
Compositional Verification of
Non-Blockingness with Prioritised Events

Yiheng Tang ∗ Thomas Moor ∗

∗ Institute of automatic control, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Erlangen, Germany (e-mail: lrt@fau.de)

Abstract: This paper addresses the verification of non-blockingness for modular discrete-
event systems, i.e., discrete-event systems that are composed from component models. For
such systems, the explicit construction of a monolithic representation turns out intractable
for relevant applications, since such a construction in general is of exponential cost w.r.t. the
number of components. One well established approach to circumvent the need for a monolithic
representation for the verification task at hand is to alternate (a) the substitution of individual
components by abstractions and (b) the composition of only a small number of strategically
chosen components at a time. When successful, one ends up with a single moderately sized
automaton which does not represent the overall behaviour in any detail but which does block
if and only if the original modular system fails to be non-conflicting. This approach is referred
to as compositional verification and originates from the field of process algebra with more
recent adaptations to finite automata models. The main contribution of the present study is
the development of a number of abstraction rules valid for compositional verification of non-
conflictingness in the presence of global event priorities, i.e., where high priority events from
one component possibly preempt events with lower priority of other components.

Keywords: discrete-event systems, compositional verification, non-conflicting, non-blocking,
event priorities, modular systems

1. INTRODUCTION

Considering discrete-event systems that are representable
as finite automata, a well studied liveness property is
non-blockingness, i.e., the ability of the system to attain
an accepted configuration from any reachable state. For
example, in the context of supervisory control theory
(Ramadge and Wonham (1987)), where marked states are
used to represent task-completion, non-blockingness is a
desired closed-loop property.

For a moderately sized single automaton, non-blockingness
can be verified by a straightforward enumeration-based
reachability analysis. This approach to verification can
also be applied to modular systems represented as the
synchronous composition (Milner (1989)) of a number
of component models since the overall behaviour can be
represented again as a single automaton. The construction
of such a monolithic representation, however, does not
scale well with the number of components and for relevant
applications more often than not turns out infeasible when
using enumeration-based procedures. This contrasts the
fact that the implementation of the overall behaviour by
computer software and hardware, e.g. by a programmable
logic controller (PLC) in an industrial automation con-
text, does not suffer from this issue since this does not
require a monolithic representation; see e.g. LRT/FGDES
(2019). This motivates the interest in methods for the
verification of non-blockingness for modular discrete-event
systems that likewise circumvent an explicit monolithic
representation.

One well established approach to address this situation is
referred to as compositional verification. Inspired by test
theory (Nicola and Hennessy (1984)), compositional non-
blockingness verification attempts to abstract each compo-
nent model while preserving non-blockingness when syn-
chronising with any arbitrary other test-automaton. This
of course includes the special case of the test-automaton
to be the synchronous composition of the remaining com-
ponent models. Such an abstraction is called conflict
equivalent. Specifically for automata representations of
component models, various qualifying abstraction rules
have been proposed in the literature; see e.g. Flordal and
Malik (2009); Su et al. (2010); Ware and Malik (2012);
Pilbrow and Malik (2015). Once abstraction rules have
been applied to the component models, one strategically
chooses a small number of components and substitutes
them with their actual synchronous composition. While
this increases the state count, it also potentially decreases
the number of shared events. In turn, a subsequent substi-
tution via conflict equivalent abstractions is expected to
again decrease the state count. The two forms of substi-
tutions are then alternated until only one automaton is
left. The latter automaton is tested for non-blockingness
by e.g. enumeration-based methods and, by using only
conflict preserving abstractions, the result carries over to
the original modular system. Clearly, one does not expect
to beat computational complexity and the overall proce-
dure may need to be aborted due to exceeding available
computational resources. However, the above cited litera-
ture demonstrates by a number of practical case studies

the applicability to relevant large scale systems with an
impressive computational performance.

In the present paper, we consider the situation where,
besides the synchronous composition of all automata, the
global behaviour of the system is additionally affected by
event priorities (Lüttgen (1998); Cleaveland et al. (2007)).
In this scenario, each event is associated with an integer
attribute to represent its priority. At any global state, each
event should be disabled if an event with higher priority
is currently enabled. In particular, this includes the case
where the preempting event is private to some other
module. Our main technical contribution are a number
of abstraction rules which turn out conflict equivalent
and, hence, can be used for compositional verification with
event priorities.

We envisage two main use cases for our findings. First,
consider the verification of a control algorithm that is
implemented by a programmable logic controller (PLC).
A common approach here is to preprocess the PLC code
to obtain a more formal representation. Inspecting the
semantics of sequential function charts (SFCs) as specified
in IEC 61131-3, we observe distinguished classes of events
with different priorities to preempt each other, e.g. reading
from line levels, execution of activity code, reconfiguration
of tokens, writing to line levels; see also Bauer et al.
(2004) for formal SFC semantics. Similar considerations
apply to activity diagrams (ADs) as defined by the unified
modelling language (UML) and sequential behaviour dia-
grams (SBDs) defined by the Interdisciplinary Modelling
Language (IML); see Eshuis (2007) and Brecher et al.
(2016) for ADs and SBDs, respectively. For a second use
case, consider the scenario where a modular discrete-event
system has been synthesised by formal methods to enforce
a language inclusion specification next to a non-blocking
closed loop. Here, we may after the fact want to introduce
priorities to achieve a consistent and repeatable behaviour.
This restricts event execution and, hence, we need to verify
whether our assignment of priorities maintains the non-
blockingness guaranteed by the original design. This is of
particular interest when implementing a modular super-
visor by converting the component models to executable
PLC code using a code generator which explicitly or im-
plicitly assigns priorities; see e.g. LRT/FGDES (2019);
Fabian and Hellgren (1998); Qamsane et al. (2016).

The paper is organised as follows. In Section 2, we clarify
preliminaries and notation. A formal definition of priori-
tised events including the semantics thereof and a suitable
adaptation of conflict equivalence for compositional verifi-
cation is given in Section 3. A number of conflict equivalent
abstractions w.r.t. prioritised events are developed in Sec-
tions 4 and 5 to constitute our main technical contribution.
In Section 6, we evaluate our results in the context of two
examples. Observing applicable page constraints, we omit
technical proofs in this paper and make them available as
a technical report instead; see Tang and Moor (2022)

2. PRELIMINARIES

We recall some common notation regarding finite au-
tomata as relevant for the present paper.

An alphabet A is a finite set of symbols, also referred to
as events. Given an alphabet A, its Kleene closure A∗

denotes the set of all finite strings, i.e., sequences of events.
By convention, A∗ includes the empty string ε 6∈ A. The
concatenation of two strings s, t ∈ A∗ is written st ∈ A∗.
A non-deterministic finite automaton over A is a tuple
G := 〈Q,A,→, Q◦〉 with the finite state set Q, the
transition relation →⊆ Q × A × Q, and the set of initial

states Q0 ⊆ Q. Using infix form, we write x
α−→ y or x 6α−→

y whenever (x, α, y) ∈→ or (x, s, y) 6∈→, respectively.
Throughout this paper, when using the infix form for a
relation, left out parameters are interpreted as existential

quantification, e.g., the expression (x
α−→) evaluates true

if and only if (∃y : x
α−→ y). For a state x, the set of

enabled events is denoted G(x) := {α ∈ A |x α−→}. A
sequence of states related via transitions is referred to as

a trace, written x0
α1−→ x1

α2−→ x2
α3−→ · · · αk−−→ xk, or, when

the intermediate states are regarded not relevant, more

concisely x0
α1−→ α2−→ α3−→ · · · αk−−→ xk or x

s−→ y with x = x0,
s = α1α2 · · ·αk and y = xk. This effectively extends the
transition relation to string-valued labels in the common

way. Here, we stipulate x
ε−→ x for all x ∈ Q. For further

notational convenience, we write X
s−→ Y with X,Y ⊆ Q

if there exist x ∈ X and y ∈ Y such that x
s−→ y. Likewise,

X
s−→ and G

s−→ are short forms for X
s−→ Q and Q0 s−→ Q,

respectively. We say x ∈ Q is reachable if G
s−→ x.

Regarding termination, we consider the distinguished ter-
mination event ω ∈ A and require the existence of a
unique terminal state xT ∈ Q with the properties (i) for

all x
α−→ y we have that y = xT if and only if α = ω, and

(ii) xT ω−→ xT. In graphical representations, predecessors
of xT are depicted as full black circles and ω-transitions
are omitted. A state x ∈ Q is co-reachable if it can be
continued to attain xT, i.e., if there exists s ∈ A∗ such

that x
s−→ xT. The latter condition is equivalent to x

sω−→.
An automaton G is non-blocking if all reachable states are
co-reachable. Provided that the state count of G is not
too high, non-blockingness can be verified by enumeration
based methods, i.e., by explicitly computing the sets of
reachable and co-reachable states, respectively.

3. PRIORITISED EVENTS AND COMPOSITIONAL
VERIFICATION

When the behaviour of an automaton shall be imple-
mented by a physical device, and if in some state multiple
transitions are enabled for execution, the implementation
somehow needs to decide which transition to take. As-
sociating a priority with each event is one option here,
and extending the execution semantics of automata in
this regard renders this implementation detail explicit,
e.g, in order to analyse its effects with formal methods.
Vice versa, if we set up a discrete-event system to model
the behaviour of some physical implementation, the lat-
ter may be constructed to execute transitions based on
event priorities. Here, a semantical extension allows us to
more directly obtain the respective automata models. In
this section, we begin by providing a formal definition of
automata execution semantics with event priorities, and
proceed by inspecting some basic consequences for modu-

lar systems, i.e., when the overall behaviour is represented
by the composition of multiple automata.

We consider a universe of events U together with a (not
necessarily injective) map prio : U → N to assign a priority
to each individual event. From now on, we will implicitly
assume A ⊆ U for any alphabet relevant for our study.
Note that we read priorities as ordinal numbers, i.e., 1 ∈ N
for first priority, 2 ∈ N for second priority, and so on: the
lower the number, the higher the priority, with the highest
priority 1. Specifically, “prio(σ) < prio(ρ)” reads “σ is of
higher priority than ρ”. For notational convenience, we
introduce the following short forms regarding priorities for
an alphabet A ⊆ U and an automaton G, respectively:

(a) events of priority higher than n ∈ N
A<n := {α ∈ A | prio(α) < n} ;

(b) events of priority higher than prio(α) for α ∈ U
A<α := A<prio(α);

(c) lowest priority within A
lo(A) := max{prio(α) |α ∈ A};

(d) enabled events at state x with priority above n ∈ N
G<n(x) := G(x) ∩ U<n.

We shall now formally represent the behavioural restric-
tion caused by event priorities imposed on an automaton
G = 〈Q,A,→, Q◦〉. In any state x, if some event α is
enabled, it preempts any transition labeled by an event α′

with lower priority, i.e., with prio(α) < prio(α′). The fol-
lowing shaping operator removes the affected transitions.

Definition 1. Given an automaton G = 〈Q,A,→, Q◦〉, the
shaping operator S(·) is defined S(G) := 〈Q,A,→S , Q◦〉
where x

α−→S y if and only if x
α−→ y and G<α(x) = ∅. 2

With this definition, S(G) represents the behaviour of G
with prioritised events as specified by the map prio : U →
N. It should be noted that shaping can turn a blocking
automaton into a non-blocking one and vice versa. Hence,
to verify non-blockingness of a system with event priori-
ties, we may first set up G, second apply S(·) and finally
perform a reachability analysis, e.g. on enumeration basis.

We now turn to a variation of the common synchronous
composition in order to address modular systems with
event priorities. Technically, we refer to a disjoint union
composition U = Σ ∪̇Υ of our universe of events, with Σ
the regular events and Υ the silent events. The latter are
not subject to synchronisation. Since termination is meant
to be synchronous, we have ω ∈ Σ. Moreover, we assume
that for each regular event σ ∈ Σ there exists a unique
silent event τ ∈ Υ with matching priority and this event
is denoted τ =: hide(σ); i.e., we have hide : Σ → Υ with
prio(hide(σ)) = prio(σ). In graphical representations, we
use the convention τ(n) := hide(σ) for σ ∈ Σ with prio(σ) =
n. The decomposition U = Σ ∪̇Υ and the semantics to be
introduced in the sequel are seen as a generalisation of a
single distinguished silent event Υ = {τ}, as commonly
used in the context of compositional verification without
event priorities; see e.g. Flordal and Malik (2009).

Before proceeding, we introduce additional notational con-
ventions for a concise reference:

(a) the natural projection denoted p : U∗ → Σ∗ removes
silent events from strings in U∗, see e.g., Cassandras
and Lafortune (2008) for a formal definition;

(b) the abstract transition relation ⇒⊆ Q × Σ∗ × Q,

defined by x
s
=⇒ y for s ∈ Σ∗ if and only if there

exists some s′ ∈ U∗ such that p(s′) = s and x
s−→ y;

(c) we may omit explicit intermediate states, e.g., we

write x
s−→ t

=⇒ y as a short form for the existence of

z ∈ Q such that x
s−→ z and z

t
=⇒ y;

(d) a trace is silent if all its event labels belong to Υ;
(e) enabled silent events (with priority above n ∈ N)

Gslnt(x) := G(x) ∩Υ; G<nslnt(x) := G<n(x) ∩Υ;
(f) enabled regular events (with priority above n ∈ N)

Grglr(x) := G(x)−Υ; G<nrglr(x) := G<n(x)−Υ.

Considering the composition of two specific automata
over alphabets A1 and A2, respectively, A1 ∩ A2 ∩ Σ
are called the shared events, while all other events from
A1 ∪ A2 are private events. By the following definition,
the composition of two automata will synchronise the
execution of shared events while allowing private events
to be executed independently.

Definition 2. Given two automata G1 = 〈Q1, A1,→1, Q
0
1〉

and G2 = 〈Q2, A2,→2, Q
0
2〉, their synchronous composi-

tion is defined by

G1 ‖ G2 := 〈Q1 ×Q2, A1 ∪A2,→, Q0
1 ×Q0

2〉
where (x1, x2)

α−→(y1, y2) if and only if one of the following
three conditions is satisfied:

α∈(A1 ∩ A2)−Υ, x1
α−→1 y1, x2

α−→2 y2 ;

α∈(A1 −A2) ∪ Υ, x1
α−→1 y1, x2 = y2 ;

α∈(A2 −A1) ∪ Υ, x1 = y1, x2
α−→2 y2 . 2

As with the plain synchronous composition, the above
variation is commutative and distributive up to bijective
renaming of states; i.e., G1 ‖ G2 equals G2 ‖ G1 after
suitable reordering of state tuples; likewise (G1 ‖ G2) ‖ G3

equalsG1 ‖ (G2 ‖ G3) after suitable reordering. In particu-
lar, we may drop parenthesis in the latter two expressions.
It should be noted that the synchronous composition of
non-blocking automata may turn out blocking and vice
versa. If a modular system is given in the form M =
G1 ‖ G2 ‖ · · · ‖ Gn, we may first explicitly evaluate
the synchronous composition and subsequently perform a
reachability analysis to test for non-blockingness. Since
the state count of M is exponential in the number n of
components, this direct approach becomes intractable even
for a moderate number of components. Here the so called
compositional verification comes into play. This approach
suggests to abstract individual modules by automata with
potentially smaller state count and/or smaller transition
count but without affecting the blockingness of the overall
composition. Such abstractions are called conflict equiv-
alent. The abstraction stage is then alternated with the
composition of a small number of strategically chosen
modules until only one module is left. The latter can
be inspected by e.g. an enumeration based reachability
analysis. This approach was demonstrated to achieve im-
pressive computational performance for various practical
large scale case studies; see Flordal and Malik (2009) and
Pilbrow and Malik (2015).

Now consider again a modular system M = G1 ‖ G2 ‖
· · · ‖ Gn, however, with event priorities as defined above.

Here, we would like to verify non-blockingness of S(M).
In other words, we consider event priority as having a
global effect on M , e.g., a high priority event in one
component is meant to preempt lower-priority events in
other components.

Definition 3. A family of automata (Gi)1≤i≤n is non-
conflicting w.r.t. prioritised events if S(G1 ‖ G2 ‖ · · · ‖
Gn) is non-blocking. 2

For the scope of the present paper, the above property
is also concisely referred to as non-conflicting and it is
precisely this property, that we seek to verify in an efficient
manner. If it was that the shaping operator distributed
over the synchronous composition, we could utilize exactly
the same abstraction methods as those established for the
situation without event priorities. Unfortunately this is
not the case and, for our situation, a suitable notion of
conflict equivalence will need to explicitly refer to S(·).
Since the synchronous composition is commutative, we
focus attention without loss of generality on an abstraction
of G1. Technically, we consider the situation of

S(G1︸︷︷︸
:=G

‖ G2 ‖ · · · ‖ Gk︸ ︷︷ ︸
:=H

) , (1)

and ask for an abstraction G′ of G such that S(G′ ‖ H) is
non-blocking if and only if S(G ‖ H) is so.

A first and rather simplistic candidate for a suitable ab-
straction is to obtain G′ from G by relabelling any tran-
sition with a private but regular event σ ∈ Σ by its silent
counterpart hide(σ). This substitution is referred to as
hiding of private events. It is immediate from Definitions 1
and 2 that this abstraction does not affect blockingness
in the shaped product with one and the same automaton
H. Thus, from now on we will assume without loss of
generality that all private events of G in G||H are silent.

A second and likewise simple candidate for a suitable
abstraction is to obtain G′ from G by shaping w.r.t.
silent events only. Given G = 〈Q,A,→, Q◦〉, we define
the Υ-shaping operator by SΥ(G) := 〈Q,A,→SΥ , Q◦〉
where x

α−→SΥ y if x
α−→ y and G<αslnt(x) = ∅. In other

words, SΥ(·) discards all transitions which are preempted
by a silent transition. As an immediate consequence from
Definitions 1 and 2 we obtain S(G′ ‖ H) = S(G ‖ H) for
the abstractionG′ = SΥ(G). In particular, this abstraction
does not affect blockingness in the shaped product with
any automaton H. Thus, from now on we will assume
without loss of generality that G is Υ-shaped, i.e., that
G = SΥ(G).

Most relevant for practical purposes, the two abstraction
rules identified so far can be applied without the poten-
tially intractable evaluation of the transition relation of
H = G2 ‖ · · · ‖ Gk. This concept is made explicit in
the following formal definition of conflict equivalence w.r.t.
event priorities, which, as in e.g. Flordal and Malik (2009);
Mohajerani et al. (2014), is inspired by test-theory; see e.g.
Nicola and Hennessy (1984).

Definition 4. Two automata G and G′ are conflict equiv-
alent w.r.t. prioritised events, denoted G 'S G′, if for any
automaton T , G and T are non-conflicting w.r.t. priori-
tised events if and only if G′ and T are non-conflicting
w.r.t. prioritised events. 2

For the scope of the present paper, the above property is
also concisely referred to as conflict equivalence. Although
not explicitly required, G and the abstraction G′ are
expected to refer to the same alphabet – otherwise one
could too easily construct a test-automaton to invalidate
conflict equivalence. We summarise our assumptions for
easy reference.

Assumption 5. Whenever discussing the product G ‖ T ,
we assume implicitly and without loss of generality that
all private events are silent and that G is Υ-shaped by
suitable pre-processing. For the sake of a concise notation,
we indicate states from G with a subscript (·)G and states
from T with a subscript (·)T and assume all state sets to
be disjoint. In consequence, we can at most instances omit
the respective subscripts for transition relations, since e.g.

xG
α−→ yG implies the transition to be in G. 2

4. ABSTRACTION RULES BASED ON PRIORITISED
WEAK BISIMULATION

A generic approach to obtain an abstraction with reduced
state count of an automaton G = 〈Q,A,→, Q◦〉 is to
consider an equivalence relation ∼⊆ Q × Q on Q and to
merge states per equivalence class [x] := {x′ ∈ Q | (x, x′) ∈
∼} to obtain the so called quotient automaton. For our
situation with prioritised silent events, an adaptation that
addresses silent live-locks turns out useful.

Definition 6. Given a Υ-shaped automaton G = 〈Q,A,→
, Q◦〉, an n-live-lock in G is a silent trace

x0
τ1−→ x1

τ2−→ · · · τk−→ xk = x0 (2)

where k ≥ 1, lo({τ1, · · · , τk}) = n and for any i ∈
{1, · · · , k}, x ∈ Q and τ ∈ Υ, xi

τ−→ x implies that there
exists some j ∈ {1, · · · , k} so that x = xj . 2

We use the shorthand τ -live-lock to denote prio(τ)-live-
lock for τ ∈ Υ. Technically, a live-lock is a silent strongly
connected component where none of the states can leave
this strongly connected component by executing a silent
transition. Due to event priority, live-locks may indefinitely
trap other automata under synchronisation, i.e. when
in an n-live-lock of some automaton G, a synchronised
automaton T can never execute a silent event τ with
prio(τ) > n. With this notion of n-live-locks, we define
the quotient automata as follows.

Definition 7. Given a Υ-shaped automaton G = 〈Q,A,→
, Q◦〉 and an equivalence relation ∼⊆ Q×Q, the quotient
automaton G/∼ of G w.r.t. ∼ is defined by G/∼ :=

〈Q/∼, A,−→∼ , Q̃◦,M〉 where Q/∼ = {[x] |x ∈ Q}, Q̃◦ =
{[x◦] |x◦ ∈ Q◦} and

−→∼= {[x]
α−→ [y] |x α−→ y} − {[x]

τ−→ [x] | τ ∈ Υ and

not all states of a τ -live-lock in G are in [x]} 2

Comparing with the conventional quotient automata con-
struction, our definition avoids introducing inexistent live-
locks while the existent live-locks are still preserved. This
potentially renders the trapping power before and after
abstraction consistent. It is also worth mentioning that if
a state appears in two live-locks in a Υ-shaped automaton,
then both live-locks must visit the same set of states.

Example 8. Let G = 〈Q,A,→, Q◦〉 be such as given in
Figure 1 with Σ = {σ, ω} and Q be partitioned by an

IIIσ(2)τ(1)G IV G/∼I II [I] [III]

τ(2)

τ(1) σ(2)

τ(2)

I∼II
III∼IV

Fig. 1. quotient with post-processed silent transitions

equivalence relation ∼⊆ Q×Q into the two classes {I, II}
and {III, IV}. The corresponding G/∼ is given on the right
side of Figure 1. Note that I and II form a 2-live-lock while
III and IV are not in any live-lock in G. 2

Based on the conventional process algebra CCS (Milner
(1989)), Lüttgen (1998) introduced the variant CCSch to
model concurrent systems with global event priority. In
fact, the semantics inferred by a shaped automaton in our
framework are quite similar to the operational semantics
of CCSch. By extending the well-known weak bisimulation
from CCS, Lüttgen (1998) defines the prioritised weak
bisimulation (PWB) as a reasoning framework in CCSch.
Following the convention in Lüttgen (1998), we first dis-
tinguish certain types of transitions.

Definition 9. Given a Υ-shaped automaton G = 〈Q,A,→
, Q◦〉, we define two more transition relations for ∆ ⊆ Σ:

(T1) −−→
∆:n
⊆ Q×A×Q with x

α−−→
∆:n

y if and only if

x
α−→ y and G<nrglr(x) ⊆ ∆;

(T2) ===⇒
∆:n

⊆ Q× {ε} ×Q with x
ε

===⇒
∆:n

y if and only if

x
τ1−−→

∆:n
· · · τk−−→

∆:n
y, k ≥ 0 and τ1 · · · τk ∈ (Υ<(n+1))∗. 2

Comparing with⇒, the restricted transition relation ===⇒
∆:n

accounts for silent transitions that cannot be preempted
by events in ∆ with priority higher than n. Note that
specifically for any state x, any priority value n ∈ N and

any event set ∆ ⊆ Σ, we always have x
ε−−→

∆:n
x and

x
ε

===⇒
∆:n

x, which slightly extends (T1). This enables the

definition of PWB for the context of the present paper.

Definition 10. Let G = 〈Q,A,→, Q◦〉 be a Υ-shaped
automaton. A symmetric relation≈⊆ Q×Q is a prioritised
weak bisimulation on G (PWB) if for any x, x′ ∈ Q so that
x ≈ x′, the following hold:
(P1) If G<nslnt(x) = ∅ for some n ≥ 0, then there exists
y′ so that x ≈ y′, G<nslnt(y

′) = ∅, G<nrglr(y
′) ⊆ ∆ and

x′
ε

===⇒
∆:n

y′ where ∆ = G<nrglr(x);

(P2) If x
α−→ y, then there exists y′ so that y ≈ y′ and

x′
ε

===⇒
∆:α

p(α)−−−→
∆:α

ε
==⇒
Σ:1

y′ where ∆ = G<αrglr(x). 2

In the original literature Lüttgen (1998), PWB as a binary
relation over automata has been shown to be a congruence
w.r.t. composition “|” and restriction “/L”. Thus, by a
similar line of thought as in Malik et al. (2004), two PWB
automata turn out conflict equivalent. In the context of
the present paper, we obtain the following result.

Theorem 11. Let G = 〈Q,A,→, Q◦〉 be a Υ-shaped au-
tomata with a PWB ≈ ⊆ Q × Q. It then holds that
G 'S (G/≈). 2

Note that PWB is defined such that if at some state
a regular event σ ∈ Σ can be executed, an equivalent
state must be also able to execute σ, either immediately
or after a number of silent steps with priority not lower

III

τ(2)G G/∼I II [I] [III]

I∼IIσ(1)

σ(1) T i ii

I,iii

τ(2)

S(G ‖ T) I,i

τ(2)

III,iv

σ(1)

II,iii

S(G/∼ ‖ T) [I],i σ(1) [III],ii

σ(1)

τ(2)

σ(1)

iii iv

II,i III,iiτ(2) σ(1)

Fig. 2. a silent step with priority lower then its delayed
non-silent action may not be mergable

III

τ(2)
G′ G′/∼I II [IV] [I]

I∼IIσ(1)

IV τ(3)

[III]

σ(1)

τ(3)

Fig. 3. redundant silent step rule

then prio(σ). The importance of this restriction for conflict
equivalence can be seen from the following example. For
the brevity in figures, we write the priority of each event in
the subscript of transition labels and always assume that
prio(ω) = 1 in the current and subsequent section.

Example 12. Let G = 〈Q,A,→, Q◦〉 be such as given in
Figure 2 with Σ = {σ, ω}. From (P1), I 6≈ II. If I and
II are merged through some equivalence relation ∼, the
counterexample T as given in Figure 2 can witness that
G 6'S (G/∼). 2

Consider the automaton G as given in Figure 2 again.
The failure of the abstraction can be seen as being caused
by the reachable state (I, i) in S(G ‖ T) as state i has
the chance to execute τ whose priority is lower then σ
since σ /∈ Grglr(I). Interestingly, adding further restriction
on the automaton can render such “bad” states to be
unreachable. As for G in Figure 2, we could switch the
initial state to a new state IV and add a new transition
IV

τ(3)−−→ I. For such an automaton G′ as given in Figure 3,
merging I and II yields a conflict preserving abstraction.
The intuition behind this modification is that due to the
new transition, (I, i) becomes unreachable. In this case, we

say I
τ−→ II is a redundant silent step.

Definition 13. Let G = 〈Q,A,→, Q◦〉 be a Υ-shaped

automaton. A transition x
τ−→ y with x, y ∈ Q and τ ∈ Υ

is a redundant silent step if this is the only transition

outgoing from x, x /∈ Q◦ and z
α−→ x for any z ∈ Q implies

α ∈ Υ and prio(α) > prio(τ). An equivalence ∼⊆ Q × Q
on G is induced by the transition x

α−→ y if x ∼ y and for
all z /∈ {x, y}, [z] is a singleton class. 2

Given a redundant silent step x
τ−→ y with some higher-

priority non-silent events active in y, x and y are never
prioritised weak bisimilar. Interestingly, we can show that
all states which cause such a defect are not reachable. From
this we obtain the following abstraction rule.

Theorem 14. (redundant silent step rule). Given a
Υ-shaped automaton G = 〈Q,A,→, Q◦〉 and the equiva-
lence ∼⊆ Q × Q induced by a redundant silent step. It
then holds that G 'S (G/∼). 2

5. ABSTRACTION RULES BASED ON INCOMING
EQUIVALENCE

For ordinary conflict-preserving abstraction without event
priorities, Flordal and Malik (2009) introduce the active
events rule and the silent continuation rule which are
based on a pre-partition through incoming equivalence.
The key property of incoming equivalence in the ordinary
set-up is that, if there is a trace beginning with a non-
silent event in the composition after abstraction, then a
trace with the same non-silent events can be constructed
in the original automaton as well. To achieve this property
with event priorities, we use the following notion of string
preservation.

Definition 15. Let G = 〈QG, AG,→G, Q
◦
G〉 be a Υ-

shaped automaton. An equivalence ∼⊆ Q × Q on G
is string-preserving if for any arbitrary automaton T =
〈QT , AT ,→T , Q

◦
T 〉 and any trace

([xG0], xT0)
α1−→S ([xG1], xT1)

α2−→S · · · αk−−→S ([xGk], xTk)

in S(G/∼ ‖ T) where k ≥ 1, α1 ∈ (AG ∪ AT) − Υ and
αi ∈ AG∪AT for all i ∈ {2, · · · , k}, there exist x′G0 ∈ [xG0]

and x′Gk ∈ [xGk] so that (x′G0, xT0)
p(α1···αk)
=======⇒S (x′Gk, xTk)

in S(G ‖ T). 2

To achieve string preservation, we first conveniently define
some further notations for transitions.

Definition 16. Given a Υ-shaped automatonG = 〈Q,A,→
, Q◦〉, define the following extended transition relations:

(T3) −→
!
⊆ Q×Υ×Q: x

τ−→
!
y if x

τ−→ y and G<τrglr(x) = ∅.

(T4) ↪−→
!n
⊆ Q× {ε} ×Q: x

ε
↪−→
!n
y if

(i) either n = 1 and x
ε

==⇒
Σ:1

y,

(ii) or n ≥ 2, x
τ1−→
!

τ2−→
!
· · · τk−→

!
y, k ≥ 1 and

lo({τ1, · · · , τk}) = n. 2

Transition relations introduced in Definition 16 are gener-
ally more restrictive than those in Definition 9 in that all
non-final states are individually in shaped form. Note that
we intentionally use the new transition symbol “↪→” since

when n ≥ 2, we do not have x
ε
↪−→
!n

x for all x as at least

one τ transition with prio(τ) = n must happen during
ε
↪−→
!n

.

Based on Definition 16, we introduce the adapted incoming
equivalence when considering priorities:

Definition 17. Let G = 〈Q,A,→, Q◦〉 be a Υ-shaped
automaton. An equivalence ∼inc⊆ Q × Q on G is an
incoming equivalence if for any x, x′ ∈ Q so that x ∼inc x

′,
it holds that
(I1) for all σ ∈ A−Υ, n ≥ 0 and y ∈ Q, y

ε
===⇒
∆:σ

σ−−→
∆:σ

ε
↪−→
!n

x ⇔ y
ε

===⇒
∆:σ

σ−−→
∆:σ

ε
↪−→
!n
x′ where ∆ = G<σrglr(y);

(I2) for any n ≥ 0, Q◦
ε
↪−→
!n
x ⇔ Q◦

ε
↪−→
!n
x′ ;

(I3) for any y ∈ Q and τ ∈ Υ, y
τ−→ ε

=⇒ x or y
τ−→ ε

=⇒ x′

implies G<τrglr(y) = ∅. 2

Similar to the original version in Flordal and Malik (2009),
Definition 17 attempts to equalise states which can be
reached in the same way, i.e. we only care about the
past of a state and ignore its future behaviour. However,
such intuition is insufficient when event priorities are

III

G
G/∼I II

[I]

[II]

I∼III

σ(1)

σ(1)

σ(1)

ρ(2)

ρ(2)

IV ρ(2) [IV]

σ(1)

Fig. 4. active events rule

III

G G/∼I II [I] [II]

II∼III

σ(1)

IV [IV]

σ(1)

ρ(2)

τ(2)

σ(1)

ρ(2)

τ(2)

τ(2)

Fig. 5. silent continuation rule

considered since string preservation requires the same
state xT0 and xTk from some test T to be connected
before and after abstraction. Without restrictions over
the future behaviour of incoming equivalent states, string
preservation can be easily invalidated when two equivalent
states have different preemption power. In this regard, we
introduce an adapted notion of active-event equivalence
and silent-continuation equivalence.

Definition 18. Let G = 〈Q,A,→, Q◦〉 be a Υ-shaped
automaton. An equivalence ∼ae⊆ Q×Q on G is an active-
event equivalence if for any x, x′ ∈ Q so that x ∼ae x

′,
either x = x′ or:

(AE1) Gslnt(x) = Gslnt(x
′) = ∅;

(AE2) Grglr(x) = Grglr(x
′). 2

Definition 19. Let G = 〈Q,A,→, Q◦〉 be a Υ-shaped
automaton. An equivalence ∼sc⊆ Q×Q on G is a silent-
continuation equivalence if for any x, x′ ∈ Q so that
x ∼sc x

′, either x = x′, or there exists some τ ∈ Υ with:

(SC1) τ ∈ Gslnt(x) ∩Gslnt(x
′);

(SC2) G<τrglr(x) = G<τrglr(x
′) = ∅;

(SC3) Neither x nor x′ is in any live-lock. 2

We are now in the position to state two more conflict
equivalent abstraction rules.

Theorem 20. (active events rule). Let G = 〈Q,A,→, Q◦〉
be a Υ-shaped automaton with an equivalence ∼⊆ Q×Q
so that ∼⊆∼inc ∩ ∼ae. It holds that G 'S (G/∼). 2

Example 21. Let G = 〈Q,A,→, Q◦〉 be such as given
in Figure 4 with Σ = {σ, ρ, ω}. I and III are incoming
equivalent and σ ∈ G(I)∩G(III). This indicates that they
qualify the active events rule. 2

Theorem 22. (silent cont. rule). Let G = 〈Q,A,→, Q◦〉
be a Υ-shaped automaton with an equivalence ∼⊆ Q×Q
so that ∼⊆∼inc ∩ ∼sc. It holds that G 'S (G/∼). 2

Example 23. Let G = 〈Q,A,→, Q◦〉 be such as given in
Figure 5 with Σ = {σ, ω}. States II and III are incoming
equivalent and both can execute τ(2). In addition, no events
with higher priority are active in either state, indicating
that II and III qualify for the silent continuation rule. 2

While the two previous abstraction rules require a careful
adaptation to event priorities, the following two carry over
immediately from Flordal and Malik (2009).

sensor1

motor1source CB1

motork

sensork

CBk

sensor0 sensork+1

sink

Fig. 6. Concatenated conveyor belts

ari
lvi

Gi

oni
offi

Ci

sdi-1 oni ari

Hi

ar0 sd0

lv0

F0

oni

offi

offioffi oni oni

ari+1

lvi lvi sdk
Fk+1 ark+1

lvk+1

ark+1

sdi onioffi ari+1

offi
sdi

ariari+1
ariari+1 ari+1 ariari+1

ariari+1
ariari+1 ari

ariari+1

Fig. 7. Automata models for the conveyor belts example

Theorem 24. (only silent incoming rule). LetG = 〈Q,A,→
, Q◦〉 be a Υ-automaton and let x̄ ∈ Q be such that x̄ is

not in any live-lock, x̄
τ(1)−−→ and y

α−→ x̄ implies α = τ(1).
Then for the automaton H = 〈Q,A,−→H , Q

◦〉 with

−→H= {(x, α, y) |x α−→ y and y 6= x̄}

∪ {(x, α, y) |x
τ(1)−−→ x̄

α−→ y}, (3)

it holds that G 'S H. 2

Theorem 25. (only silent outgoing rule). LetG = 〈Q,A,→
, Q◦〉 be a Υ-shaped automaton and let x̄ ∈ Q be such

that x̄ is not in any live-lock, G(x̄) = {τ(1)} and z
α′−→ x̄

implies α′ /∈ Υ. Let Q̄ := {y ∈ Q | x̄
τ(1)−−→ y}, then for the

automaton H = 〈Q− {x̄}, A,−→H , Q
◦
H〉 with

Q◦H =

{
Q◦ if x̄ /∈ Q◦
(Q◦ − {x̄}) ∪ Q̄ if x̄ ∈ Q◦ (4)

−→H={(x, α, y) |x α−→ y and x 6= x̄ and y 6= x̄}
∪ {(x, α, y) |x α−→ x̄ and y ∈ Q̄}, (5)

it holds that G 'S H. 2

6. EXAMPLES

For our first example, consider the concatenated conveyor
belts CB1 to CBk shown in Figure 6. In this scenario, work-
pieces are to be transported from the source on the left to
the sink on the right. Each of the components is equipped
with a sensor to indicate the presence of a workpiece.
Besides, each conveyor belt is equipped with a motor which
drives the belt. The components are controlled in a modu-
lar fashion, with the respective automata given in Figure 7;
see also Table 1 for a listing of all referenced events.
Specifically, each conveyor belt CBi is modelled as a local
closed loop Fi := Gi ‖ Hi, with the special cases F0 and
Fk+1 for source and sink, and with successive components
Fi and Fi+1 coupled by the automaton Ci. The overall
model so far is given by F := ‖0≤i≤k(Fi ‖ Ci) ‖ Fk+1.

For a physical implementation of the controller, we effec-
tively implement the behaviour of F with specific execu-
tion preferences. Actuators oni and off i are assigned a
higher priority than the sensor events ar i and lv i; i.e.,

Table 1. Events in the conveyor belts example

event description priority

oni motori on 2
off i motori off 2
ar i sensori workpiece arrival 3
lv i sensori workpiece departure 3
sdi send workpiece from component i 1
ω termination event 3

when in a state where the controller could either wait for a
sensor event to occur or execute an actuator event at some
point in time, the physical implementation of the controller
will do the latter immediately. Likewise, the events sd i for
inter-module communication are preferred over actuator
events. Only when in a state where exclusively sensor
events are enabled, the physical implementation will wait
until one such event is generated by the plant. Although
intuitive from a technological perspective, this scheme of
execution preferences may render the overall model block-
ing even it was non-blocking before introducing priorities.
Hence our interest in the verification of S(F).

The performance of a prototypical software implementa-
tion of the abstraction rules discussed in our study is given
in Table 2. The first column shows the number of con-
veyor belts. The second and third column show the state
count of the monolithic representation and the final state
count after applying compositional verification. The fourth
and fifth column show the elapsed time for verification
with or without applying compositional verification. All
computations are performed on a standard 2022 desktop
computer (Intel Core i7-10510U 2.30 GHz CPU with 16GB
RAM). Through comparing the fourth and fifth column, a
substantial performance improvement becomes evident.

Table 2. State count and elapsed time in sec

k mono. st. cnt. comp. st. cnt. mono. time comp. time

5 3.4 × 103 31 0.28 0.08
6 9.9 × 103 36 0.81 0.11
7 2.8 × 104 41 2.33 0.16
8 7.7 × 104 46 6.86 0.21
9 2.1 × 105 51 21.37 0.29
10 5.6 × 105 56 61.63 0.34

For our second example, we consider the scenario shown
in Figure 9, consisting of two stack feeders (SF1/2), two
conveyor belts (CB1/2), a processing machine (PM), a
rotary table (RB) and an exit slide (XS). The intended
behaviour is to forward workpieces from both stack feeders
to the exit slide, where those that pass the processing
machine shall be processed accordingly. While our first
example demonstrates scalability using models on a high
level of abstraction, our second example is a real-world case
study which is run by a simulator on a physical level. To
achieve the intended behaviour, the simulation can connect
to an actual PLC, for which the specification is given by
the SBDs in Figure 8. For the purpose of verification, the
SBDs are converted to automata. Since firing transitions
in an SBD by definition is of a higher priority than
setting or clearing boolean variables of line levels, we are
interested in non-conflictingness after application of the
shaping operator. For the example at hand, a monolithic
representation has state count of 4.3 × 104 which takes

TakeWP

M1_TRANS

 :M1-2_TAKE

ProcessWP

Wait

SendWP

Wait

 :M1-1_PROC

 :M1-2_SEND

RB_RotToSF2

[Processed=1]

RB_TakeSF2

RB_RotToPM

RB_Stop

Wait

[ELSE]

M2_TRANS

Wait

RB_Send

RB_Stop

Wait

PM_DriveOut

PM_Stop

PM_Operate

PM_DriveBack

PM_Stop

M1-1_PROC

CB1_On

CB1_Off

CB2_On

CB2_Off

M1-2_TAKE

CB2_On

CB2_Off

M1_2_SEND

Fig. 8. Production line specification (SBDs)

M1

M2

M1-1

M1-2

SF1 CB1 CB2 RB XS

SF2

PM

Fig. 9. Production line (physical simulation)

2.13s to construct and verify. Using the compositional
approach discussed in this paper, the final state count
amounts to 598 and the entire procedure takes 0.92s.

CONCLUSION

Considering a class of modular discrete-event systems with
event priorities, we have presented a number of conflict
equivalent abstractions to be used for compositional veri-
fication of non-blockingness. Technically, our study builds
on Flordal and Malik (2009) and we inspect the abstrac-
tion rules presented there in order to derive adaptations
that address priorities. This approach is closely related to
the development of CCSch by Lüttgen (1998) which intro-
duces priorities to process algebra CCS (Milner (1989)).

REFERENCES

Bauer, N., Huuck, R., Lukoschus, B., and Engell, S. (2004).
A unifying semantics for sequential function charts.
volume 3147, 400–418.

Brecher, C., Obdenbusch, M., Özdemir, D., Flender, J.,
Weber, A.R., Jordan, L., and Witte, M. (2016). In-
terdisciplinary specification of functional structurres for
machine design. IEEE International Symposium on
Systems Engineering (ISSE).

Cassandras, C.G. and Lafortune, S. (2008). Introduction
to Discrete Event Systems. Springer, second edition.

Cleaveland, R., Lüttgen, G., and Natarajan, V. (2007).
Priority and abstraction in process algebra. Information
and Computation, 205(9), 1426–1458.

Eshuis, R. (2007). Symbolic model checking of UML
activity diagrams. ACM Transactions on Software
Engineering and Methodology (TOSEM).

Fabian, M. and Hellgren, A. (1998). PLC-based implemen-
tation of supervisory control for discrete event systems.

Proceedings of the 37th IEEE Conference on Decision
and Control.

Flordal, H. and Malik, R. (2009). Compositional veri-
fication in supervisory control. SIAM J. Control and
Optimization, 48, 1914–1938.

LRT/FGDES (2019). CompileDES: Executable Code
Generation from Synchronised libFAUDES Automata.
http://fgdes.tf.fau.de/compiledes. Accessed:
22.03.2022.

Lüttgen, G. (1998). Pre-emptive modeling of concurrent
and distributed systems.

Malik, R., Streader, D., and Reeves, S. (2004). Fair
testing revisited: A process-algebraic characterisation of
conflicts. In F. Wang (ed.), Automated Technology for
Verification and Analysis, 120–134. Springer.

Milner, R. (1989). Communication and Concurrency.
Prentice-Hall, Inc., USA.

Mohajerani, S., Malik, R., and Fabian, M. (2014). A
framework for compositional synthesis of modular non-
blocking supervisors. IEEE Transactions on Automatic
Control, 59(1), 150–162.

Nicola, R.D. and Hennessy, M. (1984). Testing equiv-
alences for processes. Theoretical Computer Science,
34(1), 83 – 133.

Pilbrow, C. and Malik, R. (2015). An algorithm for com-
positional nonblocking verification using special events.
Science of Computer Programming, 113, 119–148.

Qamsane, Y., Abdelouahed, T., and Philippot, A. (2016).
A synthesis approach to distributed supervisory control
design for manufacturing systems with grafcet imple-
mentation. International Journal of Production Re-
search, 55, 1–21.

Ramadge, P. and Wonham, W. (1987). Supervisory control
of a class of discrete event systems. SIAM Journal on
Control and Optimization, 25, 206–230.

Su, R., van Schuppen, J.H., Rooda, J.E., and Hofkamp,
A.T. (2010). Nonconflict check by using sequential au-
tomaton abstractions based on weak observation equiv-
alence. Automatica, 46(6), 968 – 978.

Tang, Y. and Moor, T. (2022). Technical details regarding
compositional verification with event-priorities. Report
available at https://fgdes.tf.fau.de/publications.html
(accessed July 16th 2022).

Ware, S. and Malik, R. (2012). Conflict-preserving ab-
straction of discrete event systems using annotated au-
tomata. Discrete Event Dynamic Systems, 22, 451–477.

