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Abstract: Timed Petri nets and max-plus automata are well known modelling frameworks for timed
discrete-event systems. In this paper we present an iterative procedure that constructs a max-plus
automaton from a timed Petri net while retaining the timed behaviour. Regarding the Petri net, we
essentially impose three assumptions. First, the reachability graph must be finite; i.e., the Petri net must
be bounded. Second, the Petri net operates according to the so called race policy. And third, we interpret
the Petri net with single server semantics. Under these assumptions we show that the proposed procedure
terminates with a finite deterministic max-plus automaton that realises the same timed behaviour as the
Petri net. We demonstrate by example how our procedure can be applied in the context of supervisor

controller design for timed discrete-event systems.
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1. INTRODUCTION

Max-plus automata are defined as a generalisation of plain
automata by assigning minimum durations to individual transi-
tions, and, hence, can be used to model the behaviour of timed
discrete-event systems; see Gaubert (1995). Although max-
plus automata are not as expressive as general timed automata
introduced by Alur and Dill (1994), they can be conveniently
analysed within an algebraic setting, e.g., considering power
series with coefficients from the idempotent semi ring over the
reals with addition and maximum as the two binary operations.
Max-plus automata must not be confused with linear max-plus
dynamic systems and variations thereof; see e.g. Baccelli et al.
(1992) or Hardouin et al. (2018).

Max-plus automata have also been utilised in the context of
supervisory control. Here, a given max-plus automaton rep-
resents the plant behaviour and one seeks to synthesise a su-
pervisory controller such that the closed-loop behaviour satis-
fies a prescribed specification; e.g. (Komenda et al., 2009; Su
et al., 2012). As with un-timed supervisory control introduced
by Ramadge and Wonham (1989), the basic case of complete
observation corresponds to a deterministic plant automaton.
However, it is well known that not all max-plus automata are
determinisable. Algorithms that enable determinisation of max-
plus automata under restrictive conditions have been presented
in Gaubert (1995) and Mohri (1997), where weighted automata
are applied to speech recognition and their determinisation is
possible if the so-called twin property holds. The classical al-
gorithm for determinisation based on normalisation of the state
vector has been extended in Kirsten (2008) for polynomially
ambiguous max-plus automata, where a more general clone
property guarantees the determinisation. Nevertheless, for non
polynomially ambiguous max-plus automata even the decid-
ability of determinisation is still open. Weighted automata have
also been used in image processing (Culik and Kari, 1997).
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Similar to max-plus automata, timed Petri nets are introduced
by assigning durations to individual transitions in a Petri net;
see Ramchandani (1973). There are a number alternative firing
rules commonly applied to plain Petri nets, and this variety
is inherited by timed Petri nets. For example, Gaubert and
Mairesse (1999) and Lahaye et al. (2015) consider so called
safe timed Petri nets under preselection policy and show how
they can be converted to behaviour equivalent max-plus au-
tomata. Although this is a relevant result for the purpose of anal-
ysis, the obtained automata in general fail to be deterministic.
In contrast, Komenda et al. (2016) consider so called bounded
Petri nets under race policy and provide a semi-algorithm that
in the case of termination generates behaviour equivalent deter-
ministic max-plus automata. To this end, Komenda et al. (2016,
p.427) impose a fairness condition on the Petri net and show
that this condition is sufficient to imply termination of the semi-
algorithm.

The present paper follows the line of thought of Komenda
et al. (2016) and derives a similar algorithm. However, we
do propose a number of variations that allow to drop the
fairness requirement. In particular, our algorithm terminates for
all bounded Petri nets under race policy with rational timing
parameters, and thereby generalises the earlier results.

The paper is organised as follows. In Section 2 we denote nec-
essary notations. The following section contains fundamentals
about max-plus automata and timed Petri nets. Furthermore,
we derive a formal representation for the behaviour of timed
Petri nets. Section 4 is devoted to the construction of behaviour
equivalent max-plus automata and it is shown that the behaviour
of any timed Petri net satisfying the stated requirements can
be realised by a finite, deterministic max-plus automaton. An
example for application of this procedure to supervisor design
is given in Section 5.



2. NOTATION

The positive integers are denoted N and we let Ny := NU{0}.
The rationales are denoted Q and the reals R. The non-negative
rationales are denoted Qs and the non-negative reals R. For a
neutral element & regarding the max operation, we also consider
Qmax = QU{~00} and Rpax := RU{—o0} with & := —co and the
convention that x + € = & for all x € Ry.x.

An alphabet A is a finite set of symbols. We denote A* the
Kleene-closure of A, i.e., the set of finite-length words com-
posed from symbols in A, including the empty word 1 € A*,
A ¢ A. Subsets of A* are referred to as languages over A.

Throughout this paper we identify a map f : X — Y with the
associated vector g = (go)xex € Y¥, g¢ = f(x) € Y for all
x € X, i.e., we do not distinguish between f and g and use
either notation whenever convenient.

3. MAX-PLUS AUTOMATA AND TIMED PETRI NETS

In this section we first recall fundamental definitions about
max-plus automata and timed Petri nets. Notation conventions
are kept in line with Komenda et al. (2016). A more extensive
introduction to this topic is given by Gaubert (1995); Seatzu
et al. (2012). Subsequently we illustrate how a representation
of the semantical state of a timed Petri net can be obtained that
can be transferred directly to a state automaton.

3.1 Deterministic max-plus automata

Max-plus automata are introduced as a generalisation of plain
automata with durations assigned to transitions. We regard the
timing component in Ry,,x with the binary operations max and
+, which entail the respective neutral elements € := —oco and
e:=0."

Definition 1. A max-plus automaton is defined as a quadruple
G =(0Q,A, Qo,0), where

¢ ( is the set of states,

e A is the alphabet of event symbols,

* (g is the set of initial states, and

e d: OQXAXQ — R, is the transition function.

The max-plus automaton G is finite if Q is a finite set. O

The transition function in a max-plus automaton associates with
each transition a non-negative duration and thereby generalises
the common transition relation of plain automata. Technically,
we require that for ¢, ¢’ € Q and a € A either

6(q.a,q') =d >0 ey

to indicate that the respective transition takes no more than d
time units, or that

o(g.a,q') =& 2

to indicate that the respective transition can not take place at all.

A path or run in the max-plus automaton G is defined as a
sequence

T =qoa1q1292 " Anqn (3)
such that g9 € Qo and g; € Q, a; € A, 6(qi,ai11,qir1) # €
for all i € Ny, i < n. With the run 7 we associate the word

' Our main technical results are restricted to timing constraints expressible in
terms of rational deadlines from Qp,ax. However, we formally refer to the more
general case of Ryax When citing basic definitions from the literature.

w = ayay---a,. A word w € A" is recognised by G if there
exists at least one run 7 with associated word w. Note that the
empty word A is recognised by any max-plus automaton via the
trivial run m = ¢o. The logical behaviour 1L.(G) C A* of G is
then defined as the set of all words recognised by G.

A max-plus automaton is deterministic if it has exactly one
initial state and if, given a state and an event symbol, there can
be at most one successor state. Throughout this paper, we only
consider deterministic automata. Technically, we then have that
Qo = {qo} and that for all ¢,¢’, p’ € Q and foralla € A

6(g,a,q9') € Ry and 6(q,a,p)ERsy = ¢ =p'. @)
In particular, we have that for each w € L(G) there exists
exactly one run of G with w the associated word.

The timed behaviour of max-plus automata is defined via
a dater function that returns the date at which a sequence
of events has definitely been executed. For the situation of
deterministic max-plus automata, the technical construction
simplifies considerably.

Definition 2. The behaviour yg : A* — Ry of a deterministic
max-plus automaton G is given by

yeW) 1= 6(qo, a1, q1) +6(q1,a2,q2) + -+ + (g1, an, qn) » (5)
where = goa1q1a2q> - - - a,qy is the unique run with associated
word w € L(G), including the special case of w = A with the
empty sum, i.e., yg(1) = 0. For w ¢ L(G), we let yg(w) = &. O

Referring to the transition durations as weights, the timed
behaviour amounts to the sum of the transition weights along
the unique run associated with each individual recognised word.
Taking this perspective, we define a weighted transition relation
by
ald

a5 g (©)
forq, ¢ € Qand a € A if and only if d = 6(q,a,q’) = 0.
This transition relation is commonly extended to words in A*.
Technically, we begin with the empty word A € 7 and define
the transitions

/0
q9—4q, @)
for all ¢ € Q. We then iteratively define further transitions
¢S g ®)
with ¢, " € O, w € A" and a € A if and only if
wld’ ajd”

q’ ©)
are both defined and d = d’ + d”. Note that, given g € Q and
w € A*, determinism of the underlying max-plus automaton
implies that there exists at most one duration d € Ry and one
successor state g’ € Q such that
w/d
q9—4q . (10)
Considering the initial state ¢ = go and a word w € A", it
is evident from the construction, that there exist d and ¢’ that
qualify for Eq. (10) if yg(w) = d > 0, and vice versa.

g— ¢ and ¢ —>

3.2 Petri nets

A Petri net is a bipartite graph with places and transitions as
nodes. Places can hold any number of tokens and the token
configuration determines which transitions are enabled. We
recall the formal definition and comment on aspects relevant
for the present paper.

Definition 3. A Petri net is a quadruple G = (P, 7 ,F, M),
where



e P is a finite set of places,

e 7 is a finite set of transitions,

o F C(PXT)U (T X P)is the incidence relation, and

e My : P — Ny is the initial marking. |

The configuration of a Petri net is given by a marking M :
P — Ny, which specifies the number of tokens present at each
place. Whenever convenient, we identify the function M with
the corresponding vector in Ng’. The evolution of the marking
over logic time adheres to the following rules:

(S1) Transition t € 7 is enabled by a marking M if each input
place of ¢ has at least one token; i.e., if M(p) > O for all
p € P with (p,r) € ¥. This is denoted M.

(S2) An enabled transition t € 7 can fire. The firing of ¢
transforms the marking M into M’, where one token is
removed from each input place of # and one additional
token is generated for each output places; i.e., M'(p) =
M(p) — 1 for all p € P with (p,t) € ¥ and M'(p) :=
M(p) + 1 for all p € P with (¢, p) € F. This is denoted
MLM.

Conforming with the above rules, a firing sequence is specified
by markings M; : P — Ny and transitions #; € 7 such that
M;_i5M; fori = 1,...,n € N, and we associate the word
w = fity---t, € T with this firing sequence. The logical
behaviour 1L(G) C 7 * of the Petri net G is then defined as the
set of all words associated with some firing sequence.

A Petri net is called bounded if for all markings reachable by
some firing sequence the token count at each place does not
exceed a uniform bound.

Definition 4. The reachability graph or marking graph of a
bounded Petri net G is the deterministic finite automaton
Reach(G) = (M, My, T, t,), where

« the state set M is the set of markings reachable by some firing
sequence,

o the alphabet is the set of transitions 7,
o the initial state is the initial marking M, and

« the partial transition function ¢, : Mx 7 — M is defined for
Me Mandt € T by t,(M,r) := M’ if and only if M-% and
where M’ € M is the unique marking with M-5M’. O

Note that the determinism of the reachability graph crucially
depends on the direct use to the set of transitions as alphabet.
When applying the same approach in the presence of explicit
transition labels, such a labeling needs to be injective for us
to obtain a deterministic reachability graph. Since an explicit
labeling is quite common in the literature, we refer to our setting
as injectively labeled.

3.3 Timed Petri nets

We consider a class of timed Petri nets that is obtained from
plain Petri nets by associating with each individual transition a
duration. This style of generalisation is similar to when moving
from plain automata to max-plus automata.

Definition 5. A timed Petri net is a pair (G, 1), where G is a
Petri net with set of transitions 7 and where T = (7,)4e7 € RZO
is a parameter vector representing the durations associated with
each individual transition. O

In contrast to the setting with max-plus automata, the duration
7, here is interpreted as the firing time of some transition
a € 7. Since holding times are not considered throughout
this paper, the duration 7, correlates to the minimum delay
between enabling and firing of a. This interpretation leads to
the following informal extension of firing rules.

(S3) The tokens belonging to the initial marking become avail-
able at time instant zero.

(S4) All transitions are considered to be single server, meaning
that a transition can only process one token from each
input place at a time.

(S5) If multiple transitions are enabled, the one that can fire
the earliest has priority. This rule is also known as race
policy. In case several transition have exactly the same
remaining delay multiple options are viable.

(S6) Transitions are fired as soon as possible, which corre-
sponds to the earliest functioning firing rule.

At this point we are looking to find a formal representation of
the timed behaviour. Our approach here is to extend the discrete
state set
MC NP (11)
from the reachability graph by a continuous component € to
strategically encode clock values in order to address the timing
rules (S3)—(S6). Technically, we let
€= Ry U ()" (12)
to maintain one clock per transition that shows the time for
which the transition has been continuously enabled or, alter-
natively, the distinguished symbol i to explicitly indicate that
the respective transition is disabled and, hence, the clock is
inactive. While the initial marking M, is specified by the Petri
net, we define the initial clock vector as Cp := (co)er € € with

{O if My-Ls , and
CO’[ = i

else.
Thus, the overall set of semantic states amounts to the product
M x € with initial state (Mg, Cq) € M x €. We define a
number of operations on these states that turn out useful in the
subsequent discussion.

13)

e As a means to update the values of all clocks after the elapse
of some finite amount of time we define the operation Inc for
a clock vector C = (¢;);e7 € € and a duration d € Ry, that is
Inc(C, d) € € with

Inc(C,d), = {Ct +d ifc €Roo,and

¥ else, (14

forte 7.

« To reset the value of specific clocks we define the operation
Reset for a set of transitions S C 7 and a clock vector C =
(¢)ier € €. The clocks corresponding to transitions in S are
reset and other clocks are not effected; that is Reset(C, S) € €
with

ifte S, and

(15)
else,

0
Reset(C,S); := {
Ct
for t € 7. The single server transition semantics are then
implemented by resetting the respective clock value after
every firing of a transition.

e Since the timing is only relevant for enabled transitions, we
deactivate a clock referring to disabled transitions using the
indicator symbol f. This operation is performed by Sub,



defined for S € 7 and C = (¢;)e € € with Sub(C,S) € €
and
¢, ifreS,and

I else. (16)

Sub(C,S), := {

forte 7.

In order to adequately reset and start relevant clocks, we
need to identify newly enabled transitions. Given a marking
M € Mwith ML M’ for some transition ¢ € 7~ and the unique
successor marking M’ € M, a transition ¢ € 7 is obviously
newly enabled if it is enabled in M’ but not in M. In this case,
the corresponding entry in the clock vector shall be set to 0.

However, we also need to account for the situation where
the elimination of tokens as required by firing ¢ temporally
disables a transition #* which otherwise is enabled by both
markings M and M’. Technically, we define the intermediate
marking M* €

M -1
M*(p) = { Mg ;

and consider a transition # € 7 to be newly enabled if and
only if it is enabled in M’ but not in M*. Referring to the
parameters M, M’ € M and ¢t € 7, the set of all newly
enabled transitions is denoted

NewEn(M,t, M) C T . (18)
Note that systematically resetting clocks of newly enabled
transitions ensures that clocks of enabled transitions are al-
ways active, and hence, show a real value as opposed to the
distinguished symbol f.

We want to emphasise that the removal of one token
in Eq. (17) is sufficient due to the restriction on single
server transition semantics. If multiple tokens are allowed to
fire simultaneously, determining which transitions are newly
enabled becomes more involved.

if (p, 1) € ¥, and

(17)
else,

The race policy guarantees that among enabled transitions
only the one(s) with the minimal remaining firing delay can
be fired. With the set of transitions enabled by a marking M
denoted

En(M) :={reT ML) (19)
we define FirstFired(M, C) € En(M) by
FirstFired(M,C) = {a € En(M) |
Vbe En(M) : t,—c, <1p—cp).  (20)
In this regard the expression d = 71, — ¢, for a €

FirstFired(M, C) represents the minimal remaining firing de-
lay among transitions enabled by the marking M. Hence,
before the elapse of d time units, no transition can fire
and after the elapse of d time units some transition a €
FirstFired(M, C) will fire provided that En(M) # 0.

We are now in the position to formally define the overall timed
Petri nets semantics by introducing weighted transitions

(M, C) (M' ), 21)
between two states with M, M’ € M, C, C’ € C,a € 7 and
d € Ry if and only if

Q) M M,
(ii) a € FirstFired(M,C),
(i) d =14 — ¢4
@iv) C* = Inc(C,d),
(v) C** = Reset(C*, NewEn(M,a, M) U {a})),
(vi) C’ = Sub(C**, En(M")).

Note that the above transition relation is deterministic by con-
struction in the sense that

(M, C) (M’,C’") and (M, C) (M" c’y (22
imply d” =d’, M” = M’ and C” = C’. In particular, the tran-
sitions can be interpreted as state transitions in a deterministic
max-plus automata with state set M x € and we will follow
this up in the subsequent section. To this end, we refer to the
common extension of weighted transition relations to words as
presented at the end of Section 3.1 for a formal definition of the
timed behaviour of the Petri net. Technically, we begin with the
empty word A € 7" and define the transitions

(M, C) (M 0) (23)

forall M € M, C € €. Referring to Eq. (21), we then iteratively
introduce further transitions
wald
M, 0) 5 (m”, ) (24)
withw € 7%, a € T and d € Rsy whenever there exist M’ € M,
C’ € Cand d’ d"” € Ry such that

(M, C) LN (M',C") and (M’, C) (M” Cc”). (25)
and d = d’ + d”. Note that the determinism as observed above
carries over to the extension to words. In particular, given a
word w € 7 there exists at most one matching sequence of
transitions beginning at the initial state (Mj, Cy) and, if so, a
unique corresponding overall duration d.

Definition 6. The behaviour of a timed Petri net (G, 1) is de-
fined as the dater function yg : 7° — Ry with yg(w) = d
if i o

(Mo, Co) — (M, C") (26)
for some M’ € M and C’ € €, and referring to the transition
relation defined by Eqs. (21)—(25), or, else, yg(w) = &. m|

4. FINITE STATE REPRESENTATION

Based on the semantics defined in the previous section, we are
now looking to obtain a max-plus automaton with equal behav-
ior as a bounded, timed Petri net operating under race policy
with single server semantics. For our main result, Theorem 8,
we show that a suitable automaton with a finite number of states
always exists and we demonstrate how to obtain it.

4.1 Behaviour Considerations

As a first step in constructing the desired max-plus automaton
we propose an initial candidate with an infinite state set that
realizes the same behavior as the respective timed Petri net.
This is done be re-interpreting the transition relation on the
semantic states, Section 3.3, Eq. (21), as the transition function
of a max-plus automaton with state set 0 = M x C, i.e., the
set of all pairs of markings and clock vectors with regard to a
given bounded timed Petri net (G, 1), G = (P, T, My, ). Given
a state ¢ = (M, C) € Q, we ask for all possible successor states
under the restriction of the race policy and with single server
semantics. Referring to determinism of the transition relation
on semantic states, Eq. (21), recall that given ¢ = (M,C) € O
and t € 7 there exist at most one duration d € Ry and one
successor state ¢’ = (M’,C’) € Q such that

954 @7
Hence, we can define the the max-plus transition function ¢ :
QXTXQ_)Rmabe



otd
5.t q) = { d, ifg— ¢ forsomed € Ry and (28)
g, else,
and consider the deterministic max-plus automaton
G = (0,7 . {(Mp,Co)},9). (29)

It is evident from the construction that the weighted transition
relation, Eq. (28), associated with G matches the transition
relation on the semantic states defined in Section 3.3, Eq. (21).
Hence, we have that

YweT . ygw) =ye(w). (30)
In other words, the timed behaviour of the max-plus automaton
G equals the behaviour of the timed Petri net (G, 7).

4.2 Restriction to a Finite Automaton

Although the state set Q = MXC of G is technically infinite due
to the C-component, our conjecture is that the set of reachable
states is only finite. In support of a formal argument, we conduct
a forward-reachability analysis on G. Consider the operator
NextState(P) :=

{¢ €Ql|3teT,qeP.0dq.tq)>0} (€29)
defined for sets of states P C Q. Then the set of reachable states
in G is obtained by the following iteration

Qo := {(Mo, Co)}, (32)
Qi1 := Q; U NextState(Q;) , (33)
0. :=U{QilieNg}, (34)

i.e., there exists a path 7 in G that ends in a state g € Q if and
only if g € Q.. Since non-reachable states do not contribute to
the behaviour, we can restrict G to the state set Q.. Technically,
we consider the max-plus automaton

G. = (0., T, {(Mo, Co)}, 6.) (35)

where the transition function 0. : Q. X 7 X Q. — Ry equals
0 on the restricted domain, i.e.,

Y(g,t,q) € Q. XT X Q.. 6.(¢q,t,q") =6(g,1,4").  (36)
and we conclude that yg(w) = yo(w) = yg,(w) forallw € 7.

From the boundedness assumption of the Petri net G it follows
that the set of reachable markings M in Reach(G) is finite. In
order to establish that Q. is finite, we show that the range of
the C-component over all states in Q, is finite, too. To this end,
consider the following Lemma.

Lemma 7. The entries of the clock vector C in every state
(M, C) € Q. of the automaton G. are bounded by the respective
entry in the vector of transition durations 7 € RZO, 1.€.

VIM,C)e Q.,teT .c;+% = ¢, <14 37
Proof. For the case of Q. = {(My, Cp)} the claim is trivially
true since each entry co, of Cy by definition either equals % or
0 < 7,, with the latter inequality as a consequence of 7, being
non negative.

For a proof by contradiction, suppose there exists a state ¢’ =
(M',C") € Q. different from the initial state, and such that
¢; > 1, for some transition ¢ € 7. Since ¢’ is not the initial
state, there exists i € Ny such that ¢ ¢ Q,; but ¢ € Q.
Hence, by Eq. (33), we have that ¢’ € NextState(Q;). By the
definition of NextState, Eq. (31), we can choose a predecessor
state ¢ = (M,C) € Q; C Q. such that 6(¢q,a,q’) = d > 0 for
some a € 7. With Eq. (28) this implies

M.C) 2w, o, (38)

and we can refer to conditions (i)—(vi) below Eq. (21) to
derive further consequences. In order for c; to be greater than
zero, transition ¢ has to be enabled for marking M’ as well as
the predecessor marking M, otherwise transition ¢ would be
considered obviously newly enabled or disabled and the clock
value c; is reset; see conditions (v) and (vi), respectively. In
particular, we have t € En(M). Referring to condition (i), we
have a € En(M) and, since transition a was chosen according
to the race policy semantics, condition (ii), we also have a €

FirstFired (M, C), i.e.,
d=7,—¢c, <Tp—Cp, (39)

for all b € En(M). From the definition of clock values via
conditions (iv)—(vi), we obtain ¢; + d = ¢; to conclude

c+d=c (40)
S CH+T,—C=C>T 41
= Tg—Cq > T —Cr. 42)

As t € En(M) holds true, Eq. (42) constitutes a contradiction
with Eq. (39). O

Regarding the above lemma we consider the restricted range of
clock values

€. = (0, ] U {E) c€, (43)
with T, = maXx,es 7, to observe that
0. MxE,. (44)

If all entries in the timing vector T are non-negative integers,
ie.,TE€E N;)f, then the clock vector C of any state ¢ = (M, C) €
Q. is also in NOT. Since the intersection of G, with NOT is a finite
set, this implies that Q, is a finite set, too. For the case of a
rational timing 7 € QZU, we uniformly scale clocks to refer to
the least common denominator of all entries in 7 to again obtain
a finite set Q. by the same argument. Note that this observation
does not carry over to general real-valued timings 7 € RZO. We
now state our main result.

Theorem 8. For every bounded, injectively labeled, timed Petri
net (G, 7) with rational timing vector 7 € Q:O there exists a
finite deterministic max-plus automaton with equal behaviour.

One such an automaton is given by
G. = (0. T, {(My, Co)},6.) , (45)

as defined in (35) via the iteration (32)—(34). In particular, the
iteration attains a fixpoint after finitely many steps, i.e., we have
Q. = Q, for some i € Nj.

Proof. Finiteness of Q. is a consequence of Lemma 7 and the
discussion for rational timings thereafter. Behavioural equiv-
alence has been discussed in Section 4.1 concluding with
Eq. (30). Attaining a fixpoint Q. = Q, for some i € Ny is a con-
sequence of finiteness of O, and monotonicity Q; € Qi1 € Q.
in the iteration (32)—(34). O

4.3 Algorithm and Example

With the intent to have the necessary design steps be clearly
accessible we present an equivalent representation in the form
of an algorithm.

Algorithm: Taking as an input a bounded, injectively labeled,
timed Petri net (G, 7) with G = (P, T, My, F).

Construct marking graph Reach(G) = (M, T, My, t,).
Initialise with Qg := {(My, Cp)}, 6. :=¢&,and i := 0.
Repeat



Oiv1 =0
For all (M, C) € Q;
For all a € FirstFired( M, C)

d:=1,—¢,
M :=t.(M,a)
C* :=Inc(C,d)

C*™* := Reset(C*,NewEn(M,a, M") U {a})
C’ ;= Sub(C**,En(M"))
Oir1 = Qi1 U{M', C")}
0.(M,C),a,(M",C")) :=d
End For all
End For all
If Qi41 = Q; then
Return G, := (Qi11, T, {(My, Co)}, 0.)
End If
i=i+1
End Repeat

In order to illustrate the application of the proposed procedure
we will detail a few construction steps. Consider the Petri net
depicted in Figure 1. The initial state is defined as (M, Cy) =
(201,0%0). As a result we obtain Qg = {(201, 0£0)}. Following
the algorithmic procedure

e FirstFired(201,0%0) = {a},

ed=71,-¢,=2-0=2,

¢ 1,(201,a) = 111,

e NewEn(201,a,111) = {b},

o Sub(Reset(Inc(0%0, 2), {a, b}),{a, b, c}) = 002,

we obtain NextState(Qy) = {(111,002)} and thus
01 ={(201,0£0), (111, 002)}. (46)
For the next iteration we additionally need to consider succes-
sors of the newly obtained state (111, 002).
o FirstFired(111,002) = {b, c},
edp=1,-¢c,=1-0=1,
e 1,(111,b) =201,
e NewEn(111,b,201) = {c},
e for b: Sub(Reset(Inc(002, 1), {b, c}),{a,c}) = 110,
ed.=1.—¢c,=3-2=1,
e t,(111,0) =111,
e NewEn(111,c,111) = {b, ¢},
o for c: Sub(Reset(Inc(002, 1),{b, c}), {a, b, c}) = 100,

yields
NextState({(111,002)})={(201, 1£0), (111, 100)}
and therefore
0> ={(201,0£0), (111, 002), (201, 1£0), (111, 100)}.  (47)
Continuing in the same vein until the termination condition

is reached at Qs = (4, results in the max-plus automaton
portrayed in Figure 2.

5. APPLICATION TO SUPERVISOR DESIGN

With the computational procedure obtained from Theorem 8
we can convert a bounded, timed Petri net to an max-plus
automaton with equivalent behaviour. In the situation where
the Petri net represents a plant model and if its behaviour fails
to satisfy a prescribed specification, we seek a supervisor to
enforce the specification in closed-loop configuration. In this
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Fig. 1. Timed Petri net (G, T)
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Fig. 2. Resulting max-plus automaton G,

section we demonstrate by example how our computational
procedure can be utilised for the design of a suitable supervisor.

A common approach to formalise the effect that a supervisor
can take on the plant is to partition the set of transitions 7~
into controllable transitions 7. and uncontrollable transitions
Tues 1.6, T = TcUTy. Clearly, this needs to be followed
up by adapting the firing rules accordingly. To this end, we
propose the following rules for controllable and uncontrollable
transitions.

(C1) The firing of a transition ¢ € 7, can not be prevented and
it will fire as soon as its duration has elapsed.

(C2) A enabled transition ¢ € 7, can be selected for firing if it
has a smaller remaining delay than all enabled uncontrol-
lable transitions.

(C3) The supervisor can influence only the logical aspect but
not the timing aspect among controllable transitions.

(C4) The net can not idle, which means that for any situation
the firing of a feasible transition has to be initialised.

(C5) If transitions #1,1, € Ty are enabled and have the same
remaining delay both firing options are viable.

(C6) If transitions t; € 7. and t, € T are both enabled and
have the same remaining delay the uncontrollable transi-
tion ¢, has priority, as firing of #, can not be guaranteed.

The restriction of the supervisor to logical choices solely is
due to states depending on clock values. As a result delaying
a transition alters the correct successor state. For this example
we will only regard the simpler case of logical decisions.



For further illustration we consider a toy example motivated by
an engineering application; see Figure 3. Here, the displayed
timed Petri net (G, 1) is interpreted as a model of a thermal
cycle, where work pieces are alternatively heated or cooled.
The work pieces are represented by tokens in the left loop and
in compliance with single server semantics only one piece can
be processed at a time. In this regard the heating process b is
only possible if a work piece has arrived and the waste heat
valve is closed for two time units, indicated by a token in P;
used by b. Thereafter the work piece has reached its desired
temperature and has to leave the oven in order to avoid being
damaged. We represent this relation by choosing b € 7. As
a means to reset the temperature in the oven, waste heat can
be removed over one time unit and be used for other purposes.
The token in P3 acting as a shared resource implements this
behaviour. Furthermore, a work piece getting cooled for longer
than two time units does no harm and the valve position can be
set as desired, i.e. a,c € T.. As a result we obtain 7. = {a, c}
and 7. = {b}.

With this distinction and the above mentioned transition proper-
ties in mind we can now modify the procedure from Section 4.3
to build a max-plus automaton with a timed behaviour that rep-
resents feasible sequences of transitions in the timed Petri net.
To this end we extend possible transitions and successor states
for a given marking and clock vector to additionally include
all enabled controllable transitions with smaller remaining de-
lay than all enabled uncontrollable transitions. Furthermore, to
obtain a finite state set we introduce an upper bound on clock
values given by the associated duration in the timed Petri net.
This is necessary as Lemma 7 does not hold without race policy.
However, under the given firing rules we can stop counting
when the clock value has reached its respective limit without
influencing the timed behaViour These adjustment yield the
max-plus automaton F * depicted in Figure 4. A path in F
represents a ﬁrmg sequence of transitions and the assoc1ated
duration that is possible in the timed Petri net with regard to
the chosen controllability of transitions. If one were to choose
Tue = 7 the resulting automaton is equal to the one obtained
by race policy.

Let us now illustrate the usage of the constructed automaton by
introducing a few specifications for the thermal cycle, namely

1) The cooling station only has room for one work piece, i.e.
capacity of P; is one.

2) Two work pieces have to remain in the left loop at all
times.

3) The waste heat valve can be used without restrictions.

4) The heating and cooling processes have to alternate and
complete three iterations with minimal duration.

5) The procedure has to end in the same state as it begins.

In order to fulfil 1) we disregard the state (201,2%0) in the
automaton. Condition 2) is achieved by virtue of the chosen
initial marking. The desired language to guarantee the first part
of 4) is given by Lgpec = (¢*bctac*)’.

With this in mind we observe that the automaton F/ Z} seems to
be more accessible with regard to upholding the specification
than the original timed Petri net. A close examination reveals
that one possible path to uphold all specifications disregarding
minimal duration is given by

= (bcac)®, dy = yg(wy) = 12 (48)
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Fig. 3. A thermal cycle application modelled by (G, 7).

However, there is a faster alternative possible, that is more
effective in running the heating and cooling simultaneously,
given by

wy = b(cab)*cac, dr = ye(wz) =10 49)

Using the graphical representation of F(('} we conclude that
the fastest firing sequence to guarantee success is given by
wy = b(cab)*cac with a duration of ten time units.

6. CONCLUSION

The main technical contribution of this paper, Theorem 8,
established a terminating procedure for the conversion of a
timed Petri net to a deterministic finite max-plus automaton
while retaining the behaviour. The assumptions imposed on
the Petri net are boundedness, injective labelling, operation
under race policy, and rational timing parameters. Although our
argument follows the same line of thought as Komenda et al.
(2016), our result is more general in that we do not need to
impose fairness requirements on the Petri net.

By the determinism of the resulting max-plus automaton we
envisage the application of our procedure in the context of
supervisory controller synthesis. A first demonstration has been
given by a simple engineering application. By its scale, the
example turned out manageable by inspection and we were
able to utilise the feasibility automaton in our controller design.
Future research topics include the development of a systematic
supervisory controller synthesis for more general specifications
and/or alternative approaches to incorporate controllability as-
pects in the construction of the max-plus automaton.
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