
Abstraction Based Supervisory Control
for Non-Regular ∗-Languages

Lukas Triska ∗ Thomas Moor ∗

∗ Lehrstuhl für Regelungstechnik,
Friedrich-Alexander Universität Erlangen-Nürnberg, Germany

(e-mail: lrt@fau.de)

Abstract: The problem of supervisory control, in its most basic form, is well understood for regular
parameters, i.e., with regular languages for plant and upper-bound language-inclusion specification.
However, when dropping the requirement of regularity, the situation becomes much more involved: even
decidability becomes an issue. In this paper, we propose a simplistic but yet fairly general approach in
that non-regular parameters are replaced by regular substitutes. In a language based setting we provide
(a) conditions such that any solution found for the substitute parameters carries over to the original
problem and (b) a refinement scheme which can be applied when the substitute parameters render the
control problem at hand unsolvable. For practical purposes, we further elaborate our approach for plants
represented as unbounded Petri nets and (c) identify a condition under which the alternation of trial
synthesis and refinement is guaranteed to terminate with success.

Keywords: supervisory control, abstraction based controller design, controllability prefix, abstraction
refinement, unbounded Petri nets.

INTRODUCTION

Supervisory control theory, as originally introduced by Ra-
madge and Wonham (1987, 1989), is a framework for the con-
trol of discrete-event systems. In its most basic form, the plant
is represented by a deterministic finite automaton and an upper-
bound specification is given by a regular ∗-language. Essen-
tially, the control problem can be parametrised by two regular
∗-languages L and E over a common alphabet Σ to represent
plant and specification, respectively. Achievable closed-loop
behaviours K that satisfy the specification are algebraically
characterised in terms of L and E. Specifically, K ⊆ E must
be controllable and relatively closed, both w.r.t. L. Based on
this characterisation, there are well understood procedures to
decide whether the problem has a solution, and, if so, to effec-
tively compute such a solution; see (Wonham and Ramadge,
1987). Inspecting the cited literature, neither the problem state-
ment nor the characterisation of the achievable closed-loop
behaviours relate to the regularity of the parameters L and E.
Hence, the problem is well posed even if either of the two
parameters fails to be regular and the characterisation of all so-
lutions remains valid. However, the computational procedures
proposed by Wonham and Ramadge (1987) specifically address
finite automata realisations and require adaptation when other
types of realisations are to be considered.

Extending the practical scope of supervisory control theory, we
are interested in computational procedures that address more
general classes of ∗-languages not representable by finite au-
tomata. In this regard, Giua and DiCesare (1995, 1994) consider
the languages L and E realised by deterministic Petri nets with
different acceptance conditions, referred to as L-type and G-
type, or marked behaviour and weak behaviour, respectively.

? This work was supported by the German Research Foundation (DFG) under
grant MO 1697/4-1.

Including the case of unbounded nets, i.e. nets with a count-
ably infinite reachability graph, L and E are not necessarily
regular. Controllability of the synchronous composition of a
specification with the plant turns out decidable for both accep-
tance conditions. However, the trimming procedure proposed
for controller synthesis may fail for unbounded nets with G-
type acceptance condition; see (Giua, 2013; Holloway et al.,
1997) for an overview and more references on supervisory
control for Petri net models. Another branch of generalisation
to non-regular languages addresses deterministic context free
∗-languages which can be realised by deterministic pushdown
automata. Masopust (2012) and Sreenivas (1993) show, that the
question whether a language K is controllable w.r.t. L, becomes
undecidable when both parameters are deterministic context
free ∗-languages. Schmuck et al. (2016) constructively show
how to solve the control problem when only the specification E
is a deterministic context free ∗-language but L is regular. The
cited literature makes evident that regarding practical solutions
and even regarding decidability, supervisory control becomes
substantially more involved when dropping regularity.

In the present paper, we take a conceptionally more simplistic
approach. Rather than to seek for procedures that solve the
control problem directly, we propose to substitute not necessar-
ily regular parameters L and E by regular abstractions L′ and
E′ such that any solution found for the substitute parameters
also solves the original problem. If no solution exists for L′

and E′, the abstractions need to be refined. Thus, we end up
with a possibly non-terminating alternation of trial synthesis
and abstraction refinement. However, in the case of termina-
tion it is guaranteed that a valid solution has been found. This
approach is well established for the control of hybrid systems;
see e.g. Raisch and O’Young (1998); Stursberg (2006); Yang
et al. (2020). Obviously, we can not be successful, if specific
aspects of the original problem parameters intrinsically rely on
a non-regular representation. However, in practical applications

this may not be the case. Consider e.g. a manufacturing system
which at an early stage of planning may include components
with infinite capacity to buffer or process workpieces. Once
we put in place a specification for the intended behaviour, this
should implicitly express that only finite capacities are required
— infinite- capacities can not be technologically realised any-
way. Hence, we may expect regular abstractions of the problem
parameters to exist and appreciate a systematic procedure to
reveal such abstractions. Our main technical contributions to
this end are the identification of conditions that ensure solutions
found for the substitute parameters to carry over to the original
problem and a fairly general scheme of abstraction refinement,
all stated purely in terms of ∗-languages. For practical applica-
tions, the proposed abstraction refinement scheme needs to be
further elaborated in terms of some finitary representation of
the non-regular parameters. In this regard, we focus attention
to the plant being given as an unbounded Petri net with L-type
acceptance condition and a regular specification.

The paper is organised as follows. After providing notational
conventions in Section 1, we recall the basic problem of super-
visory control in Section 2 and elaborate conditions of substi-
tute problem parameters L′ and E′ such that solutions found for
the abstraction carry over to the original problem. Refinement
of abstractions are discussed in a purely language based setting
in Section 3. We further elaborate our results in Sections 4
and 5, where we assume the plant to be represented as an
unbounded Petri net and the specification to be regular.

1. PRELIMINARIES AND NOTATION

We largely follow the same notational conventions as Cas-
sandras and Lafortune (2008); Wonham and Cai (2019), and,
regarding Petri nets, Giua (2013).

Let Σ be a finite alphabet, i.e., a finite set of symbols σ ∈ Σ. The
Kleene-closure Σ

∗ is the set of finite strings s = σ1σ2 · · ·σn,
n ∈ �, σi ∈ Σ, and the empty string ε ∈ Σ

∗, ε < Σ. If, for two
strings s, r ∈ Σ

∗, there exists t ∈ Σ
∗ such that s = rt, we say r is

a prefix of s, and write r ≤ s; if in addition r , s, we say r is a
strict prefix of s and write r < s.

A ∗-language (or short a language) over Σ is a subset L ⊆ Σ
∗.

The prefix of a language L ⊆ Σ
∗ is defined by pfx L :={r ∈

Σ
∗
| ∃ s ∈ L : r ≤ s}. The prefix operator is also referred to as

the prefix-closure, and, a language L is closed if L = pfx L. A
language K is relatively closed w.r.t. L if K = (pfx K) ∩ L. The
prefix operator distributes over arbitrary unions of languages.
However, for the intersection of two languages L and M, we
have pfx (L ∩ M) ⊆ (pfx L) ∩ (pfx M). If equality holds, L and
M are said to be non-conflicting. Given a language L ⊆ Σ

∗,
the Nerode equivalence [≡L] is an equivalence relation on Σ

∗

defined by s′ [≡L] s′′ if and only if (∀ t ∈ Σ
∗)[s′t ∈ L ↔

s′′t ∈ L]. Given two languages K ⊆ L ⊆ Σ
∗, and a set of

uncontrollable events Σuc ⊆ Σ, we say K is controllable w.r.t. L,
if (pfx K)Σuc ∩ (pfx L) ⊆ pfx K.

An automaton is a tuple A = (Q, Σ, δ, qo, Qm), with state
set Q, initial state qo ∈ Q, final states Qm ⊆ Q, and the
transition relation δ ⊆ Q × Σ × Q. Throughout this paper
we consider the transition relation to be deterministic, i.e,
(q, σ, p′), (q, σ, p′′) ∈ δ implies p′ = p′′. Thus, whenever
convenient, we associate the transition relation with the partial
transition function δ : Q × Σ → Q and write δ(p, σ) = p
for (q, σ, p) ∈ δ. The automaton is full if for all q ∈ Q and

σ ∈ Σ there exists p ∈ Q with (q, σ, p) ∈ δ. We also refer to
the common extension to the domain Q × Σ

∗; i.e., for q ∈ Q,
we have δ(q, ε) = q and, for s ∈ Σ

∗ and σ ∈ Σ, we define
δ(q, sσ) = δ(δ(q, s), σ)) if and only if δ(q, s) and δ(δ(q, s), σ))
are defined; else δ(q, sσ) is undefined. We write δ(q, s)! to
indicate that δ is defined for the specified arguments q ∈ Q
and s ∈ Σ

∗. A state q ∈ Q is reachable (or coreachable)
if there exists s ∈ Σ

∗ such that q = δ(qo, s) (or δ(q, s) ∈
Qm, resp.). With the automaton A = (Q, Σ, δ, qo, Qm), we
denote the generated language L(A) :={ s ∈ Σ

∗
| δ(qo, s)! } and

the accepted language Lm(A) :={ s ∈ Σ
∗
| δ(qo, s) ∈ Qm }. A

language L ⊆ Σ
∗ is said to be regular, if it is accepted by some

automaton with finitely many states. Regularity of a language is
equivalent with the Nerode equivalence to induce only a finite
number of equivalence classes. Given two automata A and B
over the same alphabet Σ, we denote the product A × B; see
(Cassandras and Lafortune, 2008) for a formal definition. Then
A× B accepts the intersection Lm(A)∩Lm(B). Specifically, if A
and B are full automata, we can find alternative final states for
A × B to accept Lm(A), Lm(B) and prefixes thereof.

A Petri net is a tuple G = (P, T, R, mo , F), where P is a finite
set of places, T is a finite set of transitions, R ⊆ (P×T)∪(T×P)
is the incidence relation, mo is the initial marking, and F is
a finite set of final markings. A marking m : P → �0 is an
allocation of finitely many tokens to each place p ∈ P. The set
of all markings is denoted M. Specifically, we have mo ∈ M

and F ⊆ M. Given a marking m ∈ M, a transition t ∈ T can
fire or is enabled if all predecessor places in R have at least
one token. This is denoted m t

→. When a transition m t
→ fires,

it takes one token from each predecessor place and releases
one token to each successor place. This is denoted m t

→m′,
with m′ the marking after the transition has fired. Note that
firings a transition may increase or decrease the overall number
of tokens. If there is a maximum number of tokens over all
markings that can be attained by firing finitely many transitions
the net is called bounded. Else, it is called unbounded.

There are a variety of formal languages associated with a given
Petri net G. For the present paper, we refer to the transition
relation R := { (m, t, m′) ∈ M × T ×M |m t

→m′ } and thereby
effectively obtain a deterministic automaton representation over
the infinite state setM. Specifically, we reinterpretR as a partial
transition function R : M × T → M with the same common
extensions as in the context of deterministic automata. The
generated language and the accepted language are then defined
L(G) :={ s ∈ T ∗ | R(mo, s)! } and Lm(G) :={ s ∈ T ∗ | R(mo, s) ∩
F , ∅ } respectively, i.e., the set of feasible firing sequences and
the subset of the latter that attains a final marking.
Remark 1. Referring to the notation in (Giua, 2013), our setting
corresponds to the identity labelling `(t) = t for all t ∈ T =: Σ,
input and output functions I and O with range { 0, 1 }, and
L-type acceptance condition. However, for our discussion in
Sections 4 and 5, the representation of L(G) and Lm(G) by
the deterministic transition relation R are the only vital aspect.
Specifically, our results readily extend to ε-free deterministic
labelled nets with general input and output functions and with
either L-type or G-type acceptance condition. �

2. ABSTRACTION BASED SUPERVISORY CONTROL

Following Ramadge and Wonham (1987, 1989), we consider
the following closed-loop configuration for the control of
discrete-event systems.

Definition 2. Given an alphabet Σ partitioned in controllable
and uncontrollable events, Σ = Σc ∪̇Σuc, consider a plant with
accepted behaviour L ⊆ Σ

∗ and with local behaviour pfx L.
With Γ :={ γ ⊆ Σ |Σuc ⊆ γ } the set of control patterns, a
supervisor is a map f : pfx L → Γ that maps event sequences
s ∈ pfx L to a control pattern f (s) ∈ Γ. The local closed-loop
behaviour and the accepted closed-loop behaviour are then
defined by

Lf :={ s ∈ pfx L | ∀ t ∈ Σ
∗
, σ ∈ Σ . tσ ∈ pfx s→ σ ∈ f (t) } , (1)

and
Kf := Lf ∩ L , (2)

respectively. The supervisor is non-blocking if Lf and L are non-
conflicting; i.e., if for all s ∈ Lf there exists t ∈ Σ

∗ such that
st ∈ Kf . �

When compared with the original literature, our formal setting
is slightly different in that we avoid the explicit reference to
an automaton representation. However, this difference is purely
cosmetic and the characterisation of achievable closed-loop be-
haviours under non-blocking supervisory control immediately
carries over to our language-based setting.
Lemma 3. Consider a plant L ⊆ Σ

∗ and a non-empty closed-
loop candidate K ⊆ Σ

∗, ∅ , K ⊆ L. Then there exists a non-
blocking supervisor f : pfx L → Γ with accepted closed-loop
behaviour Kf such that Kf = K if and only if (a) K is relatively
closed w.r.t. L and (b) K is controllable w.r.t. L.

Proof. See Theorem 6.1 in (Ramadge and Wonham, 1987) �

Given a closed-loop candidate K , ∅ that is both, relatively
closed and controllable, the cited literature proves the existence
of a suitable supervisor f by construction. Hence, the problem
of supervisory controller synthesis is effectively equivalent to
the synthesis of a feasible closed-loop behaviour that satisfies
any additional control objectives. For the purpose of this paper,
we address upper-bound language-inclusion specifications.
Definition 4. A supervisory control problem with safety speci-
fication (or short control problem) over Σ is a pair (L, E) with
the plant L ⊆ Σ

∗ and the specification E ⊆ Σ
∗. Let

CF (L, E) :={K ⊆ E |
K is relatively closed w.r.t. L and controllable w.r.t. L } . (3)

Non-empty languages K ∈ CF (L, E) are referred to as solu-
tions to (L, E). �

We recall that the two properties relative closedness and con-
trollability are retained under arbitrary union; see Proposition
7.1 in (Ramadge and Wonham, 1987). Hence, the supremum

K↑ := supCF (L, E) :=∪{K |K ∈ CF (L, E) } (4)
itself is relatively closed and controllable. Consequently, the
control problem (L, E) has a solution if and only if K↑ is non-
empty. To this end, Wonham and Ramadge (1987) consider
regular parameters L and E and provide algorithms for the
computation of finite automata realisations of K↑ and f .

In the case the plant L fails to be regular, one may resort to
a regular abstraction L′, i.e., an alternative less detailed model
for the plant which is regular. Likewise, we may substitute E
by E′ for a more favourable representation. There are two core
questions with this approach.

[Q1] If we find a solution for (L′, E′), does this solution carry
over to (L, E)?

[Q2] If (L′, E′) has no solution, how can we refine the plant ab-
straction L′ or shape the substitute E′ of the specification
in order to increase our chances for success?

We begin with [Q1]. Since the supervisor restricts the behaviour
of the plant and since our control objective is an upper bound,
L ⊆ L′ and E′ ⊆ E are a natural prerequisite for an affirmative
answer. Indeed, we have the following proposition.
Proposition 5. Given two control problems (L, E) and (L′, E′)
over Σ with L ⊆ L′ and E′ ⊆ E, consider any K′ ∈ CF (L′, E′).
Then K′ is controllable w.r.t. L. If additionally K′ ⊆ L, then K′

is relatively closed w.r.t. L. In particular, under the assumption
E′ ⊆ L, we have that CF (L′, E′) ⊆ CF (L, E).

Proof. Let K′ ∈ CF (L′, E′). Then K′ is controllable w.r.t.
L′, i.e., ((pfx K′)Σuc) ∩ (pfx L′) ⊆ pfx K′. By monotonicity
of the prefix operator we conclude ((pfx K′)Σuc) ∩ (pfx L) ⊆
((pfx K′)Σuc) ∩ (pfx L′) ⊆ pfx K′, hence K′ is controllable w.r.t.
L. Moreover, K′ is relatively closed w.r.t. L′, i.e., (pfx K′) ∩
L′ = K′. Thus, (pfx K′) ∩ L ⊆ (pfx K′) ∩ L′ = K′. Referring
to the prerequisite K′ ⊆ L, we obtain the converse inclusion
by extensiveness of the prefix operator, i.e., K′ = K′ ∩ L ⊆
(pfx K′) ∩ L. Thus, we have K′ = (pfx K′) ∩ L and, hence, K′

is relatively closed w.r.t. L. Since E′ ⊆ L implies K′ ⊆ L for all
K′ ∈ CF (L′, E′), we conclude CF (L′, E′) ⊆ CF (L, E). �

Under the hypothesis of the above proposition, any solution to
the substitute problem (L′, E′) also solves the original prob-
lem (L, E), and this answers [Q1]. Note that the additional
assumption E′ ⊆ L is not restrictive since we have CF (L, E) =
CF (L, E ∩ L) and may without loss of generality assume that
E ⊆ L. Starting with the original control problem (L, E), we
hence propose to find a regular superlanguage L′ of L and a
regular sublanguage E′ of E. Our substitute control problem
(L′, E′) can then be addressed by well understood methods.

Regardless the original problem, L′ = Σ
∗ and E′ = ∅ trivially

qualify as substitutes, but (Σ∗, ∅) has no solution. Intuitively,
our chances depend on how closely the substitute parameters
relate to the original parameters. In practice, we begin with
an initial regular-substitute problem and run a trial synthesis.
If this fails, we refine our substitute parameters and again test
for solutions. The two steps are then alternated until either a
solution is found, and, hence, by Proposition 5 we have solved
the original problem, or computational resources are exhausted.

The availability of effective procedures to obtain and/or to
refine the regular-substitute parameters naturally depends on
the actual representation of the original non-regular parameters;
see e.g. Eisman and Ravikumar (2005) and Cordy and Salomaa
(2007) for a general discussion on the approximation of non-
regular languages from a computability perspective. For our
specific use case of supervisory control we provide more detail
in the following sections, and, doing so, we address question
[Q2] and propose refinement strategies [H1]–[H3].

3. STRATEGIC ABSTRACTION REFINEMENT

Becoming more specific on how regular abstractions can be
obtained, we consider the countably-infinite union composition

L :=∪{ Li | i ∈ � }, (5)
where each component Li ⊆ Σ

∗, i ∈ �, is regular. Note that
any possibly non-regular ∗-language can be represented in this
form. Clearly, with any finite selection I ⊂ � the finite union

NI :=∪{ Li | i ∈ I}, (6)

is a regular sublanguage of L. Moreover, if we enlarge the
selection by J ⊂ �, I ⊆ J, we have

NI ⊆ NJ ⊆ L , (7)

i.e., the lower bound will not degenerate and we may optimisti-
cally expect it to improve.

Turning to regular superlanguages of L, a nearby choice is

L′ :={ s ∈ Σ
∗
| ∃ t ∈ L : t [≡N] s } (8)

for any regular language N ⊆ Σ
∗. Clearly, we have L ⊆ L′

and it is readily shown that the equivalence [≡N] is at least as
fine as [≡L′], hence L′ is regular. However, for the subsequent
discussion it turns out useful to explicitly base the construction
of a superlanguage L′I on a given sublanguage NI ⊆ L, I ⊂ �.
Therefore, consider all sequences that exit pfx NI via pfx L, i.e.,

MI :={ sσ | s ∈ pfx NI , σ ∈ Σ, sσ < pfx NI , sσ ∈ pfx L } . (9)

If we see NI as a model of L, the sequences sσ ∈ MI are those,
that exit the scope of NI while still compliant with L. We hence
expect

L′I := NI ∪ (MI Σ
∗) . (10)

to be a superlanguage of L, with NI the “good part” where
our abstraction is accurate and MI Σ

∗ the “bad part”, where
the abstraction degenerates. Indeed, we have the following
proposition.
Proposition 6. Given a plant L = ∪{ Li | i ∈ � } with ∅ , Li ⊆

Σ
∗ for all i ∈ �, a finite selection I ⊂ �, I , ∅, and NI and

MI as defined by Eqs. (6&9). Then L′I defined by Eq. (10) is
a superlanguage of L. Applying the same construction for an
enlarged selection J ⊂ �, I ⊆ J, we have L ⊆ L′J ⊆ L′I. The
claims remain valid when substituting pfx L in Eq. (9) by pfx V
for any superlanguage V , L ⊆ V ⊆ Σ

∗.

Proof. To see that L ⊆ L′I pick any t ∈ L. We distinguish two
cases. If t ∈ NI , we immediately obtain t ∈ NI ⊆ L′I. For the
remaining case t < NI , we observe that by hypothesis NI , ∅
and there hence uniquely exists the longest strict prefix s < t
with s ∈ pfx NI . Thus, we can decompose t by t = sσr, r ∈ Σ

∗,
σ ∈ Σ, such that s ∈ pfx NI and sσ < pfx NI . Since t ∈ L we
also have that sσ ∈ pfx L ⊆ pfx V . We therefore obtain sσ ∈ MI
and, hence t ∈ MI Σ

∗
⊆ L′I. This concludes the second case and

establishes L ⊆ L′I. Regarding monotonicity w.r.t. the selection,
pick an arbitrary t ∈ L′J. Here, we distinguish three cases. If
t ∈ NI , we immediately obtain t ∈ NI ⊆ L′I. If t < NI but
t ∈ NJ , we decompose t as above by t = sσr, t, r ∈ Σ

∗, σ ∈ Σ,
with s < t the longest strict prefix in pfx NI . Since t ∈ NJ ⊆ L,
this implies sσ ∈ pfx L ⊆ pfx V , and hence t ∈ MI Σ

∗
⊆ L′I. For

the remaining third case, we have t ∈ MJ Σ
∗ but t < NJ . Here,

we consider two decompositions. First, choose s ∈ pfx NJ and
σ ∈ Σ such that sσ ≤ t with sσ ∈ pfx V and sσ < pfx NJ . By
NI ⊆ NJ we can further decompose s by with r ∈ Σ

∗ and ρ ∈ Σ
with rρ ≤ sσ such that r ∈ pfx NI and rρ < pfx NI . Observe
by rρ ≤ sσ ∈ pfx V that rρ ∈ pfx V . Hence, rρ ∈ MI and this
implies t ∈ MI Σ

∗
⊆ L′I. The three cases being exhaustive, and

since t ∈ L′J was chosen arbitrarily, we conclude that L′J ⊆ L′I. �

The test for sσ ∈ pfx L in Eq. (9), however, in general can not
be implemented by a finite automaton and, hence, we need to
impose some additional requirements on the sublanguages Li ,
i ∈ �, in order to ensure regularity of MI . Since NI is regular,
and since we are testing for s ∈ pfx L and sσ < pfx L anyway, a
nearby requirement for this purpose is

∀ s′, s′′ ∈ pfx NI : s′ [≡NI] s′′ → s′ [≡L] s′′ , (11)

i.e., restricted to the domain pfx NI the equivalence [≡NI] is
at least as fine as [≡L], while on the entire domain Σ

∗ the
equivalence [≡L] is expected to be finer than [≡NI].

An alternative way to ensure regularity on MI is to relax the
test for sσ ∈ pfx L in Eq. (9), i.e., to allow for false positives
and thereby obtain a regular representation. Here, we propose
the following variation in the definition of MI :

MI = { sσ | s ∈ pfx NI , σ ∈ Σ, sσ < pfx NI ,

∃ t : t [≡NI] sσ and t ∈ pfx L } . (12)

Technically, this relaxation amounts the substitution of L by
a superlanguage V , L ⊆ V , and is, hence, in the scope of
Proposition 6.

We are now in the position to discuss question [Q2]. Here, we
assume that both, the plant and the specification, are given as
a countable-infinite union composition of regular components,
i.e., L = ∪{ Li | i ∈ � } as above and likewise E = ∪{ Ei | i ∈
� }, with all Li , Ei ⊆ Σ

∗ regular. For the regular superlanguage
of L we use L′I defined in Eq. (10), where I ⊂ � is a finite se-
lection. For the regular sublanguage of E we use E′I in analogy
to Eq. (6), i.e., E′I :=∪{ Ei | i ∈ I }. In the case that we have no
practical test to check for E ⊆ L, we additionally intersect with
NI to ensure that E′I ⊆ L as required by Proposition 5. Note
that using the same selection I for plant and specification is not
restrictive since the components can be formally rearranged.

We say that the selection I is successful if the control problem
(L′I, E′I) exhibits a solution. By Proposition 5, any solution car-
ries over to the original problem (L, E) and, having a successful
selection I we are done. If I is not successful, we propose to
enlarge I by J ⊂ �, I ⊂ J. Clearly, iterating the two steps of
trial synthesis and refinement, we can only become eventually
successful if a successful selection exists at all. This natural
prerequisite is not only necessary, but also sufficient.
Proposition 7. Given a control problem (L, E) over Σ with
representations L = ∪{ Li | i ∈ � } and E = ∪{ Ei | i ∈ � }
consider a refinement scheme (Ik)k∈�, Ik ⊂ Ik+1 ⊂ �, such that
∪{ Ik | k ∈ �} = �. If there exists a finite successful selection
J ⊂ � then there also exists k ∈ � such that Ik is successful.

Proof. Since J is finite, there exists k ∈ � such that J ⊆ Ik =: I.
We immediately have E′J ⊆ E′I and refer to Proposition 6 for
L′I ⊆ L′J. By hypothesis, (L′J, E′J) exhibits a solution, and, by
Proposition 5 this solution also solves (L′I, E′I). Hence, Ik = I is
a successful selection. �

A refinement scheme (Ik)k∈� which qualifies for the above
proposition is Ik :={ i ∈ � | i ≤ k }, i.e., including components
one by one in a prescribed order.
Example 8. Consider a processing machine which can take
workpieces and release processed workpieces, one at a time,
represented by the events a and b, respectively. Thus, Σ =
{ a, b } is our alphabet. Taking a conceptual perspective, we do
not want to become specific about the internal capacity of the
machine at this stage and, hence, model the machine by the
language

L :={ s ∈ Σ
∗
| #a(s) = #b(s), ∀ t ≤ s : #b(t) ≤ #a(t) } , (13)

where #_(s) denotes the count of the specified event in s. In
particular, L is non-regular; for an infinite automaton realisation
see Figure 1. Limiting the capacity to any finite number i ∈ �
we obtain Li :={ s ∈ L | ∀ t ≤ s : #a(t)−#b(t) ≤ i }. In particular,
Li is regular; see Figure 1 for a realisation of L2. Since any

L 1 2 3 4 · · ·

a

b

a

b

a

b

a

b

L2 (NI = L2 with I = {1, 2})1 2 3

a

b

a

b

MI 1 2 3 4

a

b

a

b

a

L′I 1 2 3 4

a

b

a

b

a

a, b

Fig. 1. Automata realisations for Example 8.

s ∈ L has finitely many prefixes t ≤ s, we can take i ∈ � as
the maximum of #a(t) − #b(t) to observe s ∈ Li , and, hence
L = ∪{ Li | i ∈ � }. To obtain an abstraction L′I as proposed
in this section, consider the selection I = { 1, 2 }. Since for
our specific case we have that Li ⊆ Lj for any i ≤ j, we
observe NI = L2. Realisations of MI and L′I again are shown
in Figure 1. Intuitively, any specification that one could enforce
for the actual plant which only utilises a capacity of no more
than 2 workpieces can also be enforced for L′I, and, hence,
can be synthesised based on finite automata representations.
Likewise, for any regular specification that utilises some finite
capacity, there exists a successful selection J ⊂ � for which
(L′J, E) exhibits a solution. Although this seems obvious for
our simple example, it will become less so for more involved
scenarios. �

In the above example, increasing the capacity of the processing
machine apparently is the only sensible strategy for abstraction
refinement. For more complex situations, we present a number
of heuristics on how specifically to extend a not successful
selection I ⊂ �.

[H1] Consider j < I such that (pfx Lj)∩MI is non-empty. If we
extend our selection by J = I ∪ { j} for such a component,
this will replace the degenerated sequences sσΣ

∗
⊆ L′I

for all sσ ∈ (pfx Lj) ∩ MI by sσΣ
∗
∩ pfx Lj in the

refined abstraction L′J ⊆ L′I. Such a refinement will push
the boundary between the “good part” and the “bad part”
of the abstraction by a minimal amount and is, hence,
excepted to be of moderate computational cost.

[H2] Consider j < I with (pfx Lj) ∩ MI , ∅ as in [H1] and,
additionally, (pfx Lj)∩MI ∩ (pfx E) = ∅. Then, the future
evolution of the plant after any sequence sσ ∈ (pfx Lj) ∩
MI violates the specification and, hence, a supervisor
needs to prevent sσ in the first place. Therefore we do not
expect any benefits from a refinement regarding the future
of such sequences sσ, and should avoid such additional
components Lj for a refinement.

By the above heuristic [H2], the future of sequences sσ ∈ MI
but sσ < pfx E shall not be addressed in a refined abstraction,
because they are “doomed” anyway. Likewise, we do not need
to address the future sequences, which we can already control
with a given abstraction L′I. Such sequences are referred to
as winning configurations and define the so called controlla-
bility prefix. The latter concept stems from the control of ω-
languages (Thistle and Wonham, 1994) and has been adapted to

∗-languages by Moor and Schmidt (2017); Moor et al. (2020)
as follows:
Definition 9. Given a plant L ⊆ Σ

∗, a specification E, ∅ , E ⊆
L, and a string s ∈ Σ

∗, we use the convenient notation
Ls := L ∩ (sΣ∗) , Es := E ∩ (sΣ∗) . (14)

The controllability prefix cfx (L, E) ⊆ Σ
∗ is then defined as the

set of all strings s ∈ Σ
∗ such that supCF (Ls , Es) , ∅. �

Specifically, for s ∈ cfx (L′I, E′I) the future behaviour after the
occurrence of s does not need to be addressed in a refinement of
the abstraction. This leads to the following additional heuristic.

[H3] Consider j < I with (pfx Lj) ∩ MI , ∅ as in [H1] and,
additionally, assume that for all sσ ∈ (pfx Lj) ∩ MI we
have s ∈ cfx (L′I, E′I). Then s is a winning configuration
in the control problem (L′I, E′I) and we do not expect
any benefits from using Lj for the refinement of the
abstraction.

4. ABSTRACTIONS FOR UNBOUNDED PETRI NETS

We further elaborate our results in the context of unbounded
Petri nets where the state set of the corresponding reachabil-
ity graph becomes infinite. Similar to the idea showcased in
Proposition 6, we aim to design a regular abstraction of the
accepted language Lm(G) of a Petri net G with an accurate
and a degenerate part. As such we start with the trivial bounds
∅ ⊆ Lm(G) ⊆ Σ

∗ and iteratively construct refinements thereof.
To this end, consider Procedure 1 stated in the notation given in
Section 1; specifically, R ⊆ M × T ×M denotes the transition
relation associated with the Petri net G.

Procedure 1 Output Ai, Bi in every iteration
Require: Petri net G = (P, T, R, mo, F)

1: i← 1
2: Q1 := P1 := {mo}, δ1 := ∅
3: loop
4: print Ai = (Qi, T, mo, δi, (Qi ∩ F) \ Pi)
5: Oi := {m ∈ Qi |m is not coreachable in Ai }

6: ρi := { (m, t, m) |m ∈ Oi, t ∈ T, ∀ m′ : (m, t, m′) < δi }

7: print Bi = (Qi, T, mo, δi ∪ ρi, (Qi ∩ F) ∪ Oi))
8: Pi+1 := {m′ ∈ M \ Qi | ∃m ∈ Pi, t ∈ T : (m, t, m′) ∈ R }
9: Qi+1 := Qi ∪̇ Pi+1

10: δi+1 := δi ∪̇ { (m, t, m′) ∈ R |m ∈ Pi }

11: i← i + 1
12: end loop

Commenting the above procedure, we first focus attention on
the finite sets Qi, Pi ⊆ M, i ∈ �; i.e., their initialisation,
line 2, and their propagation, lines 8 and 9. It this regard, the
procedure matches the common iteration that computes the
markings attainable form the initial marking mo; i.e., Qi are the
markings that can be attained by no more than i transitions and
we have Qi ⊆ Qi+1 for all i ∈ �. In our formulation, Pi ⊆ Qi
are the markings newly discovered in the i-th iteration, i.e., the
set of those markings, that can be attained by i transitions but
not by less. Turning to δi, line 10, we note that this is the finite
subset of R of those transitions inspected so far to establish Qi.
In particular, δi is deterministic and we have δi ⊆ δi+1 ⊆ R

for all i ∈ �. Moreover, as a partial functions, δi and R are
identical on the restricted domain (Qi\Pi)×Σ. Once per iteration
the procedure outputs two automata Ai and Bi with state set
Qi, transition relation δi or the variation ρi thereof, and with

strategic final states such that Lm(Ai) and Lm(Bi) are regular
sublanguages or superlanguages, respectively, of Lm(G).
Remark 10. Inspecting Procedure 1, it exclusively relies on
a possibly infinite automaton to realise L = Lm(G) and the
effective evaluation of one-step successors R(m, t) for m ∈ M
and t ∈ T . Specifically, { R(m, t) | t ∈ T } is required to be finite.
Our approach should be applicable to any other class of models
that satisfy likewise requirements. �

The following proposition justifies Procedure 1.
Proposition 11. Let G be the Petri net used as input for Proce-
dure 1. We then have that

Lm(Ai) ⊆ Lm(Ai+1) ⊆ Lm(G) ⊆ Lm(Bi+1) ⊆ Lm(Bi) (15)
for all i ∈ �. Moreover, Lm(G) = ∪{Lm(Ai) | i ∈ � }.

Proof. We first consider the languages Lm(Ai), i ∈ �. Pick any
s ∈ Lm(Ai), i.e.,

δi(mo, s) ∈ (Qi ∩ F) \ Pi . (16)
By δi ⊆ R this implies R(mo, s) ∈ F and, hence, s ∈ Lm(G).
We conclude Lm(Ai) ⊆ Lm(G) for all i ∈ �. Referring to Pi+1 ∩

Qi = ∅ and Qi ⊆ Qi+1 we make the preliminary observation
(Qi∩F) \ Pi ⊆ (Qi∩F) \ Pi+1 ⊆ (Qi+1∩F) \ Pi+1 Picking again
any s ∈ Lm(Ai), Eq. (16) by δi ⊆ δi+1 and by our preliminary
observation implies δi+1(mo, s) ∈ (Qi+1 ∩ F) \ Pi+1 and, hence,
s ∈ Lm(Ai+1). We conclude Lm(Ai) ⊆ Lm(Ai+1) for all i ∈ �.
So far, we have established the first two inclusions in Eq. (15).
This obviously implies Lm(G) ⊇ ∪{Lm(Ai) | i ∈ � }. For the
converse, pick any s ∈ Lm(G). With l the length of the string
s, there exists a sequence of l transitions from mo to a final
marking ml ∈ F. Clearly, each intermediate state can be reached
by at most l transitions and is, hence, reachable in any Ai with
i ≥ l, i.e., δi(mo, s) = ml ∈ Qi for i ≥ l. Since we could
have ml ∈ Pl, and since Pl is removed from the final states
of Al, we instead consider Al+1 to observe ml = δl+1(mo, s) ∈
(Ql+1 ∩ F) \ Pl+1. Hence, s ∈ Lm(Al+1), and this establishes
Lm(G) ⊆ ∪{Lm(Ai) | i ∈ � }.

We now address the languages Lm(Bi), and we do so by re-
ferring to Proposition 6 and the construction via NI and MI
in Eqs. (6&9), where we relax the test for sσ ∈ pfx L by
sσ ∈ L(G) =: V in the definition of MI . Let Li := Lm(Ai) for
i ∈ � and consider the selection I = {1, 2, . . . i} for a specific
i ∈ �. By monotonicity we have NI = Li . For a realisation
of MI , we need to test for sequences sσ, s ∈ Σ

∗, σ ∈ Σ, with
s ∈ pfx NI , sσ < pfx NI and sσ ∈ L(G). Since NI is realised by
Ai, s ∈ pfx NI is equivalent to q := δi(mo, s) being coreachable
in Ai, i.e., q ∈ Qi \ Oi. By the final states (Qi ∩ F) \ Pi of Ai,
line 4, and the absence of outgoing transitions from Pi, line 10,
this implies q ∈ Qi \ Pi. Therefore, sσ ∈ L(G) is characterised
by q′ := δi(mo, sσ) ∈ Qi. Given that δi(mo, sσ) is defined,
sσ < pfx NI is equivalent to q′ ∈ Oi. Thus, using Oi as final
states, we realise MI over the state set Qi with the transition
relation δi. Introducing self-loops for the extended transition
relation ρi, line 6, then realises MI Σ

∗. Finally, by expanding
the final states by Qi ∩ F for automaton Bi, line 7, we obtain
Lm(Bi) = NI ∪ MI Σ

∗
= L′I. Then, the remaining two inclusions

in Eq (15) are an immediate consequence of Proposition 6. �

Identifying NI = Li = L(Ai), I = {1, 2, . . . , i }, i ∈ �, and
referring to the discussion in Section 3, the proposed procedure
adheres to Heuristic [H1] in that Ai+1 , Ai implies the existence
of s ∈ Σ

∗ and σ ∈ Σ such that s ∈ L(Ai), sσ < L(Ai) and
sσ ∈ L(Ai+1) ⊆ L(G).

P1

P2

a

b

P3

P4

x

y

P5

P6

Fig. 2. Petri net G for Example 12.

(A1, B1) : 00 a, b, x, y

(A2, B2) : 00 10
a

01

bx, y

a, b, x, y

a, b, x, y

(A3, B3) : 00 10

01 11

20

02

a

b

a

b

x

b

a
a, b, x, y

a, b, x, y

a, b, x, y

Fig. 3. Initial three outputs of Procedure 1 for Example 12.

Example 12. Consider a machine that can produce, store, and
further process two types of workpieces. Production is repre-
sented by the events a and b and processing with x and y. Con-
ceptually we want to leave the storage buffer unlimited and aim
to derive a suitable capacity from subsequent controller synthe-
sis. As a first step, however, we focus on the construction of reg-
ular abstractions for the plant. See Figure 2 for a Petri net reali-
sation. In this context a token in P3 or P4 represents a workpiece
of type 1 or 2 respectively. For illustration purposes only, the
set of final markings is assumed F = {[111011]>, [110111]>}.
The first three outputs of Procedure 1 are displayed in Figure
3. Transitions and final markings belonging solely to Bi are
represented by dashed blue lines. Since only the number of
tokens in P3 and P4 can change, the state labels in the figure
refer to the token allocation of those two places. �

5. SYNTHESIS FOR UNBOUNDED PETRI NETS

At this point we are in the position to combine the results
from Propositions 5 and 11 for the synthesis of a supervisor.
Here, we specifically consider a plant represented by a possibly
unbounded Petri net G and a regular specification E ⊆ T ∗. The
proposed alternation of abstraction refinement in the spirit of
Procedure 1 with trial synthesis is given as Procedure 2.

Recalling that in Procedure 1 refinement amounts to an in-
spection of one-step successors of all states in Pi discovered
in the most recent iteration, specific refinement strategies e.g.
Heuristics [H2] and [H3] are implemented by suspending the
inspection of one-step successors for certain states S i ⊆ Pi;
see lines 11 and 14. Note that a state m ∈ S i ⊆ Pi for which
refinement is suspended in the i-th iteration may need to be

refined in a later iteration, and we therefore merge S i to the
newly discovered states Pi+1; see line 12.

Procedure 2 Output final Ai, Bi,K↑

Require: Petri net G = (P,T,R,mo, F), T = Tc ∪̇Tuc, E ⊆ T ∗
1: i← 1
2: Q1 := P1 := {mo}, δ1 := ∅
3: loop
4: Ai = (Qi, T, mo, δi, (Qi ∩ F) \ Pi)
5: Oi := {m ∈ Qi |m is not coreachable in Ai }

6: ρi := { (m, t, m) |m ∈ Oi, t ∈ T, ∀ m′ : (m, t, m′) < δi }

7: Bi = (Qi, T, mo, δi ∪ ρi, (Qi ∩ F) ∪ Oi))
8: if K↑ := supCF (Lm(Bi),Lm(Ai) ∩ E) , ∅ then
9: return Ai, Bi, K↑

10: end if
11: choose S i ⊆ Pi as refinement strategy, e.g. Eqs. (19&20)
12: Pi+1 := {m′ ∈M\Qi | ∃m∈Pi\S i, t∈T : (m, t,m′)∈R} ∪ S i
13: Qi+1 := Qi ∪̇ Pi+1
14: δi+1 := δi ∪̇ { (m, t, m′) ∈ R |m ∈ Pi \ S i }

15: i← i + 1
16: end loop

Proposition 13. Let the Petri net G and the specification E be
the inputs for Procedure 2. If the procedure terminates, we have
that

∅ , K↑ ∈ CF (Lm(G), E) , (17)
regardless any specific refinement strategy S i ⊆ Pi, line 11.

Proof. Note that the addition of suspended states S i in Proce-
dure 2 when compared to Procedure 1 merely slows abstrac-
tion refinement in specific directions. Specifically, this does
not affect the proof of Proposition 11 regarding the inclusions
Lm(Ai) ⊆ Lm(G) ⊆ Lm(Bi). Referring to line 9, invoking trial
synthesis with the specification Lm(Ai) ∩ E, we have K↑ ⊆
Lm(G). Thus, the prerequisites of Proposition 5 are satisfied and
Eq. (17) is an immediate consequence of that proposition. �

Proposition 14. Let the Petri net G and the specification E be
the inputs for Procedure 2. If there exists a regular solution
K ∈ CF (Lm(G), E), K , ∅, such that the attainable markings

Mpfx K :={m ∈ M | ∃ s ∈ pfx K : R(mo, s) = m } (18)
in closed-loop configuration are bounded, then the Procedure 2
without refinement strategy, i.e., S i = ∅, terminates.

Proof. Denote H a finite automaton with state set X and final
states XK that accepts K and, without loss of generality, assume
the H is full, i.e., Lm(H) = K, L(H) = T ∗. Moreover denote
G = (M, T, R, mo, F) the infinite automaton realisation asso-
ciated with G, i.e., Lm(G) = Lm(G), L(G) = L(G). Consider the
product composition H×G over the state set Z = X×M and de-
note the final states ZK . Since K ⊆ Lm(G), H×G accepts K, and,
referring to the alternative set of final states ZG := X×F, the oth-
erwise identical automaton accepts Lm(G). Likewise, we obtain
by Zpfx K :={ (x, m) ∈ Z) | x is reachable and coreachable } a set
of final states to accept pfx K. Since K is relatively closed w.r.t.
Lm(G) we have Zpfx K ∩ ZG = ZK , and, in particular, ZK ⊆ ZG.
By hypothesis, Mpfx K is bounded, and, hence there are only
finitely many markings m ∈ Qpfx K :={m ∈ M | ∃ x : (x, m) ∈
Zpfx K }. For each individual marking m ∈ M, there is a shortest
sequence sm ∈ T ∗ such that R(mo, s) = m and we denote
l ∈ � the length of the longest such sequence sm over all
m ∈ Qpfx K . Now consider automata Ai and Bi for some iteration
i ≥ l + 1. Referring to lines 12–14 of Procedure 2 with S i = ∅,
we note that Qpfx K ⊆ Qi/Pi and that δi restricted to the domain

Qpfx K × T as a partial function is identical to R restricted to
the same domain. This implies that K ⊆ Lm(Ai) and that H ×
Bi accepts K. As above, we may consider the alternative set
of final states ZB := X × QB, QB :=(Qi ∩ F) ∪ Oi, such that
the otherwise identical automaton accepts Lm(Bi). Since K is
controllable w.r.t. Lm(G), any transition (z, σ, z′) of H×Bi with
z ∈ Zpfx K , z′ < Zpfx K must be controllable, i.e., σ ∈ Tc . This
implies controllability of K w.r.t. Lm(Bi). To observe relative
closedness of K w.r.t. Lm(Bi), we note that Zpfx K is coreachable
in H × Bi, and, hence, Qpfx K are coreachable in Bi. For the final
states of QB of Bi this implies q ∈ F for all x such that (x, q) ∈
Zpfx K ∩ ZB. Therefore, we conclude Zpfx K ∩ ZB ⊆ Zpfx K ∩

ZG = ZK and, hence, (pfx K) ∩ Lm(Bi) ⊆ (pfx K) ∩ Lm(G).
By Lm(G) ⊆ Lm(Bi) we obtain equality. Since K is relatively
closed w.r.t. Lm(G), we indeed have (pfx K) ∩ Lm(Bi) = K.
To this end, we have established K ∈ CF (Lm(Bi), E). For
K ∈ CF (Lm(Bi), E ∩ Lm(Ai)) recall K ⊆ Lm(Ai) from above.
Since K is a solution of (Lm(G)), E), it is nonempty and since
∅ , K ⊆ supCF (Lm(Bi), E ∩ Lm(Ai)), Procedure 2 terminates
after the i-th iteration at the latest. �

Regarding Heuristic [H2], we want to suspend the refinement
for states m ∈ Pi that when attained in the current abstraction
Ai are known to invalidate the upper-bound specification; i.e.,

S [H2]
i := {m ∈ Pi | ∀ s ∈ T ∗ :

δi(mo, s) = m → s < pfx (E ∩ Lm(Ai)) } . (19)

Algorithmically, states in S [H2]
i can be identified by (1.) consid-

ering a full-automaton realisation H of E with state set X that
accepts E and generates Σ

∗ (2.) building the product H×Ai with
state set X × Qi (3.) observing m ∈ S [H2]

i if and only if m ∈ Pi
and for all x′ such that (x′, m) ∈ X × Qi is reachable in H × Ai,
(x′, m) is not coreachable in H × Ai. Likewise, Heuristic [H3]
can be represented as

S [H3]
i := {m ∈ Pi | ∀ s ∈ T ∗ :

δi(mo, s) = m → s ∈ cfx (Lm(Bi) , E ∩ Lm(Ai)) } . (20)

The algorithm for the computation of the controllability prefix
provided by Moor et al. (2020) returns its result as an alternative
set of final states for the product of realisations of specification
and plant. For the specific case at hand, we observe that we
can find alternative final states for the product H × Bi to accept
the languages Lm(Bi) and E ∩ Lm(Ai). Thus, the controllability
prefix can also be represented as an alternative set of final states
for H × Bi. Then, m ∈ S [H3]

i if and only if m ∈ Pi and for all x′
such that (x′, m) ∈ X × Qi is reachable in H × Bi, (x′, m) is a
final state in H × Bi when accepting the controllability prefix.

We illustrate Procedure 2 by the following example.
Example 15. Recall the Petri net G = (P, T, R, mo, F) given
in Figure 2. We now seek to solve a control problem with
Lm(G) by using Procedure 2. The set of uncontrollable events
is assumed Tuc = {y} and the set of final markings is F =
{[110011]>}, i.e. no workpieces must remain in the buffer
places. Furthermore, we want to enforce a specification E ⊆ T ∗,
such that transitions x and y alternate and fire at least one time
each. The firing of transitions a and b is not restricted. See
Figure 4 for a realisation of an automaton C with Lm(C) = E.
Procedure 2 terminates for the given parameters in the fourth
iteration and delivers a solution to the task at hand. The results
are depicted in Figure 4 with Lm(D) = K↑. Akin to earlier,
transitions and final markings belonging solely to B4, but not
to A4, are represented by dashed blue lines. �

(A4, B4) :

00 10

01 11

20

02

30

21

12

03

a

b

a

b

x

b

a
y

a

b
x

a

b
x

a

b x, y

a, b, x, y

a, b, x, y

a, b, x, y

a, b, x, y

C :

I II

III IV

x

y y

x

x

y

a, b

a, b

a, b

a, b

D :

00,I 10,I

01,I 11,I

20,I

00,II 10,II

01,II 11,II00,III 10,III

20,III

00,IV 10,IV

20,IV

11,IV01,IV

a

b

a

b
x

a

x

xy

a

b b

a

a

x

a

y

x

a

b

a

b

x

x

a

x

y

Fig. 4. Automata realisations for Example 15 with E = Lm(C)
and K↑ = Lm(D).

CONCLUSION

In this paper, we address the basic problem of supervisory
control for non-regular parameters, and we consider unbounded
Petri nets as a prototypical example. We propose to substitute
the non-regular parameters with regular abstractions in a way
that any solution for the substitute problem carries over to the
original problem; Proposition 5. If no solution is found, a refine-
ment of the abstraction is applied; Propositions 6 and 11. Iter-
ating these two steps, we obtain a semi-algorithm, i.e., an algo-
rithm that may not terminate, but in the case of termination pro-
vides a valid solution to the original problem; Proposition 13.
Although not more can be expected given the known results e.g.
on the decidability of controllability for deterministic context
free parameters, we do envisage benefits for applications in
which the non-regularity of a parameter is not essential for the
solution of the control problem. In this regard, our iteration is
guaranteed to terminate with success provided that there exists
a supervisor which enforces a regular closed-loop behaviour

with uniformly bounded markings; Proposition 14. The bound,
however, does not need to be known in advance.

REFERENCES

Cassandras, C.G. and Lafortune, S. (2008). Introduction to
Discrete Event Systems. Springer, second edition.

Cordy, B. and Salomaa, K. (2007). On the existence of regu-
lar approximations. Theoretical Computer Science, 387(2),
125–135.

Eisman, G. and Ravikumar, B. (2005). Approximate recogni-
tion of non-regular languages by finite automata. Twenty-
Eighth Australasian Conference on Computer Science, 38,
219–228.

Giua, A. (2013). Supervisory Control of Petri Nets with Lan-
guage Specifications, 235–255. Springer.

Giua, A. and DiCesare, F. (1994). Blocking and controllability
of petri nets in supervisory control. IEEE Transactions on
Automatic Control, 39(4), 818–823.

Giua, A. and DiCesare, F. (1995). Decidability and closure
properties of weak petri net languages in supervisory control.
IEEE Transactions on Automatic Control, 40(5), 906–910.

Holloway, L., Krogh, B., and Giua, A. (1997). A survey of petri
net methods for controlled discrete event systems. Discrete
Event Dynamic Systems, 7, 151–190.

Masopust, T. (2012). A note on controllability of deterministic
context-free systems. Automatica, 48(8), 1934–1937.

Moor, T. and Schmidt, K.W. (2017). The controllability prefix
for supervisory control under partial observation. 20th IFAC
WC, invited track DCDS, 14206–14211.

Moor, T., Schmidt, K.W., and Schmuck, A.K. (2020). An
efficient algorithm for the computation of the controllability
prefix of *-languages. 21th IFAC WC, 2122–2129.

Raisch, J. and O’Young, S. (1998). Discrete approximation and
supervisory control of continuous systems. IEEE Transac-
tions on Automatic Control, 43(4), 569—-573.

Ramadge, P.J. and Wonham, W.M. (1987). Supervisory control
of a class of discrete event processes. cp woSIAM J. Control
and Optimization, 25, 206–230.

Ramadge, P.J. and Wonham, W.M. (1989). The control of
discrete event systems. Proceedings of the IEEE, 77, 81–98.

Schmuck, A.K., Schneider, S., Raisch, J., and Nestmann, U.
(2016). Supervisory control synthesis for deterministic con-
text free specification languages. Discrete Event Dynamic
Systems, 26, 5––32.

Sreenivas, R. (1993). On a weaker notion of controllability of a
language K with respect to a language L. IEEE Transactions
on Automatic Control, 38(9), 1446–1447.

Stursberg, O. (2006). Supervisory control of hybrid systems
based on model abstraction and guided search. Nonlinear
Analysis: Theory, Methods & Applications, 65(6), 1168–
1187.

Thistle, J.G. and Wonham, W.M. (1994). Supervision of infinite
behavior of discrete event systems. SIAM J. Control and
Optimization, 32, 1098–1113.

Wonham, W.M. and Cai, K. (2019). Supervisory control of
discrete-event systems. Springer.

Wonham, W.M. and Ramadge, P.J. (1987). On the supremal
controllable sublanguage of a given language. SIAM Journal
on Control and Optimization, 25(3), 637–659.

Yang, J.M., Moor, T., and Raisch, J. (2020). Refinements of
behavioural abstractions for the supervisory control of hybrid
systems. Discrete Event Dynamic Systems, 30, 533–560.

