
Local Refinement of l-complete
Approximations for Supervisory Control of

Hybrid Systems ‹

Jung–Min Yang ˚ Thomas Moor ˚˚ Jörg Raisch ˚˚˚,˚˚˚˚

˚ School of Electronics Engineering, Kyungpook National University,
80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea (e-mail:

jmyang@ee.knu.ac.kr)
˚˚ Lehrstuhl für Regelungstechnik at Friedrich-Alexander Universität

Erlangen-Nürnberg, D-91058 Erlangen, Germany (e-mail: lrt@fau.de)
˚˚˚ Fachgebiet Regelungssysteme, Technische Universitaet Berlin,

10587 Berlin, Germany
˚˚˚˚ Systems and Control Theory Group, Max Planck Institute for

Dynamics of Complex Technical Systems, D-39106 Magdeburg,
Germany (e-mail: raisch@control.tu-berlin.de)

Abstract: l-complete approximation is a discrete abstraction method for a specific class of
hybrid control problems involving purely discrete specifications. It allows for global refinement
if the subsequent synthesis of supervisory control should fail for the currently selected abstraction
level. In this paper, we present a methodology of local refinement for l-complete approximations.
If the strongest l-complete approximation of a given hybrid system does not guarantee the
existence of a suitable supervisor for a given specification, the proposed scheme refines the
abstract model only in a local set of states that violate a controllability condition. Compared
to the standard unfocused and global refinement procedure, this may significantly reduce the
computational burden both in the abstraction step and the subsequent controller synthesis step.
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1. INTRODUCTION

The analysis and control of hybrid systems has become an
important subject in modern control theory. A requisite
to successful controller synthesis for hybrid systems is a
modeling formalism that describes the dynamics of hybrid
systems on a level of abstraction such that an appropriate
controller can be designed to meet a desirable specification.
A number of mathematical models for hybrid systems have
been reported for this purpose in various frameworks; see,
e.g., Alur, Henzinger, Lafferriere, & Pappas (2000); Girard
& Pappas (2009); Tabuada (2009); Tarraf (2014) and the
references cited therein.

This paper addresses the local refinement of l-complete
approximations (Moor & Raisch, 1999; Moor, Raisch,
& O’Young, 2002), a discrete abstraction inspired by
Willems’ behavioral systems theory (e.g., Willems (1991)).
l-complete approximation has been suggested as an ab-
straction method for specific hybrid control problems
where the plant to be controlled exhibits discrete-valued
(symbolic) control input and output signals, and is sub-
ject to an inclusion-type specification in these signals. In
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standard l-complete approximations, a finite state machine
with a certain level of abstraction quantified by the inte-
ger parameter l is induced by the external behavior of
the hybrid system. A variant of Ramadge and Wonham’s
supervisory control theory (e.g., Cassandras & Lafortune
(2008); Ramadge & Wonham (1987, 1989)) is subsequently
applied to the approximated model to enforce a given
inclusion-type specification for the approximation. It is
shown in Moor & Raisch (1999); Moor et al. (2002) that
if the supervisor suitably restricts the l-complete approx-
imation behavior, it also accomplishes the control objec-
tive for the underlying hybrid system. Recent extensions
have been reported in Park & Raisch (2015); Schmuck &
Raisch (2014). In Schmuck & Raisch (2014), the notion of
asynchronous l-complete approximations was introduced,
and Park & Raisch (2015) presents a controller synthesis
procedure for l-complete approximation models with a
partially observed output set.

The existence of an appropriate supervisor for a given
specification depends on the approximation accuracy of
the l-complete approximation, namely, if the abstract
model is too coarse, no supervisor may exist that meets the
specification. In Moor & Raisch (1999); Moor et al. (2002);
Park & Raisch (2015); Schmuck & Raisch (2014), the only
method to resolve this conflict is to construct a globally
refined model, i.e., to increase the integer parameter l.
This will improve approximation accuracy, but at the



cost of significant computational complexity. Furthermore,
the existence or non-existence of a suitable supervisor is
revealed only after the refinement step and the subsequent
controller synthesis procedure have been entirely carried
out.

Motivated by this drawback, we propose local refinement
of l-complete approximations. In our scheme, even if no
supervisor is found to exist for the current abstraction,
global refinement of the model is not undertaken. Instead,
we refine only the part of the current abstraction violat-
ing a certain controllability condition. This information is
available from the (failed) controller synthesis step. Since
the refinement range is local, the part of the previously
generated supervisor associated with the unrefined part of
the model can be reused, hence allowing for computation-
ally efficient derivation of the supervisor.

A study on the local refinement of abstractions in the
context of controller synthesis that also applies to l-
complete approximations is provided by (Moor, Davoren,
& Raisch, 2006). There, the authors utilize the more
general concept of exhaustive experiments as a basis for
abstractions and state their discussion exclusively in terms
of behaviors. In contrast, the present paper exploits the
special case of l-complete approximations and presents a
refinement scheme explicitly in terms of state machines.
Other refinement methodologies for verification and con-
trol of hybrid systems are found, e.g., in Clarke, Fehnker,
Han, Krogh, Ouaknine, Stursberg, & Theobald (2003);
Stursberg (2006). The approaches of Clarke et al. (2003);
Stursberg (2006) are similar in spirit to the proposed
scheme since both try to induce the refined model while
avoiding exhaustive model checking and refinement. Unlike
Clarke et al. (2003); Stursberg (2006), however, our scheme
does not need any counter example or candidate path to
determine the validity of the evolved model. Only the
composite finite state machine obtained in the previous
controller synthesis procedure will be utilized to derive a
more detailed system abstraction.

We first summarize the concept of strongest l-complete
approximations as discrete abstractions for continuous or
hybrid systems and the synthesis of supervisory control
for such abstractions. We then propose a procedure for
local refinement of a state machine realization of a given
l-complete approximation, where the state set and state
transition relation are extended to compensate for the
failure of implementing adequate supervisory control. A
simple example will be used through the entire discussion,
illustrating the suggested idea and demonstrating the
applicability of the proposed strategy.

2. L-COMPLETE APPROXIMATIONS OF HYBRID
SYSTEMS

In Willems’ behavioral framework, a dynamical system is
defined as a triple Σ “ pT,W,Bq, where T is the time axis,
W is the external signal space, and B Ď WT :“ tw|w :
T Ñ W u is the behavior, or the set of all external system
signals evolving on T and taking values in W . Since we
focus on Σ with discrete behaviors, let us assume that
T “ N0 :“ NY t0u and |W | P N. In the context of control
systems, W “ U ˆ Y , where U and Y are the input and
output set, respectively (|U |, |Y | P N).

For algorithmic purposes, we use state machines as re-
alizations of dynamical systems. A state machine is a
quadruple P “ pX,W, δ,X0q, where X is the state set,
W “ U ˆ Y is the external signal space, δ Ď X ˆW ˆX
is the next state relation, and X0 Ď X is the set of
initial states. P is called a finite state machine if |X| P N.
P is called past-induced if there is no more than one
initial state and if for every reachable state x and every
symbol ω P W there is at most one successor state x1

such that px, ω, x1q P δ; in automata theory, this is also
referred to as determinism. P induces the full behavior
Bs :“ tpw,xq|pxptq,wptq,xpt` 1qq P δ @t P N0,xp0q P X0u

and the state space system Σs :“ pN0,W ˆ X,Bsq. The
external behavior B of Σs is the projection of Bs onto WN0 ,
i.e., B :“ PWBs “ tw|Dx s.t. pw,xq P Bsu. If a state
machine P 1 induces the external behavior B of a system
Σ1 “ pN0,W,Bq, P 1 is termed a realization of Σ1, denoted
by Σ1 – P 1.

Let σt denote the backwards t-shift, i.e., pσtwqpτq :“ wpt`
τq @τ P N0 and σ :“ σ1. In the following, we will
focus on the case where the behavior is shift invariant,
i.e., σB “ B, where σB is shorthand for tσw|w P Bu.
This implies time-invariance of the corresponding system
Σ “ pT,W,Bq (e.g., Willems (1991)). Let the system
Σ “ pN0,W,Bq with |W | P N be realized by a hybrid state
machine P “ pX,W, δ,X0q with X Ď Rn ˆ D, |D| P N,
namely, P may have infinitely many states. In addition, we
assume that P is an I/S/O machine, i.e., @x P X and u P
U , there uniquely exist y P Y and x1 P X such that
px, pu, yq, x1q P δ (Moor & Raisch, 1999); this is a different
form of determinism that must not be confused with past-
inducedness.

We define w|rt1,t2s and B|rt1,t2s (t1 ď t2) as the restriction
of w and B to the domain rt1, t2s X N0, respectively.
In behavioral systems theory (e.g., Willems (1991)), a
dynamical system is called l-complete if its behavior can be
fully described by local properties of the system evaluated
on time intervals of length l ` 1, l P N. In formal terms, a
shift invariant system Σ “ pT,W,Bq is l-complete if

w P B ô pσtwq|r0,ls P B|r0,ls @t P N0. (1)

In Moor et al. (2002), a formalism is presented to realize an
l-complete hybrid system with finite external signal space
by a past-induced finite state machine as follows.

Theorem 1. (Moor & Raisch, 1999) Given an l-complete
shift invariant hybrid system Σ “ pT,W,Bq, let Zl :“
tω˚u Y1ďrďl W

r and Z0 :“ tω˚u, where ω˚ R W is a
dummy character meaning “no external signal present so
far.” Let δl :“ Y0ďrďlδ

r
l Ď Zl ˆW ˆ Zl where

δ0l :“ tpω˚, ω0, ω0q|xω0y P B|r0,0su,

δrl :“ tpxω0, . . . , ωr´1y, ωr, xω0, . . . , ωryq|

xω0, . . . , ωry P B|r0,rsu, 1 ď r ă l, (2)

δll :“

tpxω0, . . . , ωl´1y, ωl, xω1, . . . , ωlyq|xω0, . . . , ωly P B|r0,lsu.

Then, Pl :“ pZl,W, δl, Z0q is a past-induced realization of
Σ.

If Σ “ pT,W,Bq is not l-complete, one needs to find the
strongest l-complete approximation Σl “ pT,W,Blq of Σ.
It is defined by the following properties (Moor & Raisch,
1999):



(i) Σl is l-complete;
(ii) Bl Ě B; and
(iii) if Σ1 “ pT,W,B1q with B1 Ě B is also l-complete, then

Bl Ď B1.
As stated in Theorem 1, an l-complete system Σ with
finite external signal space can be realized by a finite state
machine. Hence it is suitable to apply supervisory control
theory to Σ. The motivation for defining Σl is to deal with
the case that Σ is not l-complete. Instead of Σ, Σl will
be used in supervisor synthesis. In Moor et al. (2002),
it is shown that a valid supervisor for Σl is also a valid
supervisor for Σ.
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Fig. 1. Realization P1 for 1-complete approximation Σ1.

Example 2. Consider the water tank system with height 30
cm discussed in Moor et al. (2002); Park & Raisch (2015).
Operating with a fixed sampling rate, the attached pump
provides water in response to the discrete input uptq. If
uptq=“+”, the pump adds water to the tank, increasing
the water level xptq by 10 cm in the next sampling interval
(unless the tank is full); else if uptq=“´”, the pump
removes water from the tank, decreasing the water level by
10 cm during the next sampling interval (unless the tank
is empty). Hence, the range of xptq is always bounded by
0 ď xptq ď 30 in the example. The output yptq can take
only two measurement values: yptq “ E if 0 ď xptq ď 15,
and yptq “ F if 15 ă xptq ď 30. Let the water tank model
be Σ “ pT,W,Bq where W “ U ˆ Y , U “ t`,´u, and
Y “ tE,F u. Then Σ can be realized by a hybrid state
machine P “ pX,W, δ,X0q where X “ X0 “ r0, 30s,
wptq “ puptq, yptqq, and pxptq, wptq, xpt` 1qq P δ if

xpt` 1q “ fpxptq, uptqq

:“

$
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’

%

xptq ` 10 uptq “ “` ” and 0 ď xptq ď 20

30 uptq “ “` ” and 20 ă xptq ď 30

xptq ´ 10 uptq “ “´ ” and 10 ă xptq ď 30

0 uptq “ “´ ” and 0 ď xptq ď 10

(3)

yptq “ gpxptqq :“

"

F 15 ă xptq ď 30

E 0 ď xptq ď 15

Fig. 1 shows the realization P1 for the strongest 1-complete
approximation Σ1 of Σ. Since the parameter l is 1, the
number of states of P1 is |U | ¨ |Y | ` 1. In this example,
all states, abbreviated by 0, . . . , 4 in Fig. 1, can indeed be
reached. For instance, a pair of external symbols p`, Eq
followed by p`, Eq will drive P1 into state 1 “ p`, Eq. A
detailed algorithm for deriving Bl and Pl is found in Moor
et al. (2002).

3. SUPERVISORY CONTROL

To address supervisory control for hybrid systems, we
recall relevant terminology and operations from Moor et
al. (2002). Let Pa “ pA,W,α,A0q and Pb “ pB,W, β,B0q

be two state machines having the same external signal
space W . Pa is reachable if every state a P A is reachable,
namely a can be reached from a state a0 P A0 through
a chain of transitions of α. Pa is temporally nonblocking
if for every reachable a P A, w P W exists such that
pa,w, a1q P α for some a1 P A. The latter is abbreviated
by pa,w,´q P α. Similarly, pa,w, a1q R α for all a1 P A is
abbreviated by pa,w,´q R α. If pa,w,´q R α, @w P W ,
a is a blocking state. The parallel composition of Pa and
Pb is defined as Pa||Pb :“ pA ˆ B,W, λ,A0 ˆ B0q where
ppa, bq, w, pa1, b1qq P λ ô pa,w, a1q P α and pb, w, b1q P β.
Pa is a substructure of Pb, denoted by Pa Ď Pb, if A Ď B,
α Ď β, and A0 Ď B0. Pa “ pH,W,H,Hq Ď Pb is
the trivial substructure of Pb and is simply denoted by
Pa “ H. The union of Pa and Pb is defined as Pa Y
Pb :“ pAYB,W,αY β,A0 YB0q.

Assume that for a hybrid system Σ “ pN0,W,Bq, Pl “
pZl,W, δl, Z0q is derived for a specific choice of l and a spec-
ification Σspec “ pN0,W,Bspecq is given with past-induced
finite state realization Pspec “ pXspec,W, δspec, Xspec0q.
The control problem on the approximation level is to de-
termine the existence of a non-trivial supervisor such that
the closed-loop formed by Pl and the supervisor (i) exhibits
a behavior that is contained in Bspec, (ii) is temporally
nonblocking, and (iii) satisfies a controllability condition
outlined below.

Supervisor synthesis is conducted in the following steps.
First, we remove unacceptable trajectories from Σl by
intersecting Bl and Bspec. A realization of the intersection
system pN0,W,Bl X Bspecq is Pl||Pspec :“ pQ,W, λ,Q0q

where Q “ Zl ˆXspec, λ Ď Q ˆW ˆ Q, and Q0 “ Z0 ˆ

Xspec0. Since unreachable states do not affect the induced
behavior, we assume hereafter that Pl||Pspec is the parallel
composition obtained after removing all the unreachable
states. Next, Pl||Pspec is truncated so as to ensure the
principle of supervisory control that the supervisor may
only disable the input component in an explicit manner. To
be more specific, if the supervisor disables a symbol ω PW
at a state in Pl||Pspec, it must disable all other symbols
that have the same input component as ω, regardless of
the difference in their output components. The following
definition (Moor et al., 2002) epitomizes this restriction in
formal terms.

Definition 3. Transitions δ1 “ pz1, ω1, z
1
1q P δl and δ2 “

pz2, ω2, z
1
2q P δl of Pl are partners if z1 “ z2 and PUω1 “

PUω2. A state machine P̃ “ pQ̃,W, λ̃, Q̃0q Ď Pl||Pspec “
pQ,W, λ,Q0q is a controllable substructure of Pl||Pspec with
respect to Pl if for every reachable state pz, χq P ZlˆXspec

of P̃ , a transition ppz, χq, ω, pz1, χ1qq P λ can only be an

element in λ̃ if ppz, χq, ω1, pz2,´qq P λ̃ for every partner
pz, ω1, z2q of pz, ω, z1q.

Let tPCNu be the set of all controllable substructures
of Pl||Pspec with respect to Pl that are both reachable
and temporally nonblocking. tPCNu is closed under union
(Moor et al., 2002). Hence, tPCNu forms a finite upper
semi-lattice with the join operation Y. Therefore, P`sup :“



sup tPCNu uniquely exists. If P`sup ‰ H, it serves as a
realization of the least restrictive temporally nonblocking
supervisor guaranteeing that the specifications are met for
Σl – Pl (and therefore Σ). If P`sup “ H, no such supervisor
can be computed for Σ on the basis of Σl.

We give an outline of the synthesis procedure in a variant
that turns out useful for the refinement method proposed
in the following section.

Algorithm 4. Least restrictive supervisor for Pl to enforce
Pspec.

Set P̂ :“ pQ̂,W, λ̂, Q̂0q :“ Pl||Pspec.

1) Iteratively remove all blocking states and associated

incoming transitions from P̂ .

2) Remove all transitions ppz, χq, ω1, pz
1
1, χ

1qq P λ̂ from

P̂ for which there exists a partner pz, ω2, z
1
2q P δl

of pz, ω1, z
1
1q but ppz, χq, ω2,´q R λ̂. If no transitions

have been removed, go to Step 3; else, go to Step 1.
3) Set Q̂win :“ Q̂ the current state set of P̂ .
4) Remove all unreachable states and associated outgo-

ing transitions from P̂ .
5) Terminate the algorithm and set P`sup “ P̂ .

The loop over Steps 1 and 2 removes states that block
and transitions that violate the controllability condition.
Hence, when entering Step 3, there are only states left that
do not block and have a set of enabled events that can be
enforced by control. If, for whatever reason, the plant ab-
straction Pl generates a finite sequence xω0, ω1, . . . , ωky

that drives Pl||Pspec to a state within Q̂win, it can from
then on be controlled to be temporally nonblocking and to
satisfy the specification. We therefore refer to Q̂win as the
winning states. The set of all finite sequences that drive
Pl||Pspec to a winning state amounts to the controllability
prefix, as introduced by Thistle & Wonham (1994b) for a
more general class of ω-languages. In fact, when applying
the algorithm presented in Thistle & Wonham (1994a)
to the special case at hand, it simplifies to the above
Steps 1–3. The post-processing Step 4 restricts the result
to the reachable part. If and only if the initial state has
not been removed and, hence, is a winning state, we end
up with P`sup ‰ H and, hence, obtain a solution to the
control problem. As a more common variant of the above
algorithm, one could integrate the post-processing Step 4
into Step 1 to obtain the same final result P`sup and to gain
some computational performance. However, in the case of
P`sup “ H, it is the intermediate result Q̂win that will be
useful in directing a refinement of the abstraction.

Example 5. For the water tank system in Example 2,
assume the specification Σspec that after two time steps,
the output E is not allowed to occur any more. A state
machine Pspec realizing this specification is shown in Fig. 2.
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Fig. 2. Realization Pspec for Σspec.
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Fig. 3. Parallel composition P1||Pspec.

Fig. 3 illustrates the parallel composition P1||Pspec. Com-
pared with Fig. 1, all the unacceptable trajectories are
eliminated in the induced behavior. However, a closer
examination of Figs 2 and 3 shows that derivation of
P`sup from P1||Pspec results in P`sup “ H. We go through

the synthesis algorithm step by step. In P̂ :“ P1||Pspec,
state p2, cq is blocking and, hence, is removed at Step 1
together with all incoming transitions. This introduces no
additional blocking states and the algorithm proceeds with
Step 2. Among the transitions from p1, cq, those associated

with p`, Eq and p´, Eq are disabled in P̂ , and, hence, all
their partners are disabled in Step 2: p`, F q for p`, Eq and
p´, F q for p´, Eq. Removing these transitions makes p1, cq
a blocking state. Likewise, p4, cq is reduced to a blocking
state by eliminating the respective partners. The algorithm
now loops back to Step 1 and removes the blocking states
p1, cq and p4, cq together with all incoming transitions.
This turns p2, bq also into a blocking state to be removed.
The algorithm proceeds with Step 2, and, detects missing
partners in states p0, aq, p1, bq and p4, bq. This leads to
the removal of the remaining outgoing transition of p1, bq
andp4, bq, respectively, and, hence, turns p1, bq and p4, bq
into blocking states, to be removed in the next invocation
of Step 1. In the subsequent iteration, p0, aq becomes
blocking for the same reason and also gets removed. The
only remaining states p3, bq and p3, cq are non-blocking
and do conform with the controllability condition. Hence
neither the remaining states nor the remaining transi-
tions are removed and the loop exits to Step 3 and sets
Q̂win “ tp3, bq, p3, cqu. The positive reading here is that,
if, for whatever reason, the first measurement turns out F
then we can control the plant according to the specification
by constantly applying the input symbol `. However, we
also have that p0, aq R Q̂win and, if the first measurement
turns out E, the abstraction does not allow us to conclude
that a controller can enforce the specification for all future.
Consequently, the post-processing Step 4 yields P`sup “ H.

As Example 5 demonstrates, if P`sup is found to be H, no
supervisor can be synthesized on the basis of the strongest
l-complete approximation Σl unless Σspec is somehow re-
laxed. If Σspec needs to be retained, (Moor & Raisch, 1999;
Moor et al., 2002; Park & Raisch, 2015; Schmuck & Raisch,
2014) suggest to use a globally refined approximation,
that is, Σl`1 instead of Σl. But, as Theorem 1 hints,
this global refinement corresponding to an increase in l



requires B|r0,l`1s instead of B|r0,ls. In fact, it is easily
derived that the state set Zl of Pl has maximum cardinality
řl
k“1p|U ||Y |q

k excluding the initial state. Hence, as the
approximation parameter l increases by one, the number
of states in the realization Pl potentially increases by a
multiplicative factor of |U ||Y |.

4. LOCAL REFINEMENT FOR L-COMPLETE
APPROXIMATIONS

As an alternative policy, we present a novel scheme of
local refinement. The proposed strategy is applicable to
the case where, given Pl – Σl “ pN0,W,Blq and Pspec –
Σspec “ pN0,W,Bspecq, Bl X Bspec ‰ H and therefore
Pl||Pspec ‰ H but P`sup “ H. Instead of deriving Pl`1, we
refine Pl||Pspec only at those states that violate the control-
lability condition. Bl X Bspec ‰ H means that the current
approximation Pl is indeed compatible with some specified
signal. However, on the basis of this approximation, the
specification cannot be enforced in a nonblocking way by
exclusively disabling input symbols. This is reflected in
P`sup “ H. In this case, we distinguish the following classes
of states in order to construct a local refinement.

Definition 6. Given Pl||Pspec “ pQ,W, λ,Q0q, define the
following.

(i) A non-implementable state is a state q “ pz, χq P Q
such that there exists a pair of partners pz, ω, z1q P δl
and pz, ω1, z2q P δl with PUω “ PUω

1 in Pl for which
ppz, χq, ω, pz1,´qq P λ but ppz, χq, ω1, pz2,´qq R λ.
Qni Ď Q denotes the set of non-implementable states.

(ii) q “ pz, χq P Q is a boundary state if z “

xω0, . . . , ωl´1y PW
l and there exists pz1, χ1q P Q such

that ppz1, χ1q, ωl´1, pz, χqq P λ and z1 P W l. Qbd Ď Q
denotes the set of boundary states.

(iii) Execute the synthesis algorithm (Algorithm 4) on the
input data Pl and Pspec and denote Qwin the winning
states.

A non-implementable state of Pl||Pspec is a state where
the controllability condition is violated. A boundary state
is a state for which the projection on the state set Zl of
Pl is a “boundary” one in the sense that it memorizes the
maximum number l of external symbols and is reached
from another state exhibiting the same property. A win-
ning state is a state from which on liveness and safety can
be enforced by a suitable controller.

Example 7. Consider P1||Pspec in Example 5, depicted in
Fig. 3. As discussed in Example 5, the controllability
condition is violated at states p1, cq and p4, cq. Hence,
tp1, cq, p4, cqu Ď Qni. Moreover, as pp1, bq, p`, Eq, p1, cqq P
λ, pp3, bq, p´, F q, p4, cqq P λ, and 1, 3 P W 1, we have
tp1, cq, p4, cqu Ď Qbd. By inspection, it is seen that p1, cq
and p4, cq are the only non-implementable states. There-
fore, Qni “ Qni X Qbd “ tp1, cq, p4, cqu. Recall from the
previous section that Qwin “ tp3, bq, p3, cqu.

While the non-implementable states Qni are considered
first candidates for a possible refinement, not all of them
are expected to actually contribute to the solution of the
synthesis problem at hand. To this end, we make three
observations.

First, suppose q P Qni XQbd. This implies the following.

(a) q “ pz, χq with z “ xω1, . . . , ωly. Furthermore, there
exists q1 “ pz1, χ1q P Q with z1 “ xω0, . . . , ωl´1y such
that pq1, ωl, qq P λ. Therefore, according to Theorem
1, xω0, . . . , ωly P B|r0,ls.

(b) There exist ω, ω1 P W with PUω “ PUω
1 such that

pz, ω, z̃q P δ, pz, ω1, z̃1q P δ for some z̃, z̃1 P Zl and
pq, ω, q̃q P λ, pq, ω1,´q R λ for some q̃ P Q.

Clearly, the violation of the controllability condition ex-
pressed by item (b) can potentially be resolved if we use
a local approximation refinement in the sense of checking
whether xω0, . . . , ωl, ω

1y P B|r0,l`1s. If the result of this
check is negative, this string is not compatible with Σl`1

and hence with Σ, and it will not occur in any closed-
loop behavior involving the underlying hybrid plant Σ. In
this case, there is no controllability issue for the locally
refined approximation. We will refer to this procedure as
a local one-step refinement. If the controllability issue in
the state q can be resolved in this way, we will say that q
is implementable with respect to Pl under local one-step
refinement.

Second, suppose q P QnizQbd. This implies the following.

(a) q “ pz, χq with z “ xω0, . . . , ωry, r ď l ´ 1.
Furthermore, for all q1 “ pz1, χ1q P Q such that
pq1, ωr, qq P λ, we have z1 “ xω0, . . . , ωr´1y. Therefore,
according to Theorem 1, xω0, . . . , ωry P B|r0,rs.

(b) same as item (b) above.

This implies that local refinement as introduced above
would involve checking whether the condition

xω0, . . . , ωr, ω
1y P B|r0,r`1s

is valid. As r ` 1 ď l, this information is already encoded
in the state machine Pl realizing Σl. Hence, local one-
step refinement of states in QnizQbd will not resolve
controllability issues.

Our third and final observation is that once the system
enters a state q P Qwin, there exists a controller that
faithfully operates the plant within Qwin and that this
fact is already encoded in the abstraction Pl. In particular,
there is no need for a refinement at states Qwin X Qni
since the synthesis procedure will succeed in resolving any
implementation or blocking issues once Qwin is reached.

These considerations suggest the following procedure.
Starting with P̂ :“ Pl||Pspec, we essentially apply the
standard synthesis algorithm in that we iteratively remove
blocking states and transitions that violate the controlla-
bility condition — except that we do not insist on con-
trollability for transitions originating in the refinement
candidates Ξ :“ pQni X QbdqzQwin. For the latter states,
we implement a local one-step refinement. This step either
establishes implementability or fails to do so. In the for-
mer case, no further action is required for the respective
state. In the latter case, the associated transitions are
removed. This procedure is implemented in the following
Algorithm 8. Its result, denoted by P̂`sup, is the largest
substructure of Pl||Pspec that is reachable and temporally
nonblocking and where all states are either implementable
with respect to Pl or implementable with respect to Pl
under local one-step refinement. It represents the least re-
strictive supervisor for Pl under local one-step refinement.



Algorithm 8. Least restrictive supervisor for Pl under local
one-step refinement.
Given Pl and Pspec with Pl||Pspec ‰ H, run Algo-

rithm 4 to obtain the winning states Q̂win, then set P̂ :“

pQ̂,W, λ̂, Q̂0q :“ Pl||Pspec.

1) Iteratively remove all blocking or unreachable states

and associated transitions from P̂ . Denote the result-
ing state machine again by P̂ and identify the state
sets Q̂ni Ď Q̂ (the set of non-implementable states)

and Q̂bd Ď Q̂ (the set of boundary states) according
to Definition 6. Set the refinement candidate states
Ξ̂ :“ pQ̂ni X Q̂bdqzQ̂win.

2) If Q̂nizΞ̂ “ H, proceed to Step 3. Else, remove

all transitions originating in Q̂nizΞ̂ that violate the
controllability condition according to Definition 3 and
return to Step 1.

3) If Ξ̂ “ H, go to Step 11. Else, let Ξ̂ :“ tq1, . . . , qnu
and set i :“ 1 and C :“ 0.

4) For qi “ pzi, χiq P Ξ̂, let zi :“ xω0, . . . , ωl´1y

and let pzi, ω, z
1q, pzi, ω

1, z2q P δl be a pair of

partners for which ppzi, χiq, ω, pz
1,´qq P λ̂ and

ppzi, χiq, ω
1, pz2,´qq R λ̂. Denote the set of all such

ω1’s by Ψpziq :“ tω11, . . . ω
1
pu ĎW .

5) Let Qpzi,χiq :“ tpz, χq P Q̂|ppz, χq, ωl´1, pzi, χiqq P

λ̂, z P Zl XW
lu, and let

PZl
Qpzi,χiq :“ tz|Dχ s.t. pz, χq P Qpzi,χiqu

:“ tζ1, . . . , ζmu.

Set j :“ 1.
6) If, for any ω1k P Ψpziq, xζj , ωl´1, ω

1
ky P B|r0,l`1s,

remove the transition
ppζj ,´q, ωl´1, pzi, χiqq P λ̂ from P̂ and set C :“ 1.

7) If j ă m, set j :“ j ` 1 and return to Step 6.

8) If there exists a transition ppζ,´q, ωl´1, pzi, χiqq P λ̂

with ζ PW l´1, remove this transition from P̂ and set
C :“ 1.

9) If i ă n, set i :“ i` 1 and return to Step 4.
10) If C “ 1, return to Step 1.

11) Terminate the algorithm and set P̂`sup “ P̂ . If P̂`sup ‰
H, it is the least restrictive supervisor for Pl under
local one-step refinement.

This algorithm is based on the procedure for deriving the
least restrictive supervisor for Pl described in Moor et al.
(2002). It additionally incorporates local one-step refine-
ment in Steps 4–9. In Step 4, for all refinement candidates
qi “ pzi, χiq, we collect in Ψpziq ĎW all external symbols
that have been disabled in zi by forming the composition
Pl||Pspec without respecting the controllability require-
ments. In Step 6, we check for every ω1 P Ψpziq whether the
string xζj , ωl´1, ω

1y P W l`2 belongs to B|r0,l`1s. If this is
true for at least one ω1 P Ψpziq, it implies that the control-
lability issue is also present under local one-step refine-
ment. Therefore, we need to erase ppζj ,´q, ωl´1, pzi, χiqq

from P̂ . On the other hand, xζj , ωl´1, ω
1y R B|r0,l`1s for

all ω1 P Ψpziq implies that the controllability problem
observed for Pl will not be an issue for Pl`1 and hence
for the underlying hybrid system Σ and its realization
P . We therefore keep the transition ppζj ,´q, ωl´1, pzi, χiqq

in P̂ . In step 8, we check whether there are transitions

ppζ,´q, ωl´1, pzi, χiqq P λ̂ with ζ P W l´1. This is only
possible if ζ “ xω0, . . . , ωl´2y (for l ě 2) or ζ “ ω˚ (if
l “ 1). Such transitions always need to be removed since
xζ, ωl´1, ω

1
ky P B|r0,ls.

Note that after completing the procedure of local one-step
refinement, we return to Step 1 if the indicator parameter
C is 1 (Step 10). This is because the removal of a transition
leading to a boundary non-implementable state in Step 6
may render elements in the state set of the updated P̂
blocking, unreachable, or non-implementable.

Let us continue to denote by Q̂ni and Ξ̂ the non-
implementable state set and the refinement candidate set
of P̂`sup, respectively. If P̂`sup ‰ H, clearly Q̂nizΞ̂ “ H. If

Ξ̂ ‰ H, i.e., there are states that are non-implementable
for Pl, they are implementable for Pl under local one-step
refinement. To prove that a nonempty P̂`sup generated by
Algorithm 8 is a valid supervisor for the underlying hybrid
system Σ, we utilize the known fact that P is not restrained
by composition with Pl.

Proposition 9. (Moor et al., 2002) Let px, zq P XˆZl be a
reachable state of P ||Pl and assume px, ω,´q P δ for some
ω PW . Then pz, ω,´q P δl.

Theorem 10. Assume that P̂`sup ‰ H is derived by apply-

ing Algorithm 8. Then the closed-loop realization P ||P̂`sup
with its next state relation λcl is temporally nonblocking
and is a controllable substructure with respect to P .

Proof: Let P “ pX,W, δ,X0q, Pl “ pZl,W, δl, Z0q, Pspec “
pXspec,W, δspec, Xspec0q, Pl||Pspec “ pQ,W, λ,Q0q, and

P̂`sup “ pQ̂,W, λ̂,Q0q. Also, let Bs be the full behavior

induced by P , and let B̂sup be the external behavior

induced by P̂`sup.

(i) Temporally nonblocking: Let px, z, χq be a reachable

state of P ||P̂`sup. Then, px, zq and pz, χq are reachable

states of P ||Pl and P̂`sup, respectively. Since P̂`sup is tem-
porally nonblocking by definition, there exist ω P W

and z1 P Zl such that ppz, χq, ω, pz1,´qq P λ̂. Also,
as P is an I/S/O machine, there exists ω1 P W with
PUω

1 “ PUω such that px, ω1, x1q P δ for some
x1 P X. Since px, zq is a reachable state of P ||Pl and
px, ω1, x1q P δ, pz, ω1, z2q P δl for some z2 P Zl by

Proposition 9. Now consider pz, χq. If pz, χq P Q̂zΞ̂, Al-
gorithm 8 in Steps 1 and 2 establishes implementability.

Thus ppz, χq, ω, pz1,´qq P λ̂ implies ppz, χq, ω1, pz2,´qq P

λ̂, which leads to ppx, z, χq, ω1, px1, z2,´qq P λcl. Else if

pz, χq P Ξ̂, it is a boundary non-implementable state with,
say, z “ xω0, . . . , ωl´1y. We claim that ppz, χq, ω1, pz2,´qq P

λ̂ still holds in this case. To show this, consider ω2 such
that PUω

2 “ PUω
1 “ PUω and ppz, χq, ω2, p´,´qq R

λ̂. This implies, by the construction rules of P̂`sup, that

for all incoming transitions ppζj ,´q, ωl´1, pz, χqq P λ̂, we
have ζj P Zl X W l and xζj , ωl´1, ω

2y R B|r0,l`1s. As

the state pz, χq in P̂`sup can only be reached via strings

xζj , ωl´1y with ζj P Zl XW
l and as px, z, χq is a reachable

state of P ||P̂`sup, the state x of P is also reachable via
some xζj , ωl´1y. Consequently, px, ω2,´q R δ (otherwise



xζj , ωl´1, ω
2y P B|r0,l`1s), and hence ω2 ‰ ω1. Therefore

ppz, χq, ω1, pz2,´qq P λ̂ and ppx, z, χq, ω1, px1, z2,´qq P λcl.

(ii) Controllable substructure: Let px, z, χq be a reachable

state of P ||P̂`sup. Let ω PW and px1, z1, χ1q P XˆZlˆXspec

such that ppx, z, χq, ω, px1, z1, χ1qq P λcl. Let px, ω1, x2q P
δ be a partner of px, ω, x1q P δ, i.e., PUω

1 “ PUω.

Since ppx, z, χq, ω, px1, z1, χ1qq P λcl, ppz, χq, ω, pz
1, χ1qq P λ̂.

By Proposition 9, pz, ω, z1q P δl and pz, ω1, z2q P δl for

some z2 P Zl. First, assume that pz, χq P Q̂zΞ̂. Again
by Steps 1 and 2 of Algorithm 8, the implementability

issue for pz, χq is resolved. Hence ppz, χq, ω1, pz2,´qq P λ̂

and ppx, z, χq, ω1, px2, z2,´qq P λ̂cl. Next, assume that

pz, χq P Ξ̂. Recall from the foregoing discussion that

ppz, χq, ω1, pz2,´qq P λ̂ still holds true. Therefore, we have

ppx, z, χq, ω1, px2, z2,´qq P λ̂cl. l

Example 11. Let us apply Algorithm 8 to P1||Pspec in Ex-
ample 5. Referring to Fig. 3, we first remove the blocking
state p2, cq and the associated transitions (Step 1). In the

resulting state machine P̂ , states p1, cq and p4, cq are in

Ξ̂, and p1, bq, p4, bq P Q̂nizΞ̂. Hence, we have to remove
transitions originating in the latter states that violate the
conditions of controllability, i.e., pp1, bq, p´, F q, p4, cqq and
pp4, bq, p´, F q, p4, cqq (Step 2). This results in the state

machine P̂ shown in Fig. 4. As Ξ̂ “ tp1, cq, p4, cqu :“
tq1, q2u ‰ H, we set C “ 0 and proceed to local refinement
for i “ 1, 2 in Steps 4 to 9.
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(2,b) (3,b)

(4,b)

(1,c)
(3,c)

(4,c)

(+,E) (−,F)(−,E) (+,F)

(+,E)
(+,F)

(+,E)
(+,F)

(−,F)
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(+,F)

(+,F)
(−,F)

(+,F)

(−,F)

Fig. 4. P̂ obtained by applying Steps 1 and 2 of Algorithm
8 to P1||Pspec of Fig. 3.

i “ 1, q1 “ p1, cq. Comparing Figs. 1 and 4, we obtain
Ψp1q “ tp`, Eq, p´, Equ, where Ψ is defined in Step 4 of
Algorithm 8. Referring to Fig. 4, we have

Qp1,cq “ tp1, bq, p2, bq, p4, bqu,

PZl
Qp1,cq “ t1, 2, 4u “ tp`, Eq, p´, Eq, p´, F qu

:“ tζ1, ζ2, ζ3u,

with both sets as defined in Step 5 of Algorithm 8. In
Step 6, for
j “ 1, we check whether xp`, Eq, p`, Eq, p`, Eqy or
xp`, Eq, p`, Eq, p´, Eqy is a string in B|r0,2s. From (3)
describing the input/output behavior of the hybrid
system Σ in Example 2, we can readily deduce that
this is not the case. Hence, we proceed to

j “ 2, where we check whether xp´, Eq, p`, Eq, p`, Eqy
or
xp´, Eq, p`, Eq, p´, Eqy is a string in B|r0,2s. This is
indeed true for both strings (as seen from (3)). Hence,

the transition pp2, bq, p`, Eq, p1, cqq is removed from P̂ ,
and we set C “ 1. We proceed to

j “ 3, where we check whether xp´, F q, p`, Eq, p`, Eqy
or
xp´, F q, p`, Eq, p´, Eqy is a string in B|r0,2s. (3) re-
veals that this is not the case. Hence, no further
transitions need to be removed.

As the “if” condition in Step 8 is not true, no action is
required.

i “ 2, q2 “ p4, cq. Comparing Figs. 1 and 4, we obtain
Ψp4q “ tp`, Eq, p´, Equ. From Fig. 4, we see that

Qp4,cq “ tp3, bq, p1, cq, p3, cq, p4, cqu,

PZl
Qp4,cq “ t1, 3, 4u “ tp`, Eq, p`, F q, p´, F qu

:“ tζ1, ζ2, ζ3u.

j “ 1. Check whether xp`, Eq, p´, F q, p`, Eqy or
xp`, Eq, p´, F q, p´, Eqy is a string in B|r0,2s. This
is true, hence the transition pp1, cq, p´, F q, p4, cqq is
removed.

j “ 2. Check whether xp`, F q, p´, F q, p`, Eqy or
xp`, F q, p´, F q, p´, Eqy is a string in B|r0,2s. This is
not the case. Hence, no action is required.

j “ 3. Check whether xp´, F q, p´, F q, p`, Eqy or
xp´, F q, p´, F q, p´, Eqy is a string in B|r0,2s. This is
true for both strings. Hence, the transition
pp4, cq, p´, F q, p4, cqq is removed.

As the “if” condition in Step 8 is not true, no action is
required.

As C “ 1 (Step 10), we return to Step 1 of Algorithm
8, remove all the blocking and unreachable states from
the truncated finite state machine P̂ , and iterate from
Step 2. Fig. 5 shows the final result of Algorithm 8,
P̂`sup. It represents the least restrictive supervisor for the
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(3,c) (4,c)
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(+,E)
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(+,F)
(−,F)
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(+,F)
(−,F)
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Fig. 5. P̂`sup for P1||Pspec of Fig. 3.

strongest 1´ complete approximation of Σ under local
one-step refinement. According to Theorem 10, it is also a
valid supervisor for the the underlying hybrid system Σ,
respectively its realization P .

The above example demonstrates the contribution of this
paper. Namely, if strongest l-complete approximation Σl –



Pl of a given hybrid system Σ – P does not allow
computation of a supervisor enforcing a given specification
Σspec – Pspec for Σ, it may be possible, by applying
Algorithm 8, to compute such a supervisor by locally
refining Pl||Pspec in specific states instead of determining
a globally refined approximation, Σl`1 – Pl`1.

5. CONCLUSION

We have addressed a question arising in approximation-
based control of hybrid systems. More specifically, the l-
complete approximation scheme (Moor & Raisch, 1999;
Moor et al., 2002) provides the possibility of generating a
sequence of finite state abstractions Pl, l “ 1, 2, . . . for a
(possibly infinite state) system with discrete-valued exter-
nal signals. Both approximation accuracy and complexity
are monotonous in the parameter l, with the cardinality
of the abstraction state set growing exponentially in l.
Given a finite-state specification Pspec, controller synthe-
sis within this scheme typically proceeds in an iterative
fashion. Start with l “ 1, i.e., the coarsest abstraction,
form the composition Pl||Pspec, and search for the largest
controllable and temporally nonblocking substructure P`sup
of Pl||Pspec. If P`sup is non-empty, it represents the least
restrictive supervisor for Pl that enforces Pspec. It is also
a valid, though not necessarily the least restrictive, super-
visor for the underlying hybrid system P , i.e., P under
control of P`sup will be temporally nonblocking, respect
the controllability condition and satisfy the specification
(Moor & Raisch, 1999; Moor et al., 2002). If, however,
P`sup “ H, supervisor synthesis on the basis of Pl has
failed, and a globally refined abstraction, Pl`1, is gener-
ated, followed by supervisor synthesis for Pl`1. As the
cardinality of the approximation state set is exponential
in l, this may be computationally prohibitive. Motivated
by this fact, and inspired by Moor et al. (2006), we have
presented a local refinement scheme. More precisely, re-
finement is only undertaken in certain states of Pl||Pspec
violating the controllability condition. If this procedure,
summarized in Algorithm 8, terminates with a nonempty
state machine P̂`sup, the latter can be interpreted as the
least restrictive supervisor for Pl under local one-step
refinement. As shown in Theorem 10, it is also a valid
supervisor for the underlying hybrid system P . The exe-
cution of the proposed algorithm has been demonstrated
for a simple example.
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