin and Wonham
[1988]. A language K ⊆ Σ∗ is complete, if for all s ∈ pre K there
exists σ ∈ Σ such that sσ ∈ pre K; see e.g. Kumar et al. [1992].

Each one of the properties controllability, normality, complete-
ness, closedness and relative closedness is retained under arbi-
trary union. Given a family of languages (Ka)a∈A, Ka ⊆ L for
all a ∈ A, such that a particular combination of the mentioned
properties is possessed by each Ka, then the union ∪a∈AKa pos-
sesses the respective properties, too; see, e.g., Lin and Wonham
[1988], Ramadge and Wonham [1987, 1989] regarding con-
trollability, Lin and Wonham [1988] regarding normality, and
Kumar et al. [1992] for completeness. Note that closedness and
relative closedness is also retained under arbitrary intersection.

A generator is a tuple G := (Q, Σ, δ, Qo, Qm) with the finite
state set Q, marked states Qm ⊆ Q, initial states Qo ⊆ Q and
the transition relation δ ⊆ Q × Σ × Q. The transition relation
is also interpreted as a set-valued map where, for q ∈ Q and
σ ∈ Σ, δ(q,σ) denotes the set of states q′ with (q,σ,q′) ∈ δ.
By δ(q, ε) := {q} and δ(q, sσ) := δ(δ(q, s),σ) we extend δ to
a set-valued map on Q × Σ∗. A state q ∈ Q is accessible, if
there exists s ∈ Σ∗ such that q ∈ δ(Qo, s). A state q ∈ Q is
coaccessible, if there exists s ∈ Σ∗ such that δ(q, s)∩Qm , ∅. A
generator is accessible (coaccessible), if all states are accessible
(coaccessible). A genartor is trim if it is both, accessible and
coaccessible. A generator is deterministic, if, for each q ∈ Q,
σ ∈ Σ, the sets δ(q,σ) and Qo have no more than one element.

With a generator G, we associate the generated language
L(G) := {s ∈Σ∗ |δ(Qo, s), ∅} and the marked language Lm(G) :=
{s ∈ Σ∗ |δ(Qo, s)∩Qm , ∅}. A language is said to be regular, if it
is marked by some generator. Throughout this paper, generators
are considered to be deterministic. Regarding the marked and
generated languages, this assumption is not restrictive. When

only the marked language is of concern, a generator may also
be assumed to be trim. The product F = G×H of two generators
G = (Q, Σ, δ, Qo, Qm) and H = (X, Σ, ξ, Xo, Xm) is defined by
F = (Z, Σ, ζ, Qo × Xo, Qm × Xm) with Z = Q× X and ζ ⊆ Z ×
Σ×Z, where ((q, x), σ, (q′, x′)) ∈ ζ if and only if (q, σ, q′,) ∈ δ
and (x, σ, x′) ∈ ξ. The product relates to language intersection:
L(G×H) = L(G)∩L(H) and Lm(G×H) = Lm(G)∩Lm(H).

For generators G = (Q, Σ, δ, Qo, Qm) and H = (X, Σ, ξ, Xo, Xm),
we say H is a subautomaton of G and write H vG, if s ∈ L(H)
implies δ(Qo, s) = ξ(Qo, s). For accessible and deterministic
generators, we have H v G if and only if X ⊆ Q, Xo ⊆ Qo and
ξ ⊆ δ; see also [Cho and Marcus, 1989], Lemma 2.1.

The set of ω-strings (also infinite words) over Σ is denoted
Σω := {w|w = σ1σ2σ3 · · · , with σi ∈ Σ for all i ∈ �}. An ω-
language over Σ is a subset L ⊆ Σω. If for two strings w ∈ Σω,
r ∈ Σ∗, there exists v ∈ Σω such that w = rv, we say r is a
strict prefix of w and write r < w. The prefix of an ω-language
L ⊆ Σω is defined preL := {s ∈ Σ∗ |∃w ∈ L : s < w}. Note that
the prefix of any ω-language is complete. The prefix operator
distributes over arbitrary unions of ω-languages. However, for
the intersection of two ω-languages L and H over Σ, we have
pre(L∩H) ⊆ pre(L) ∩ pre(H). If equality holds, we say L and
H are nonconflicting.

The limit of a ∗-language L ⊆ Σ∗ is defined lim L := {w ∈ Σω|w
has infinitely many prefixes in L}. If and only if a ∗-language
L ⊆ Σ∗ is complete, we have pre lim L = pre L. If and only if
a ∗-language L ⊆ Σ∗ is complete and prefix-closed, we have
pre lim L = L; see [Kumar et al., 1992]. The topological closure
(or short closure) of an ω-language L is defined by cloL :=
limpreL. In general, we have L ⊆ cloL. An ω-language L is
said to be topologically closed (or short closed) if cloL = L,
i.e., if limpreL = L. The limit of a prefix-closed ∗-language is
topologically closed. Given twoω-languages L, H⊆Σω, we say
L is relatively closed w.r.t. H if L = clo(L) ∩ H. The closure
operator distributes over finite unions of ω-languages.

In order to define the natural projection pωow ∈ Σωo ∪ Σ∗o of an
ω-string w ∈ Σω, let (sn) ⊆ Σ∗ be a strictly monotone sequence
of prefixes of w, i.e., sn < sn+1 < w for all n ∈ �. Then, pωow
is defined as the limit v ∈ Σωo ∪ Σ∗o of the monotone sequence
(po(sn)), i.e., for all n ∈� we have po(sn) < v and for all r < v
there exists n ∈ � with r < po(sn). The set-valued inverse p−ωo
of pωo is defined by p−ωo (v) := {w ∈ Σω | pωo(w) = v } for v ∈ Σωo ∪
Σ∗o. When extended to ω-languages, the projection distributes
over unions, and the inverse projection distributes over unions
and intersections. Projection and inverse projection commute
with the prefix-operator. For a prefix-closed L ⊆ Σ∗ we have
pωo lim(L) ∩ Σωo = lim po(L), and, for any Lo ⊆ Σ∗o, we have
p−ωo lim(Lo) = lim p−1

o (Lo) ∩ p−ωo Σωo .

3. SUPREMAL SUBLANGUAGES

Rather than to explicitly address e.g. controllability or normal-
ity, we give a general discussion of supremal sublanguages for
closed-loop properties that are, (A1), retained under arbitrary
union and that, (A2), do not refer to task completion modelled
by a marked language. Formally, we may represent such a prop-
erty as a set A of languages K ⊆ Σ∗ and impose the following
conditions:
(A1) B ⊆A ⇒ ∪K∈BK ∈A ,
(A2) K ∈A ⇔ pre K ∈A.
Condition (A1) requires A to be a complete upper semi-lattice
w.r.t. set inclusion. With the convention that the empty union

evaluates as the empty set, (A1) implies ∅ ∈A. Condition (A1)
is a nearby prerequisite that ensures the existence of supremal
sublanguages. Condition (A2) restricts the respective closed-
loop property to be characterized in terms of the prefix of
the candidate language. For a plant L ⊆ Σ∗ and the common
partitioning Σ = Σc∪̇Σuc = Σo∪̇Σuo, any of the properties con-
trollability, normality and completeness can be represented as a
set A that complies with (A1) and (A2).

Given a closed-loop property A and a language-inclusion spec-
ification E ⊆ Σ∗, we are interested in the supremal sublanguage

〈E〉↑(A) := sup{K ⊆ E |K ∈A}. (1)
Depending of the particular property A, additional assumptions
on E may have relevant implications; e.g., for controllability,
E ⊆ L can be used to imply 〈E〉↑(A) ⊆ L. However, the general
discussion below is valid for any specification E ⊆ Σ∗.

When viewed as a map with two arguments, 〈 · 〉↑(·) is monotone,
i.e., E1 ⊆ E2 and A1 ⊆ A2 implies 〈E1〉

↑(A1) ⊆ 〈E2〉
↑(A2). The

following proposition states immediate consequences of condi-
tions (A1) and (A2) for the supremal sublanguage 〈E〉↑(A).
Proposition 1. Let A be a set of languages over Σ that satisfies
conditions (A1) and (A2). Then, for any specification E ⊆ Σ∗,
the following holds:

(i) 〈E〉↑(A) ⊆ E, 〈E〉↑(A) ∈A, and 〈〈E〉↑(A)〉↑(A) = 〈E〉↑(A) ,
(ii) 〈E〉↑(A) is relatively closed w.r.t. E ,

(iii) 〈pre E〉↑(A) is closed,
(iv) pre(〈E〉↑(A)) ⊆ 〈pre E〉↑(A).

Proof. Ad (i). Recall that for any set B of languages, sup B =
∪K∈B K. This implies 〈E〉↑(A) ⊆ E and, with (A1), 〈E〉↑(A) ∈ A.
For any H ∈A, we have H = 〈H〉↑(A), and, hence, 〈 · 〉↑(A) is idem-
potent. Ad (ii) [see also Cho and Marcus [1989], Lemma B.2].
Let F := pre(〈E〉↑(A))∩ E. Referring to (i), observe 〈E〉↑(A) =
〈E〉↑(A)∩E ⊆ F. To establish the converse inclusion F ⊆ 〈E〉↑(A),
we observe that pre F ⊆ pre(〈E〉↑(A)) = pre(〈E〉↑(A)∩E) ⊆ pre F.
In the latter inclusion we must have equality, in particular
pre F = pre(〈E〉↑(A)), which implies by (i) and (A2) that F ∈A.
F ⊆ E is obvious, and, thus, F ⊆ 〈E〉↑(A). Ad (iii). By (ii),
〈pre E〉↑(A) is relatively closed w.r.t. a closed language and,
thus, closed. Ad (iv). Monotonicity of 〈 · 〉↑(A) implies 〈E〉↑(A) ⊆

〈pre E〉↑(A). Taking the prefix on both sides, (iii) implies (iv). �

Observe that conditions (A1) and (A2) are retained under inter-
section, i.e., if A1 and A2 satisfy (A1) and (A2), then so does
A := A1∩A2. In particular, Proposition 1 immediately applies
not only to controllability, normality and completeness, but also
to any conjunction thereof. The following proposition addresses
the conjunction of two closed-loop properties explicitly, and,
referring to the monotonicity of 〈 · 〉↑(·), is readily applied to
finite conjunctions of more than two properties.
Proposition 2. Let A1 and A2 be two sets of languages over Σ
that both satisfy conditions (A1) and (A2). Then, for any E ∈Σ∗,
we have

(i) 〈E〉↑(A1∩A2) ⊆ 〈〈E〉↑(A1)〉↑(A2) ,
(ii) 〈〈E〉↑(A1∩A2)〉↑(A1) = 〈E〉↑(A1∩A2) ,

(iii) pre (〈〈E〉↑(A1)〉↑(A2)) ⊆ 〈〈pre E〉↑(A1)〉↑(A2) ,
(iv) pre(〈E〉↑(A1∩A2)) ⊆ 〈〈pre E〉↑(A1)〉↑(A2) .

Proof. Ad (i). By Proposition 1, (i), and monotonicity of 〈 · 〉↑(·)
we obtain 〈E〉↑(A1∩A2) = 〈〈E〉↑(A1∩A2)〉↑(A1∩A2) ⊆ 〈〈E〉↑(A1)〉↑(A2).
Ad (ii). The equality follows from 〈E〉↑(A1∩A2) ∈ A1. Ad (iii).
The claim is a consequence of Proposition 1, (iv), and mono-
tonicity of 〈 · 〉↑(·). Ad (iv). The inclusion follows by above (i)
and (iii) and monotonicity of 〈 · 〉↑(·). �

4. FIXPOINT ITERATION

Given a closed-loop property A of languages over Σ and a
specification E ⊆ Σ∗, Yoo et al. [2002] represent 〈E〉↑(A) as a
fixpoint of the operator Ω(K) := 〈pre K〉↑(A)∩E. This represen-
tation has the particular benefit that it enables the computation
of the supremal sublanguage of a not necessarily prefix-closed
specification by means of considerably less involved methods
developed for the prefix-closed case.

In this section, we generalize the approach of Yoo et al. [2002]
to explicitly address conjunctions of closed-loop properties A1,
A2, . . . Am over Σ that conform with (A1) and (A2). Given a
specification E ⊆ Σ∗, we define the operator Ω : Σ∗→ Σ∗:

Ω(K) := [〈 · 〉↑(Am) ◦ 〈 · 〉↑(Am−1) ◦ · · · ◦ 〈 · 〉↑(A1)](pre K) ∩E , (2)
for K ⊆ Σ∗, and, with ◦ denoting concatenation of maps as in
[f ◦ g ◦ h](x) := f (g(h(x))) for endomorphisms f , g and h. To
this end, we note the following properties of Ω.
Proposition 3. Given sets of languages A1, A2, . . . Am over Σ,
each conforming with (A1) and (A2), denote the intersection by
A. Consider an arbitrary specification E ⊆ Σ∗ and the operator
Ω defined by Eq. (2). Then, for any K ⊆ Σ∗, we have that

(i) Ω(K) is relatively closed w.r.t. E ,
(ii) Ω(K) ⊆ pre(K)∩E ,

(iii) K = Ω(K) ⇒ K ⊆ 〈E〉↑(A) ,
(iv) 〈E〉↑(A) = Ω(〈E〉↑(A)) .

Proof. Ad (i). From Proposition 1, (iii), 〈 · 〉↑(A j), j ≤ m,
maps closed languages to closed languages. Hence, [〈 · 〉↑(Am) ◦

· · · ◦ 〈 · 〉↑(A1)](pre K) is closed, and, Ω(K) is relatively closed
w.r.t. E. Ad (ii). For any j ≤ m and any H ⊆ Σ∗, we have
〈H〉↑(A j) ⊆ H. Thus, Ω(K) ⊆ pre(K) ∩ E. Ad (iii). Provided
that K = Ω(K), we will establish that K ⊆ E and K ∈ A. The
former is obvious. With pre K = preΩ(K) ⊆ [〈 · 〉↑(Am) ◦ · · · ◦

〈 · 〉↑(A1)](pre K) ⊆ pre K, the inclusions turn out as equalities.
Since each map 〈 · 〉↑(A j) restricts its respective argument, it
follows pre K = 〈pre K〉↑(A j) for each j ≤ m. Referring to (A1),
this implies pre K ∈ A j, and, by (A2), K ∈ A j. Thus, K ∈ A.
Ad (iv). By Proposition 1, (ii), 〈E〉↑(A) is relatively closed
w.r.t. E. Thus, above (ii) implies Ω(〈E〉↑(A)) ⊆ pre(〈E〉↑(A)) ∩
E = 〈E〉↑(A). Conversely, 〈E〉↑(A) = 〈〈E〉↑(A)〉↑(A) = 〈〈E〉↑(A)〉↑(A)∩

E ⊆ pre(〈〈E〉↑(A)〉↑(A))∩E ⊆Ω(〈E〉↑(A)), where the last inclusion
is a consequence of Proposition 2, (vi). �

We will establish by (i) and (ii) that the sequence
K0 = E, Ki+1 = Ω(Ki) (3)

is monotonically decreasing and, hence, converges by definition
to the intersection K∞ := ∩i∈�0 Ki. By (iii) and (iv), 〈E〉↑(A) is
the supremal fixpoint of Ω. In particular, if K∞ is a fixpoint, (iii)
implies K∞ ⊆ 〈E〉↑(A). The following proposition establishes the
converse inclusion.
Proposition 4. Under the same hypothesis as in Proposition 3,
and, for all i ∈�0 in Iteration (3), we have that

(i) Ki is relatively closed w.r.t. E,
(ii) Ki+1 ⊆ Ki,

(iii) 〈E〉↑(A) ⊆ Ki.

Proof. Ad (i). For K0 = E the claim is obviously true, and for
Ki+1 = Ω(Ki) it is implied by Proposition 3, (i). Ad (ii). Clearly,
K1 ⊆ E. Referring to above (i) and Proposition 3, (ii), we have
Ki+1 = Ω(Ki) ⊆ pre(Ki)∩E = Ki. Ad (iii). For K0 = E the claim
is obviously true. Under the hypothesis that 〈E〉↑(A) ⊆ Ki holds
for some i ∈ �0, we will establish the inclusion for i + 1. Ob-
serve by Proposition 1, (ii), and Proposition 2, (ii), that 〈E〉↑(A) =

pre(〈E〉↑(A)) ∩ E = pre([〈 · 〉↑(Am) ◦ · · · ◦〈 · 〉↑(A1)](〈E〉↑(A))) ∩ E.
With the induction hypothesis and monotonicity of 〈 · 〉↑(A j),
we obtain 〈E〉↑(A) ⊆ pre([〈 · 〉↑(Am) ◦ · · · ◦ 〈 · 〉↑(A1)](Ki)) ∩ E ⊆
[〈 · 〉↑(Am) ◦ · · · ◦ 〈 · 〉↑(A1)](pre Ki) ∩ E = Ω(Ki), where the last
inclusion refers to Proposition 2, (iii). Thus we have indeed
〈E〉↑(A) ⊆ Ki+1 and (iii) follows by induction. �

By taking intersection over all i ∈�0, (ii) implies that K∞ is rel-
atively closed w.r.t. E and (iii) implies 〈E〉↑(A) ⊆ K∞. Together
with Proposition 3, (iii), we have 〈E〉↑(A) = K∞, provided that
K∞ is a fixpoint of Ω. We summarize our results so far.
Theorem 5. Given sets of languages A1, A2, . . . Am over Σ,
such that each conforms with (A1) and (A2), denote the inter-
section by A, and consider an arbitrary specification E ⊆ Σ∗.
Then, for Ω defined by Eq. (2), Iteration (3) converges to the
limit K∞ :=∩i∈�0 Ki. Furthermore, we have 〈E〉↑(A) ⊆K∞, where
equality holds if and only if K∞ is a fixpoint of Ω. �

Remark. If the closed-loop properties A1, A2, . . . Am were
complete lattices, Ω would turn out ∩-continuous and, thus, K∞
would be a fixpoint of Ω. However, the properties we want to
address are not retained under arbitrary intersection.

5. FINITE CONVERGENCE

For a software implementation of Iteration (3), we from now on
assume that for each individual closed-loop property A j, j ≤m,
the operator 〈pre(·)〉↑(A j) retains regularity. If in addition the
specification E ⊆ Σ∗ is regular, so will be the iterate Ki at any
step i ∈�0. Note that these assumptions alone neither imply a
regular limit K∞ nor finite convergence, i.e., the existence of
n ∈�0, such that Kn is a fixpoint of Ω and, hence, K∞ = Kn. If,
on the other hand, a fixpoint K∞ = Kn is indeed reached after
a finite number of iterations, Theorem 5 implies Kn = 〈E〉↑(A)

and Iteration (3) provides means to compute 〈E〉↑(A) based on
implementations of 〈pre(·)〉↑(A j), j ≤ m.

In the literature, algorithms for the computation of supremal
sublanguages of regular languages are typically stated as itera-
tions on a generator. In each step of the iteration, the algorithm
removes states and/or transitions that conflict with the desired
closed-loop property. Since there is never anything added to the
iterate generator, finite convergence is obvious, and, the chal-
lenge is to establish supremality. Roughly speaking, the latter
amounts to a strategic choice of the initial generator that must
exhibit a “sufficiently rich” transition structure to realize the
supremal sublanguage. Known algorithms for controllability,
normality and completeness also share the particular feature
that the initial generator can be chosen as the product of two
generators, where one realizes the specification. We state con-
dition (A3), which is satisfied for closed-loop properties A that
can be synthesized in the manner just described.
(A3) For any generator H, there exists a generator GA with

L(GA) = Σ∗, such that

C vGA×H ⇒ (∃C↑ vGA×H)[L(C↑) = 〈L(C)〉↑(A)] .

The technical requirement L(GA) = Σ∗ prevents the above im-
plication to be trivially satisfied. For a concise discussion re-
garding the individual closed-loop properties controllability,
normality and completeness, consider a plant L ⊆ Σ∗, a spec-
ification E ⊆ Σ∗, both prefix-closed, with finite automaton real-
izations L = L(G) and E = L(H).

Controllability. The algorithm for computing a realization of
the supremal controllable sublanguage, as presented in [Ra-

madge and Wonham, 1987], effectively starts with a candidate
C0 = G×H and then successively removes states and transitions
which conflict with controllability. It terminates with a realiza-
tion of the supremal controllable sublanguage of E. To satisfy
the implication in (A3), we can choose any GA with G v GA.
Starting from G, it is straightforward to construct GA, G vGA,
by inserting transitions to an additional dump-state in order
to also fulfill the technical requirement L(GA) = Σ∗. Note that
this does not affect the algorithm, which will on inititialization
C0 = G×H remove the additional transitions.

Normality. An algorithm for computing a realization of the
supremal normal sublanguage is developed in Cho and Marcus
[1989], Sections 2 and 3. Following this discussion, a generator
C0 = R×Robs can be used as a first candidate for subsequent
removal of states and transitions. Here, Robs denotes a so called
observer for R = G×H with additional self-loop transitions for
unobservable events and with a dump-state for strings s < L∩E,
i.e., L(Robs) = Σ∗. Based on past observations within Σ∗o, the
state of Robs encodes the available information on the actual
state in R; see Cho and Marcus [1989] for further motivation
and a detailed construction. For the purpose of this paper, we
note that any GA with G×Robs v GA satisfies the implication
in (A3). As for controllability, we construct GA such that G×
Robs vGA and L(GA) = Σ∗, and, thereby satisfy (A3).

Completeness. To compute the supremal complete sublanguage
of L∩ E, start with the candidate C0 = G ×H and repeatedly
remove transitions to states with no enabled events. Terminate,
when no such transitions exist anymore. The resulting generator
realizes the supremal complete sublanguage of L ∩ E. The
described procedure is a special case of the one presented
in Kumar et al. [1992], addressing complete and controllable
sublanguages. We construct GA as for controllability in order
to satisfy (A3).

To address conjunctions of controllability, normality and com-
pleteness, we consider the particular GA from the above discus-
sion of normality. For controllability and completeness, we may
interpret G×Robs as an alternative plant realization to observe
that GA uniformly satisfies (A3) for all three properties. In
general, we impose the below condition on A1, A2, . . . Am:
(A4) For any generator H, there exists a generator GA with

L(GA) = Σ∗, such that for each property A j, j ≤ m,

C vGA×H ⇒ (∃C↑ vGA×H)[L(C↑) = 〈L(C)〉↑(A j)] .

Remark. If (A4) is satisfied for A1, A2, . . . Am, then each indi-
vidual A j, j ≤ m, satisfies (A3). Vice versa, if each individual
property A j, j ≤ m, satisfies (A3) and if GA in (A3) can be
chosen uniformly for all H, then A1, A2, . . . Am can be shown
to satisfy (A4).

We now establish that all iterates Ki from Iteration (3) can be
realized as subautomata of GA.
Proposition 6. Let A1, A2, . . . Am denote sets of languages
over Σ that comply with (A1)–(A4), and consider Iteration (3),
with Ω defined by Eq. (2). Then, for any specification E ⊆ Σ∗

with trim realization H, there exists a generator GA,H , such that
at each step i ∈�0 there exists a trim realization Hi vGA,H of
Ki, i.e., L(Hi) = pre Ki and Lm(Hi) = Ki.

Proof. Let GA denote the generator provided by (A4) and
assign GA,H := GA ×H. Furthermore, let H0 := Trim(GA,H),
where Trim(·) first removes transitions to states that are not
coaccessible and then removes states that are not accessible.

In particular, this operation retains the marked language and
results in a subautomaton. Thus, H0 satisfies the claim for i = 0.
For a proof by induction, assume the claim to hold for some
i ∈ �0. Thus, there exists a subautomaton Hi v GA,H such
that pre Ki = L(Hi), Ki = Lm(Hi). By (A4), 〈L(Hi)〉↑(A1) can
be generated by a subautomaton H1

i+1 v GA,H . Repeating this
argument, we obtain a realization Hm

i+1 v GA,H of [〈 · 〉↑(Am) ◦

· · · ◦ 〈 · 〉↑(A1)](L(Hi)). The respective languages are closed, and,
hence, we may assume that Hm

i+1 is accessible and all states
are marked; i.e. L(Hm

i+1) = Lm(Hm
i+1). Then, by intersection

with E, we obtain Ki+1 = Ω(Ki) = Lm(Hm
i+1 × H). Note that

Hm
i+1 vGA,H = GA×H implies the existence of a subautomaton

H′i+1 vGA,H such that Lm(H′i+1) = Ki+1; more specifically, H′i+1
can be obtained from the product Hm

i+1 ×H by renaming states.
Finally, let Hi+1 := Trim(H′i+1) to satisfy the claim for i + 1. �

As an immediate consequence of the above proposition and
Theorem 5, Iteration (3) is seen to finitely converge to the
supremal sublanguage 〈E〉↑(A).
Theorem 7. Given sets of languages A1, A2, . . . Am over Σ
that comply with (A1)–(A4), denote the intersection by A, and,
consider a regular specification E ⊆ Σ∗. Then, for Ω defined
by Eq. (2), Iteration (3) finitely converges to the limit K∞ :=
∩i∈�0 Ki with K∞ = 〈E〉↑(A).

Proof. By Proposition 6, all iterates Ki, i ∈�0, can be realized
as subautomata of some generator GA,H . Since there exists only
a finite number of such subautomata, there can only be finitely
many different iterates Ki. Monotonicity from Proposition 4,
(ii), then implies finite convergence. �

Remark. Finite convergence does not depend on the implemen-
tation of the individual operators 〈pre(·)〉↑(A j). In particular, our
main result is not restricted to the particular algorithms used for
the verification of (A3) and (A4).

Remark. Finite convergence does not require E to be relatively
closed w.r.t. the plant L. However, when E is relatively closed
w.r.t. L, then, by Proposition 4, (i), the limit K∞ is also relatively
closed w.r.t. L. For controllable sublanguages, this addresses the
common situation of nonblocking supervision.

6. APPLICATION

Controllability, normality and completeness, in conjunction,
are closely related to a particular controller synthesis problem
for sequential behaviours, i.e., plant dynamics that are mod-
elled by ω-languages; see e.g. [Ramadge, 1989, Kumar et al.,
1992, Thistle and Wonham, 1994]. We give a concise but self-
contained discussion of the respective synthesis problem and
motivate our study by a practical solution based on Theorem 7.

Formally, the synthesis problem is given as a tuple (Σ, L, E),
where:
(P1) Σ is the overall alphabet, with the common partitioning

Σ = Σc∪̇Σuc = Σo∪̇Σuo; we impose the requirement Σc ⊆
Σo, i.e., all controllable events must be observable;

(P2) L ⊆ Σω is the plant behaviour; for the subsequent discus-
sion we require poL⊆Σωo , i.e., the plant persistently issues
observable events;

(P3) E ⊆ Σω is the language-inclusion specification; for our
discussion, we assume E to be relatively closed w.r.t. L,
i.e. the specification must not impose liveness properties
other than those possessed by the plant.

Given a controller Ho ⊆ Σωo , we consider L ‖Ho := L ∩ p−ωo Ho
the closed-loop behaviour. We say, Ho is a solution to the
synthesis problem, if the following conditions are satisfied:
(C1) L and p−ωo Ho are nonconflicting;
(C2) pre(L) ∩ pre p−ωo (Ho) is controllable w.r.t. preL; and
(C3) L ‖Ho ⊆ E .
All three conditions (C1)–(C3) are retained under arbitrary
union of controllers. In particular, a supremal solution H⇑

o
uniquely exists. Furthermore, as a consequence of the specifi-
cation E being relatively closed w.r.t. the plant L, the closure of
any solution again forms a solution. In particular, H⇑

o is closed.

For a finite representation, we assume that L and E can be
expressed as limits L = lim L and E = lim E of some regular
languages L ⊆ Σ∗ and E ⊆ Σ∗, respectively. Without loss of
generality, we furthermore assume that L is complete. Referring
to relative closedness of E , it is readily verified that E =
lim(pre(E) ∩ L). Thus, without loss of generality, we assume
that E is relatively prefix-closed w.r.t. L.

The following fact characterizes the solutions of (Σ, L, E) in
terms of closed-loop properties; a proof is provided at the end
of this paper.
Fact 8. Let (Σ, L, E) be the above synthesis problem, repre-
sented by L = lim L and E = lim E, where L is complete and E
is relatively closed w.r.t. L. If Ho ⊆ Σωo solves (Σ, L, E), then
K := L ∩ p−1

o preHo ⊆ Σ∗ exhibits the following properties:
(L1) K is complete,
(L2) K is controllable w.r.t. L,
(L3) K is normal w.r.t. L,
(L4) K ⊆ E, and
(L5) K is relatively prefix-closed w.r.t. L.
Vice versa, for any K ⊆ Σ∗ that satisfies (L1)–(L5), Ho :=
lim popre K solves (Σ, L, E). In particular, the supremal lan-
guage K↑ ⊆ Σ∗, that satisfies (L1)–(L4), also satisfies (L5), and,
for H↑

o := lim popre K↑, we have L ‖H↑

o = L ‖H⇑

o. �

Given finite automata realizations of L and E, one can compute
K↑ by Iteration (3), where we use three closed-loop properties
A1, A2 and A3 for controllability, normality and completeness.
Theorem 7 guarantees finite convergence with the fixpoint
K∞ = K↑, which by H↑

o := lim popre K↑ solves (Σ, L, E).

For further illustration, consider the plant L and the specifi-
cation E′ given by Figure 1 and Figure 2, respectively, where
Σc = {a, d, e} and Σuo = {c}.

Fig. 1. Plant L

Fig. 2. Specification E′

Technically, the specification E′ is not a subset of L, so we
initialize Iteration (3) with K0 = E := E′ ∩ L; see Figure 3. For
the particular example, we expect Iteration (3) to, first, disable e
in state S5 for controllability; second, to disable a in state S4 for
completeness; and, third, to disable a in state S2 for normality.

We have implemented the iteration as a luafaudes-script to
obtain the fixpoint K∞ shown in Figure 4.

Fig. 3. Iterate K0 = E := E′∩L

Fig. 4. Fixpoint K∞

7. CONCLUSION

We have revisited and further developed a uniform approach for
the computation of supremal sublanguages that was proposed
by Yoo et al. [2002]. A fairly general iteration scheme is
shown to finitely converge against the supremal sublanguage
that exhibits a conjunction of desired closed-loop properties.
For this result, four conditions are imposed on the properties.
Condition (A1) requires the property to be retained under union
and, thus, assures the supremal sublanguage to exist. Condition
(A2) requires the property to address generated languages only
and, thus, not to depend on task completion modelled by
marked states. Conditions (A3) and (A4) effectively require
that for each individual property there exists an algorithm to
compute the respective supremal sublanguage and that some a
priori knowledge of the resulting state set is available uniformly
for all properties. Even though (A3) and (A4) refer only to
the prefix-closed case, the iteration is valid also for plants and
specifications that are not prefix-closed.

All conditions are fulfilled for controllability, normality, and
completeness. Hence, one contribution of this paper is that we
can now compute supremal sublanguages that are all control-
lable, normal and complete, and that we can do so for not nec-
essarily closed specifications and plants. It should also be noted,
that the iteration formula is rather simple and that it only refers
to supremal sublanguage operators for the individual properties
and for the prefix-closed case. This allows for straightforward
implementations, which can be used to generate test cases for
the validation of alternative approaches.

REFERENCES

R. D. Brandt, V. Garg, R. Kumar, F. Lin, S. I. Marcus, and W. M.
Wonham. Formulas for calculating supremal controllable
and normal sublanguages. Systems and Control Letters, 15:
111–117, 1990.

C. G. Cassandras and S. Lafortune. Introduction to Discrete
Event Systems. Springer, second edition, 2008.

H. Cho and S. I. Marcus. On supremal languages of classes
of sublanguages that arise in supervisor synthesis problems
with partial observation. Maths. of Control, Signals &
Systems, 2:47–69, 1989.

R. Kumar, V. Garg, and S. I. Marcus. On supervisory control
of sequential behaviors. IEEE Transactions on Automatic
Control, 37:1978–1985, 1992.

F. Lin and W. M. Wonham. On observability of discrete-event
systems. Information Sciences, 44:173–198, 1988.

P. J. Ramadge. Some tractable supervisory control problems
for discrete-event systems modeled by büchi automata. IEEE
Transactions on Automatic Control, 34:10–19, 1989.

P. J. Ramadge and W. M. Wonham. Supervisory control of
a class of discrete event processes. SIAM J. Control and
Optimization, 25:206–230, 1987.

P. J. Ramadge and W. M. Wonham. The control of discrete
event systems. Proceedings of the IEEE, 77:81–98, 1989.

J. G. Thistle and W. M. Wonham. Supervision of infinite
behavior of discrete event systems. SIAM J. Control and
Optimization, 32:1098–1113, 1994.

T.-S. Yoo, S. Lafortune, and F. Lin. A uniform approach
for computing supremal sublanguages arising in supervisory
control theory. Technical Report, Department of EECS,
University of Michigan, 2002.

APPENDIX

For the sake of completeness, we provide a proof for Fact 8.
Given a solution Ho ⊆ Σωo , let K := L ∩ p−1

o preHo. Obviously,
(L5) is satisfied. To verify (L1)–(L4), we first establish

pre K = pre(L ‖Ho) . (4)
For an arbitrary s ∈ pre K, pick r ∈ Σ∗ such that sr ∈ K. Hence,
sr ∈ pre L and sr ∈ p−1

o preHo = pre p−ωo Ho. By (C1) we obtain
sr ∈ pre(L ∩ p−ωo Ho), and thus s ∈ pre(L ‖Ho). For the con-
verse inclusion, consider an arbitrary s ∈ pre(L ‖Ho) and pick
w ∈ Σω such that sw ∈L ‖Ho. In particular, we can pick an r <w
such that sr ∈ L. With sr < sw, observe that sr ∈ pre(L ‖Ho) ⊆
pre p−ωo Ho = p−1

o preHo. This concludes the proof of Eq. (4).

Properties (L1) and (L2) follow immediately from Eq. (4). Re-
garding (L3), observe p−1

o popre K = p−1
o popre(L ∩ p−1

o preHo)⊆
p−1

o preHo = pre p−ωo Ho. With (C1) and Eq. (4), this implies
p−1

o popre(K) ∩ pre(L) ⊆ pre p−ωo (Ho) ∩ pre(L) = pre(L ‖Ho) =
pre K. For (L4), observe from (C3) and Eq. (4) that pre K ⊆
pre E, and, thus K = pre(K)∩L ⊆ pre(E)∩L = E.

Vice versa, consider any K ⊆ Σ∗ that complies with (L1)–
(L5) and let Ho := lim popre K. In order to establish (C1)–
(C3), we first show that Eq. (4) again holds true. Observe
that pre(L ‖Ho) = pre(lim(L) ∩ p−ωo lim popre(K)) ⊆ pre(L) ∩
pre p−ωo lim popre(K) ⊆ pre(L) ∩ p−1

o popre(K). By (L3) we ob-
tain pre(L ‖Ho) ⊆ pre K. For the converse inclusion, consider
an arbitrary s ∈ pre K, and pick r ∈ Σ∗ such that sr ∈ K, and, by
(L1), w ∈ Σω, such that srw ∈ lim K. Observe with (L3) and (L5)
that K ⊆ p−1

o po(K) ∩ L ⊆ p−1
o popre(K) ∩ pre(L) ∩ L = pre(K) ∩

L = K, and, hence, srw ∈ lim K = lim(L ∩ p−1
o poK) ⊆ L ∩

lim p−1
o popre K = L ∩ p−ωo lim popre K = L ∩ p−ωo Ho, where the

2nd last equality is by the prerequisite pωoL ⊆ Σωo . This con-
cludes the proof of Eq. (4).

For (C1), observe by (L3) and Eq. (4) that pre(L) ∩ pre p−ωo (Ho)
⊆ pre(L) ∩ p−1

o popre(K) = pre K = pre(L ∩ p−ωo Ho). Again by
Eq. (4), (C2) is an immediate consequence of (L2). Regarding
(C3), observe by Eq. (4), by (L4) and by relative closedness of
L w.r.t. E , that L ‖Ho ⊆L ∩ limpre(L ‖Ho) =L ∩ limpre K ⊆
L ∩ limpre E = E .

The supremal language K↑ ⊆ Σ∗ with properties (L1)–(L4) is,
by Proposition 1, (ii), relatively closed w.r.t. E. Thus, the pre-
requisite that E is relatively closed w.r.t. L implies (L5). In
particular, H↑

o is a solution. Given an arbitrary closed solu-
tion Ho ⊆ Σωo , we now show that L ‖ Ho = lim K with K :=
L ∩ p−1

o preHo: by (L1) and Eq. (4) we obtain clo lim K =
limpre K = clo(L ‖Ho), to observe with (L5) that L ‖Ho =L ∩
clo p−ωo (Ho) = L ∩ clo(L ∩ p−ωo Ho) = lim(L) ∩ clo lim(K) =
lim(L ∩ pre K) = lim K. In particular, we have L ‖ Ho ⊆ L ‖
cloHo ⊆ lim K↑ for any solution Ho. Thus, lim K↑ = L ‖ H↑

o ⊆
L ‖H⇑

o ⊆ lim K↑. This implies L ‖H↑

o = L ‖H⇑

o.

